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Abstract

We propose Universal Document Processing (UDOP),
a foundation Document AI model which unifies text, im-
age, and layout modalities together with varied task for-
mats, including document understanding and generation.
UDOP leverages the spatial correlation between textual con-
tent and document image to model image, text, and layout
modalities with one uniform representation. With a novel
Vision-Text-Layout Transformer, UDOP unifies pretraining
and multi-domain downstream tasks into a prompt-based
sequence generation scheme. UDOP is pretrained on both
large-scale unlabeled document corpora using innovative
self-supervised objectives and diverse labeled data. UDOP
also learns to generate document images from text and lay-
out modalities via masked image reconstruction. To the
best of our knowledge, this is the first time in the field of
document AI that one model simultaneously achieves high-
quality neural document editing and content customization.
Our method sets the state-of-the-art on 8 Document AI tasks,
e.g., document understanding and QA, across diverse data
domains like finance reports, academic papers, and web-
sites. UDOP ranks first on the leaderboard of the Document
Understanding Benchmark.1

1. Introduction
Document Artificial Intelligence studies information ex-

traction, understanding, and analysis of digital documents,
e.g., business invoices, tax forms, academic papers, etc. It is
a multimodal task where text is structurally embedded in doc-
uments, together with other vision information like symbols,
figures, and style. Different from classic vision-language
research, document data have a 2D spatial layout: text con-
tent is structurally spread around in different locations based
on diverse document types and formats (e.g., invoices vs.

*Corresp. authors: ziyiyang@microsoft.com, mbansal@cs.unc.edu
1Code and models: https://github.com/microsoft/i-

Code/tree/main/i-Code-Doc

tax forms); formatted data such as figures, tables and plots
are laid out across the document. Hence, effectively and
efficiently modeling and understanding the layout is vital
for document information extraction and content understand-
ing, for example, title/signature extraction, fraudulent check
detection, table processing, document classification, and
automatic data entry from documents.

Document AI has unique challenges that set it apart from
other vision-language domains. For instance, the cross-
modal interactions between text and visual modalities are
much stronger here than in regular vision-language data,
because the text modality is visually-situated in an image.
Moreover, downstream tasks are diverse in domains and
paradigms, e.g., document question answering [45], lay-
out detection [57], classification [13], information extrac-
tion [28], etc. This gives rises to two challenges: (1) how
to utilize the strong correlation between image, text and lay-
out modalities and unify them to model the document as a
whole? (2) how can the model efficiently and effectively
learn diverse vision, text, and layout tasks across different
domains?

There has been remarkable progress in Document AI in
recent years [1,10–12,15,16,24,26,29,30,36,37,48,52–55].
Most of these model paradigms are similar to traditional
vision-language frameworks: one line of work [1, 11, 29, 30,
36, 37, 52–55] inherits vision-language models that encode
images with a vision network (e.g., vision transformer) and
feed the encodings to the multimodal encoder along with
text [17, 27, 44, 47]; another line of work uses one joint en-
coder [22, 46] for both text and image [16]. Some models
regard documents as text-only inputs [10, 12, 15, 26, 48]. In
these works, the layout modality is represented as shallow
positional embeddings, e.g., adding a 2D positional embed-
ding to text embeddings. The strong correlation between
modalities inherent in document data are not fully exploited.
Also to perform different tasks, many models have to use
task-specific heads, which is inefficient and requires manual
design for each task.

To address these challenges, we propose Universal Docu-
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Figure 1. UDOP unifies vision, text, and layout through vision-text-layout Transformer and unified generative pretraining tasks including
vision task, text task, layout task, and mixed task. We show the task prompts (left) and task targets (right) for all self-supervised objectives
(joint text-layout reconstruction, visual text recognition, layout modeling, and masked autoencoding) and two example supervised objectives
(question answering and layout analysis).

ment Processing (UDOP), a foundation Document AI model
that unifies vision, text, and layout and different document
tasks. Different from regarding image and document text as
two separate inputs in previous works, in UDOP we propose
to model them with the uniform layout-induced representa-
tion (Sec. 3.1): in the input stage, we add embeddings of
text tokens with the features of the image patch where the
tokens are located. This simple and novel layout-induced
representation greatly enhances the interaction between the
text and vision modalities.

Besides the layout-induced representation, to form a uni-
form paradigm for different vision, text, layout tasks, UDOP
first builds a homogeneous vocabulary for texts and docu-
ment layout that converts layout, i.e. bounding boxes, to
discretized tokens. Second, we propose Vision-Text-Layout
(VTL) Transformer, consisting of a modality-agnostic en-
coder, text-layout decoder and vision decoder. VTL Trans-
former allows UDOP to jointly encode and decode vision,
text, and layout. UDOP unites all downstream tasks with a
sequence-to-sequence generation framework.

Besides the challenges of modality unification and task
paradigms, another issue is previous works utilized self-
supervised learning objectives that were originally designed
for single-modality learning, e.g., masked language model-
ing, or classical vision-language pretraining, e.g., contrastive
learning. We instead propose novel self-supervised learning
objectives designed to allow holistic document learning, in-
cluding layout modeling, text and layout reconstruction, and
vision recognition that account for text, vision and layout
modeling together (Sec. 4). Besides sequential generation,
UDOP can also generate vision documents by leveraging
masked autoencoders (MAE) [14] by reconstructing the doc-
ument image from text and layout modalities. With such
generation capacity, UDOP is the first document AI model
to achieve high-quality customizable, joint document editing
and generation.

Finally, our uniform sequence-to-sequence generation
framework enables us to conveniently incorporate all major
document supervised learning tasks to pretraining, i.e., docu-
ment layout analysis, information extraction, document clas-
sification, document Q&A, and Table QA/NLI, despite their
significant differences in task and data format. In contrast,
pretraining in previous document AI works is constrained
to unlabeled data only (or using one single auxiliary super-
vised dataset such as FUNSD [55]), while abundant labeled
datasets with high quality supervision signals are ignored
due to the lack of modeling flexibility. Overall, UDOP is
pretrained on 11M public unlabeled documents, together
with 11 supervised datasets of 1.8M examples. Ablation
study in Table 4 shows that UDOP only pretrained with the
proposed self-supervised objectives exhibits great improve-
ments over previous models, and adding the supervised data
to pretraining further improves the performance.

We evaluate UDOP on FUNSD [18], CORD [34], RVL-
CDIP [13], DocVQA [33], and DUE-Benchmark [2]. UDOP
ranks the 1st place on the DUE-Benchmark leaderboard with
7 tasks, and also achieves SOTA on CORD, hence making
UDOP a powerful and unified foundation Document AI
model for diverse document understanding tasks,

To summarize, our major contributions include:
1. Unified representations and modeling for vision, text

and layout modalities in document AI.
2. Unified all document tasks to the sequence-to-sequence

generation framework.
3. Combined novel self-supervised objectives with super-

vised datasets in pretraining for unified document pretrain-
ing.

4. UDOP can process and generate text, vision, and layout
modalities together, which to the best of our knowledge is
first one in the field of document AI.

5. UDOP is a foundation model for Document AI, achiev-
ing SOTA on 8 tasks with significant margins.
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2. Related Work
Unifying Model Architectures in Multimodal Learning.
Unifying model architectures for different modalities, such
as vision, language, