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Abstract

Shape-Text matching is an important task of high-level
shape understanding. Current methods mainly represent a
3D shape as multiple 2D rendered views, which obviously
can not be understood well due to the structural ambigu-
ity caused by self-occlusion in the limited number of views.
To resolve this issue, we directly represent 3D shapes as
point clouds, and propose to learn joint embedding of point
clouds and texts by bidirectional matching between parts
from shapes and words from texts. Specifically, we first seg-
ment the point clouds into parts, and then leverage optimal
transport method to match parts and words in an optimized
feature space, where each part is represented by aggregat-
ing features of all points within it and each word is ab-
stracted by its contextual information. We optimize the fea-
ture space in order to enlarge the similarities between the
paired training samples, while simultaneously maximizing
the margin between the unpaired ones. Experiments demon-
strate that our method achieves a significant improvement
in accuracy over the SOTAs on multi-modal retrieval tasks
under the Text2Shape dataset. Codes are available at here.

1. Introduction
Interaction scenarios, such as metaverse, and computer-

aided design (CAD), create a larger number of 3D shapes
and text descriptions. To enable a more intelligent process
of interaction, it is important to bridge the gap between 3D
data and linguistic data. Recently, 3D shapes with rich geo-
metric details have been available in large-scale 3D deep
learning benchmark datasets [5, 34]. Beyond 3D shapes
themselves, text descriptions can also provide additional in-
formation. However, it is still hard to jointly understand 3D
shapes and texts, since representing different modalities in
a common semantic space is still very challenging.

The existing methods aim at learning a joint embedded

* Corresponding authors.

space to connect various 3D representations with texts, such
as voxel grids [6] and multi-view rendered images [11, 12].
However, due to the low resolution and self-occlusions, it
is hard for those methods mentioned above to improve the
ability of joint understanding of shapes and texts. On the
other hand, previous shape-text matching methods [6, 12,
37] usually take the global features of the entire 3D shape
for text matching, making it challenging to capture the local
geometries, and thus are not suitable for matching detailed
geometric descriptions.

Regional-based matching approaches are commonly
employed in the image-text matching task [21–23, 27],
whereby visual-text alignment is established at the seman-
tic level to enhance the performance of retrieval. These
models compute the local similarities between regions and
words and then aggregate the local information to obtain
the global metrics between the heterogeneous pairs. How-
ever, these two-stage methods based on the pre-trained seg-
mentation networks split the connection between matching
embeddings and segmentation prior information.

In this paper, we introduce an optimal transport based
shape-text matching method to achieve fine-grained align-
ment and retrieval of 3D shapes and texts, as shown in Fig-
ure 1. To mitigate the influence of low-resolution or self-
occlusions, we directly represent the shape as point clouds
and learn a part-level segmentation prior. Afterward, we
leverage optimal transport to build the regional cross-modal
correspondences and achieve more precise retrieval results.
Our main contributions are summarized as follows:

• We propose a novel end-to-end network framework
to learn the joint embedding of point clouds and
texts, which enables the bidirectional matching be-
tween parts from point clouds and words from texts.

• We leverage optimal transport theory to obtain the
best matches between parts and words and incorporate
Earth Mover’s Distance (EMD) to describe the match-
ing score.

• To the best of our knowledge, our proposed network
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Figure 1. Comparison between the global-based matching method and our proposed method. The proposed end-to-end framework aims to
learn the joint embedding of point clouds and text by matching parts to words. It can either retrieve shapes using text or vice versa. Our
novelty lies in the way of jointly learning embeddings of point clouds and texts.

achieves SOTA results in joint 3D shape/text under-
standing tasks in terms of various evaluation metrics.

2. Related Work
2.1. Joint embedding of 3D shapes and text

In recent pioneering work, Chen et al. [6] introduce a
novel 3D-Text cross-modal dataset by annotating each 3D
shape from ShapeNet [5] with natural language descrip-
tions. In order to understand the inherent connections be-
tween text and 3D shapes, they employ CNN+RNN and 3D-
CNN to extract features from text and 3D voxelized shapes
respectively. They use a full multi-modal loss to learn the
joint embedding and calculate the similarity between both
modalities. Han et al. [12] propose Y2Seq2Seq, which is
a view-based method, to learn cross-modal representations
by joint reconstruction and prediction of view and word se-
quences. Although this method can extract texture infor-
mation from multiple rendered views by CNN and acquire
global shape representation by RNN, it ignores local infor-
mation aggregation such as part-level features of 3D shapes,
which proves to be useful for 3D-Text tasks. To take a step
further, ShapeCaptioner [11] detects shape parts on 2D ren-
dered images, but it is still struggling to fully understand 3D
shapes due to the inaccurate boundaries and self-occlusion.
TriCoLo [37] learn the joint embedding space from three
modalities by contrastive learning.

In addition, other work is attempting to establish con-
nections between 3D shapes and natural language in other
ways. Liu et al. [32] design a new approach for high-
fidelity text-guided 3D shape generation. Text4Point [18]
implements implicit alignment between 3D and text modal-
ities using 2D images. ShapeGlot [1] explores how fine-
grained differences between the shapes of common objects
are expressed in language, grounded on 2D and/or 3D ob-
ject representations. They build a dataset of human ut-
terances to develop neural language understanding (listen-

ing) and production (speaking) models. ChangeIt3D [2] ad-
dresses the task of language-assisted 3D shape edits and de-
formations, which involves modifying or deforming a 3D
shape with the assistance of natural language descriptions.
VLGrammar [14] employs compound probabilistic context-
free grammars to induce grammars for both image and lan-
guage within a joint learning framework. PartGlot [26]
learns the semantic part segmentation of 3D shape geom-
etry, exclusively relying on part referential language.

2.2. Point-based 3D deep learning

Point clouds have been important representations of 3D
shapes due to their simplicity and compactness. Point-
Net [35] and PointNet++ [36] are the pioneer works to un-
derstand this kind of irregular data. After that, lots of stud-
ies [29, 42] are proposed to improve the interpretability of
network for point clouds in different tasks, such as 3D seg-
mentation [30, 31, 40], 3D classification [30, 31, 40], 3D re-
construction [9, 10, 13, 19] and 3D completion [15, 16, 41].

2.3. Image-text matching

The image-text matching task allows the image or text
to mutually find the most relevant instance from the multi-
modal database. Most existing methods can be roughly cat-
egorized into two types: global matching methods and re-
gional matching methods.
Global matching methods. m-RNN [33] aims to extract
the global representation from both images and texts and
then calculate the similarity score. VSE [25] learns to map
images and text to the same embedding space by optimiz-
ing a pairwise ranking loss. VSE++ [8] tries to improve the
performance by exploiting the hard negative mining strat-
egy during training.
Regional image-text matching. These methods extract
image region representation from existing detectors and
then take latent visual-semantic correspondence at the level
of image regions and words into consideration. DeFrag [23]
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Figure 2. Overview. The proposed network includes three modules: shape encoder, text encoder, and matching module. The shape
encoder learns the part embedding from the input 3D shape, and the text encoder learns the word embedding from the corresponding
text description. Then we utilize Earth Mover’s Distance to measure the discrepancy between parts and words in order to obtain the best
matches. To achieve the goal, we also leverage triplet loss to enhance the similarity between the paired training samples, and push the
unmatched ones far apart.

and DVSA [22] propose visual semantic matching by in-
ferring their inter-modal alignment, these methods first de-
tect object regions and then acquire the region-word corre-
spondence, finally aggregate the similarity of all possible
pairs of image regions and words in the sentence to infer
the global image-text similarity. Inspired by Up-Down [3],
SCAN [27] takes a step towards attending to important
image regions and words with each other as context for
inferring the image-text similarity. Recently, some works
SMAN [21], CASC [43], R-SCAN [28], RDAN [17], DP-
RNN [7], PFAN [39] attempt to improve SCAN and try to
achieve better performance.

3. Our Method
Overview As shown in Figure 2, our proposed network in-
cludes three modules: a shape encoder, a text encoder, and
a matching module. To encode a 3D shape S, we first uni-
formly sample points and then use a point-based backbone
network that aims to predict point labels and concatenate
hierarchical hidden features to acquire the representation of
each point. Then, we aggregate these representations in the
same part to extract its embedding P ∈ {pi|i ∈ [1, n]} of
the input shape S with n parts. For the text encoder, we
use the Bi-directional Gate Recurrent Unit (GRU) to learn
context-sensitive embeddingW = {wj |j ∈ [1,m]} of each
word in the text T , where the text T has m words.

To achieve the matching betweenP andW , we elaborate
an optimal transport-based matching module to generate the
similarity score between S and T . Finally, we use both
segmentation loss and matching loss to train our model.

3.1. The Shape Encoder

We use 3D point cloud data as visual input and use a
semantic segmentation network as the shape encoder. Our

shape encoder extracts the embedding of parts with differ-
ent semantic types on each input shape by aggregating the
features of corresponding points in the segmented parts. We
feed a shape S to the segmentation backbone (using Point-
Net [35] or PointNet++ [36]) to acquire the semantic pre-
diction for part assignment {ai|i ∈ [1, n]} and extract the
point-wise features fk, k ∈ [1, l], where l is the number of
points in S. We then aggregate these point-wise features
into embedding of parts, which can be instantly sent into
the matching module. The outputs f1

k , f
2
k , f

3
k , k ∈ [1, l] of

the last three layers of the backbone are extracted to form
the point features fk. Besides, we also explicitly utilize
the color representation f color

k , k ∈ [1, l] of the input shape
for better performance, our combined feature fusion module
makes full use of the color information and semantic infor-
mation of 3D shape at the same time. Thus, the point-wise
feature representation fk is computed by Equation (1):

fk = fc(fc(f1
k ) + fc(f2

k ) + fc(f3
k )⊕mlp(f color

k )), (1)

where mlp stacks multiple fully connection layers fc to
perform nonlinear mapping on color feature f color

k . Then,
pooling is applied to the point-wise features within the
same semantic part, in order to extract the embedding of
each part pi, as shown in Equation (2).

pi = pooling
k∈ai

(fk), i = 1, . . . , n (2)

3.2. The Text Encoder

The text encoder aims to extract local features at the
word level, as shown in Equation (3), we use Bi-directional
GRU to extract the context-sensitive word embedding W .
Each text description T is firstly represented by the embed-
ding of every single word ej in the text through a word em-
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bedding layer. Then, we encode the context of wj in the
bi-directional GRU. For the forward

−−−→
GRU , the hidden state−→

hj can be calculated from the embedding ej of the current
word at each time-step, and the hidden state hj−1 from the
previous time-step. Similarly, for the backward

←−−−
GRU , the

current hidden state
←−
hj is calculated from the embedding ej

of the current word and the hidden state hj+1 from the next.
Finally, the context-sensitive word embedding is obtained
by the averages of the hidden states in the two directions.

−→
hj =

−−−→
GRU (ej , hj−1) , j ∈ [1,m]

←−
hj =

←−−−
GRU (ej , hj+1) , j ∈ [1,m]

wj =

−→
hj +

←−
hj

2
, j ∈ [1,m]

(3)

3.3. The Matching Module

We introduce the optimal transport method to evaluate
the similarity of 3D shape and text using their embedding
P and W . Similar to the transport of goods between pro-
ducers (part pi) and consumers (word wj), pi contains ui

stock of goods and wj has vj capacity. Then, the transport
cost between pi and wj is defined as cij , and the matching
flow is defined as xij . We formulate our matching problem
in Equation (4):

min
xij

∑n
i=1

∑m
j=1 cijxij

s.t. xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m∑n
j=1 xij = ui, i = 1, . . . n∑m
i=1 xij = vj , j = 1, . . .m

cij = 1− pi
Twj

∥pi∥∥wj∥

(4)

where the cost cij between pi and wj is measured by cosine
distance. We adopt a simple discrete uniform distribution
for the EMD node weight settings of ui and vj , which con-
strains the upper limit of the summation of matching flow.

Then, we use the Sinkhorn algorithm to compute the op-
timal matching flow x̂ij which is the solution of the earth
mover’s distance function in Equation (4). After optimiza-
tion, we calculate the similarity REMD between shape S
and text T as shown by Equation (5)

REMD(S, T ) = −
n∑

i=1

m∑
j=1

cij x̂ij (5)

3.4. Objective Function

As shown in Equation (6), we train the proposed network
using the multi-task learning strategy, and learn the part seg-
mentation and matching simultaneously. The weight β is
employed to balance the two tasks.

Table 1. Retrieval results on Text2shape compared to the SOTAs.

Method S2T T2S

RR@1 RR@5 NDCG@5 RR@1 RR@5 NDCG@5

Text2Shape [6] 0.83 3.37 0.73 0.40 2.37 1.35
Y2Seq2Seq [12] 6.77 19.30 5.30 2.93 9.23 6.05
TriCoLo [37] 16.33 45.52 12.73 10.25 29.07 19.85

Global-Max (Our) 12.60 32.96 9.48 8.53 24.09 16.46
Global-Avg (Our) 7.63 24.07 6.23 8.60 24.82 16.83
LocalBaseline (Our) 12.81 34.71 9.82 7.87 23.55 15.84
LocalBaseline+ (Our) 17.77 44.58 13.91 11.94 31.62 21.92

Parts2Words (Our) 19.38 47.17 15.30 12.72 32.98 23.13

Figure 3. Data pre-process. We rectify the incorrect color input
provided by ShapeNet [5] and add the part segmentation annota-
tion from PartNet [34] by registration. Finally, the new segmenta-
tion dataset will be combined with the Text2Shape [6].

The segmentation network is optimized by the cross-
entropy loss LCE only. While, for the matching task, we
adopt the paired ranking loss with the semi-hard negative
sampling mining strategy [38] to facilitate the network to
better converge and avoid getting into a collapsed model, as
shown in Equation (7). Specifically, for a positive sampling
pair (S, T ), we select the semi-hard negative sampling pair
(Ŝsemi, T̂semi) which has a smaller similarity score than
(S, T ), and calculate the triplet loss for the input shape and
text respectively. Similarly, the triplet loss between the sam-
pling pair (T ,S) can also be calculated in the same way.

L = LCE + βLEMD (6)

LEMD = LS2T (S, T ) + LT2S(T ,S),
LS2T (S,T )=max(α−REMD(S,T )+REMD(S,T̂semi),0)

LT2S(T ,S)=max(α−REMD(T ,S)+REMD(T ,Ŝsemi),0)

(7)

Here, α is a margin that is enforced between the positive
and negative pairs.

4. Experiments
Data preparation We evaluate our proposed network on
a 3D-Text cross-modal dataset [6]. However, this dataset
does not include 3D point clouds and the segmentation
prior. To resolve this issue, we establish our training
samples using two additional datasets, ShapeNet [5] and
PartNet [34], which share the same 3D models. More-
over, in contrast to the segmentation annotations offered
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Query text top1 top2 top3 top4 top5

This glass table is excellent, beautiful if
displayed at living room.

it is long chair. it can be able to sit com-
fortable. it has white in color.

chair with brown wooden structure, arm-
rests and both seat and back cover with red
and pastel fabric

A wooden table with glass parts in the
center.There is also storage facility to keep
any material below the table.It is rectangu-
lar in shape with curves in the four ends .

A modern blue colored chair with no arm-
rest.

This is a white plastic chair, with a square
seat and curved back. The legs are ta-
pered.

Figure 4. Retrieval result of the proposed Parts2Words (T2S). For
each query sentence, we show the top-5 ranked shapes, the ground
truth shapes are marked as red boxes. The words on the corre-
sponding to the details of the retrieved shapes are marked in bold.

Query Shape Retrieval Result

1. wooden chair with white color sponge on seating area and back support. trapezium shape seating area and
eclipse shape back support .
2. brown and white with round back . appear to be wood and a soft material on the seat and back .
3. a fancy dining chair with white padding and brown , wooden frame . the backing be round with wooden
framing and a white pad .
4. wooden chair with four leg , gray padded seat and back rest , the back rest be tall and straight . on the top of
the back rest there be a semicircular protuberance . the wooden frame have classical style .
5. a wooden chair with white upholstered seat

1. it be a five - wheeled , black , height - adjustable office chair on coaster wheel .
2. modern irregular shape black chair make of plastic , with an iron structure and with 5 wheel on the bottom
3. this be a black , height - adjustable , office chair without arm . its 5 wheel and single base be make of silver
color metal and the seat be make out of a hard , black material .
4. black chair with back support . have single leg with 5 wheel branch from the main support .
5. a black armless computer stool with leg on roller .

1. brown color , l shape , wooden table . box drawer at both leg side . with rectangular l shape plain top .
2. brown wooden corner desk unit with drawer two set of two
3. brown business desk . have an l shape appearance
4. a brown wooden desk at a 90 degree angle and drawer on both end of the l shape
5. an l shape dark brown colored wooden table

1. a long brown table that be oblong in shape
2. a modern oval shape wooden table with six design short leg
3. a long brown wooden rectangular table with three full cover leg
4. a brown , rounded wooden table with three leg
5. this be a short brown elongated round table . this table would be use as a coffee table with a small table in
the middle of a room .

1. a wicker round chair with blue plush seat and pillow . the chair be on a circular pedestal
2. round shape brown chair with blue cushion in it
3. a multi color round shape fashion chair with cushion
4. round c shape back chair in a checkered pattern all through the chair . circle cushion seat with a cylinder
checkered single pole in the middle to support the cushion . the bottom be circle foundation in same checkered
pattern .
5. one short round chair with three royal blue colored cushion and have a round backrest

1. an oval shape table which be yellow at top with red lining . below that blue color be see .
2. an oval table with a blue shelf under it . the tabletop be yellow with a narrow red trim around it .
3. the object be a large oval table with a yellow top and red rim around the yellow . it also have a blue shelf
underneath and black leg .
4. an oval shape pool table with a green felt top , wooden out layer and two moon shape wood leg
5. oval table with 4 leg and material from wood , plastic , brown wood and blue plastic help the table very
luxury

Figure 5. Retrieval result of the proposed Parts2Words (S2T). For
each query shape, we show the top-5 ranked sentences, the ground
truth sentences are marked in red.

by ShapeNet [5], the segmentation annotations present in
PartNet [34] demonstrate a level of inherent object clas-
sification supervisory capability. We sample point clouds
with color from meshes in ShapeNet [5], and assign each
point a label using the fine-grained, instance-level, and hi-
erarchical 3D segmentation ground truth of the same 3D
shapes in PartNet [34]. We notice that the original point

clouds in ShapeNet dataset [5] have the wrong color which
is inherited from its inner meshes (The origin point cloud
with incorrect color is shown in Figure 3). The incorrect
color input will cause problems for our model to understand
color information. To mitigate this problem, we first remove
the inner mesh from the origin mesh data, then we sample
points with the correct color. At the same time, we leverage
ICP [4] to map the 3D segmentation ground truth on shapes
in PartNet to the sampled point clouds. Finally, we obtained
point clouds with color and segmentation ground truth with
different granularities. In the 3D-Text dataset that contains
chairs and tables, we use 11498 3D shapes as training sam-
ples, and the remaining 1434 ones are considered as test
data. And each 3D shape has an average of 5 text descrip-
tions.

Evaluation metrics We employ recall rate (RR@k, k =
1, 5) and NDCG [20] to conduct quantitative evaluation.
RR@k is defined as the percentage of correct text/shape in
the top k retrieval results.

Parameter Setting We set the number of each point cloud
l to 2500, and output the segmentation result and the match-
ing scores between shapes and text. We use the coarse gran-
ularity of 17 classes as segmentation ground truth. For the
shape encoder module, we tried to use PointNet and Point-
Net++ respectively as the backbone. In the group pooling
module, we use average pooling to aggregate part embed-
ding. Additionally, we ignore the part with less than 1% of
total points. In the matching module, we set the dimension
of embedding to 1024, which is consistent with [11, 12].
We also use the vocabulary of 3587 unique words and a
single-layer Bi-directional GRU as the text encoder. Due
to the limited vocabulary of the Text2Shape dataset used
in the experiment, the impact of text pre-training methods
like BERT on the results is minimal (within 1%). There-
fore, we only use a text encoder trained from scratch in the
comparative and ablation experiments. For the loss func-
tion, we adopt a semi-hard negative mining strategy, and
the margin α of the triplet ranking loss is set to 0.2. We
divide the training process into two stages. First, we pre-
train the model only by semantic segmentation loss with 50
epochs and then train multi-task loss with 20 epochs and
we set the balance weight of loss β to 40. Our model uses
the Adam [24] algorithm as the optimizer and set the initial
learning rate to 0.001. We used RTX 6000 with 24GB for
training and set the batch size to 128.

4.1. Comparison results

Table 1 presents the quantitative results on 3D-Text
dataset where our method outperforms the latest approaches
Text2Shape [6], Y2Seq2Seq [12] and TriCoLo [37] in all
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Figure 6. Comparison between global/local-based methods. The
result shows the local-based methods (Parts2Words, Parts2Words-
CD, LocalBaseline+) outperform the global-based methods
(Global-Max, Global-Avg).

Query Text top1 top2 top3 top4 top5

A simple circular table with no
legs and only one circular base. Tr

iC
oL

o
O

ur
s

This is greenish top wooden Bil-
liards table Tr

iC
oL

o
O

ur
s

this is a boxy look gray chair. It
appears to be made out of granite
and is gray with 4 short legs and a
high, arched back.

Tr
iC

oL
o

O
ur

s

Figure 7. Retrieval result of the proposed Parts2Words and Tri-
CoLo [37] (T2S). the ground truth shape are marked as red boxes.
Words corresponding with the parts in retrieved shapes are marked
in bold.

Table 2. Component-wise analysis on text2shape, with different
backbones on shape encoder and different matching modules.

S2T T2S
Backbones Matching RR@1 RR@5 NDCG@5 RR@1 RR@5 NDCG@5

PN++ EMD 16.66 43.11 13.20 11.10 28.89 20.25
PN CD 18.47 45.98 14.52 11.73 32.60 22.49
PN EMD 19.38 47.17 15.30 12.72 32.98 23.13

Table 3. Effectiveness of end-to-end training and semi-hard nega-
tive mining strategies.

S2T T2S
w e2e w semi RR@1 RR@5 NDCG@5 RR@1 RR@5 NDCG@5

✓ 16.31 43.39 12.99 10.68 29.25 20.14
✓ 0.00 0.21 0.04 0.08 0.35 0.23
✓ ✓ 19.38 47.17 15.30 12.72 32.98 23.13

measures. We can observe that our proposed model out-
performs other methods on the 3D-Text dataset. Our best
result at RR@1 are 19.38 and 12.72 for shape-to-text (S2T)
retrieval and text-to-shape (T2S) retrieval, which achieves

Table 4. Ablation study on the influence of color and segmentation
supervision.

S2T T2S
RR@1 RR@5 NDCG@5 RR@1 RR@5 NDCG@5

+COLOR 7.77 26.94 6.91 5.06 17.21 11.25
+SEG 11.62 29.18 8.53 7.58 21.93 14.91

Parts2Words (COLOR+SEG) 19.38 47.17 15.30 12.72 32.98 23.13

a 12.64% relative improvement compared to current SOTA
methods.

Additionally, to make our experiment more comparable
and convincing, we also conducted four additional experi-
ments by modifying our proposed network to approximate
other existing methods. The results are also presented in
Figure 1. We designed two global-based matching net-
works, Global-Max and Global-Avg, to show the perfor-
mance of point-based global matching, which simply use
max pooling (Global-Max) and average pooling (Global-
Avg) operation on both features of all points and embed-
dings of all words separately. Besides, we also presented
a local-based matching network called LocalBaseline, by
replacing our matching module with the stack cross atten-
tion module (SCAN) [27] in image-text matching. We train
this network by two approaches: LocalBaseline is a two-
stage training approach based on a pre-trained segmenta-
tion network, identical to the SCAN which freezes the de-
tector model to produce features from image patches; Lo-
calBaseline+ is an end-to-end training approach, identical
to our proposed method. We achieved 1.61 and 0.78 im-
provements in terms of RR@1 by comparing with Local-
Baseline+. The comparison with four modified networks
proved that the local-based matching approaches extract
more detailed features than the global-based ones, our op-
timal transport-based matching module learns better joint
embeddings than the popular SCAN module, and the pro-
posed end-to-end multi-task learning approach makes a bet-
ter connection between matching embeddings and segmen-
tation prior information.

As shown in Figure 6, we plot the curve of RR@K of 5
methods, among which Parts2Words, Parts2Words-CD, and
LocalBaseline+ are local-based methods, and Global-Avg
and Global-Max are global-based methods. Parts2Words-
CD was obtained by replacing EMD with CD (Chamfer
Distance) on the basis of Parts2Words, and further analysis
was conducted on this in subsequent ablation experiments.
It can be seen that the recall rate of the local matching
methods with segmentation prior is obviously higher than
the global matching methods. Meanwhile, we can also ob-
serve that the proposed Parts2Words achieves the best re-
sults compared to other local matching models.

The examples of T2S and S2T retrieval results are shown
in Figure 5 and Figure 4. From Figure 5, we display top-5
retrieved texts, we can see that our model can match an av-
erage of 2-3 ground truth texts within top-5 best-matched
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Query Shape Parts2Words TriCoLo
1. a wooden oval brown small table . it have a rectangular hole at the
middle below the table - top , seem like it have two leg .
2. a capsule shape wooden table with two half cylinder shape leg .
3. brown color , oval shape , wood material , and physical appearance
table
4. this be a light brown wooden table , with a flat capsule shape surface
at the top , and two thick leg that be vertically tall , and be semicircle
shape with the flat side face the middle create an empty space .
5. brown colored whole wood oval shape coffee table .

1. this oval light wood topped table is on a dark wood base .
2. a wooden oval brown small table . it has a rectangular hole at the
middle below the table top seems like it has two legs .
3. an oval shaped table with two legs . it is also wooden and brown .
4. an brown oval table with three section base
5. brown color rectangle shape wood material and physical appearance
table

1. a red chair with a back .
2. a red chair . the seat be curved downward and the back have a gap .
3. red side chair
4. maroon color chair with four leg and rest at back
5. it be a wooden chair . it be red in color .

1. a wooden chair red in color
2. it is a wooden chair . it is red in color .
3. a wooden chair with red colour back and seat with spindle and strong
four legs
4. a red wooden kitchen chair with detached back and slightly rounded
seat
5. this is wooden chair with four legs and it is in red texture light weight

1. marble round table with metal leg . table be black color .
2. black , round metal outdoor table . with long curl leg .
3. a center - table with black circular top and four curved leg
4. a stylish black color round table for all - purpose
5. a circular black table .

1. the table is circular with three legs . the table is black and the legs
stick out from the top.
2. a black color round shaped wooden table with three legs
3. a black colored round table with four slim shaped legs
4. black round metal outdoor table with long curled legs .
5. black round table three legs wooden material

Figure 8. Retrieval result of the proposed Parts2Words and TriCoLo [37], the ground truth description are marked in red. Each retrieval
case under our model can match 2 or 3 ground truth sentences, which is more than TriCoLo.

Figure 9. Segmentation results in three different granularity.

Figure 10. Comparison in terms of Recall@1(RR@1), Re-
call@5(RR@5) and NDCG@5 using different segmentation gran-
ularity. S1, S2, and S3 represent the representing different seg-
mentation granularities from coarse to fine, which have 17 classes,
72 classes, and 90 classes separately. The segmentation with the
coarsest granularity S1 achieves a better performance.

texts for each case. From Figure 4, we can see the top-5 re-
trieval shapes have a more similar appearance, especially in
details such as color and geometry. The results demonstrate
that our method could find correspondences in details, such
as color and geometric description. In particular, for com-
plex shapes, our model can still achieve superior results.

Figure 11. Comparison in terms of Recall@1(RR@1), Re-
call@5(RR@5) and NDCG@5 using different loss weight β. Ac-
cording to the above result, we choose loss weight β as 40.

We also compare with with TriCoLo [37] by present-
ing 3 text-to-shape retrieval results and 3 shape-to-text re-
trieval results, as shown in Figures 7 and 8. For each query
text/shape, we display top-5 retrieval shapes/texts ranked by
the similarity scores from the two methods. The ground
truth shapes/texts are marked in red. And as shown in Fig-
ure 7, our model matches the ground truth shapes within
top-2 retrieval shapes. For the S2T retrieval result in Fig-
ure 8, our model can match 2 or 3 ground truth sentences
within top-5 retrieval results, which is more than the ones
that TriCoLo can match.

4.2. Ablation Study

Granularity We explore the impact of part embedding
extracted under different segmentation granularities on the
matching model. The PartNet dataset contains hierarchical
segmentation annotation in three granularities from S1 to
S3, representing different segmentation granularities from
coarse to fine, which have 17 classes, 72 classes, and 90
classes separately. The ground truths and our semantic pre-
dictions are shown in Figure 9. As shown in Figure 10, the
results show that our method with coarse part segmentation
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annotation achieves the best performance. We believe that
the parts learned through finer segmentation ground truth
are hard to align with the simple plain words. Therefore,
the coarsest part segmentation annotation S1 is selected.

Loss Weight We adopt the balance weight β to adjust the
joint loss to make our network focus more on the retrieval
performance than the segmentation result. We present our
retrieval performance when selecting different β to select
the most suitable parameter settings, as shown in Figure 11.
The retrieval performance improves with the increase of the
weight of retrieval loss until β is 40.

Backbone We analyzed the influence of different net-
work backbones on the retrieval results. We use PointNet
and PointNet++ respectively as the backbone for the fea-
ture extraction network. As shown in Table 2, the compar-
ison results show that the retrieval result gets worse after
replacing the backbone with PointNet++.

CD/EMD In Table 2, we replace the EMD for match-
ing similarity calculation by CD (Chamfer Distance), which
can be regarded as a local optimal hard matching method.
In the Chamfer distance matching flow, each node only cor-
responds to the node with the most similar individual. The
experimental results show that the EMD is better than CD.

Sampling We explore the impact of different negative
sample learning strategies based on the triplet ranking loss
on retrieval. We compared two strategies: hardest negative
mining and semi-hard negative mining. As demonstrated in
Table 3, we find that the model using the hardest negative
mining results in a collapsed model.

Training We examine the effectiveness of end-to-end
training by joint multi-task learning as shown in Table 3.
In comparison, we separately train the shape encoder mod-
ule and the matching module. Our results demonstrate that
the end-to-end model outperforms the separate training ap-
proach.

Color and Segmentation As shown in Table 4, we sep-
arately evaluate the influence of integrating the point cloud
color into the feature fusion step and supervising the train-
ing with the segmentation loss. The results demonstrate
that, after removing these two components (w/o color and
w/o seg loss), it is hard for the network to learn to estab-
lish a local alignment between color and geometry, which
will lead to a significant decrease in accuracy. It indicates
that color and part information are crucial for multi-modal
retrieval.

4.3. Visualization

We visualized two examples of the best matching pair
between the shape and the text, as shown in Figure 12. The
normalized similarity matrix is colored by calculating each
pairwise distance D = {1− cij} between parts and words.
We can see that our model can accurately find the corre-
spondence (dark red) between parts and words. For the first

Figure 12. Visualization of the similarity between parts and
words. We display a normalized similarity matrix between parts
and words. The place with darker color indicates the higher rela-
tionship between corresponding parts and words.

example, the chair is firstly segmented into 4 parts, then the
black seat matches the words ”black” and ”seat” in the text
well, and the rest also attends the words ”yellow”, ”black”
and ”rest”. Besides, the similarity weight between the part
of blue legs and the word ”blue” obtained the highest score.

5. Conclusion
We introduce a method to learn the joint embedding of

3D point clouds and text. Our method successively in-
creases the ability of a joint understanding of 3D point
clouds and text by learning to bidirectionally match 3D
parts to words in an optimized space. We obtain the 3D
parts by leveraging a 3D segmentation prior, which ef-
fectively resolves the self-occlusion issue of parts that is
suffered by current multi-view based methods. We also
demonstrate that matching 3D parts to words using the opti-
mal transport is an efficient way to merge different modali-
ties including 3D shapes and text in a common space, where
the proposed cross-modal earth mover’s distance is also jus-
tified to effectively capture the relationship of part-word in
this matching procedure. Experimental results show that
our method significantly outperforms other state-of-the-art
methods.
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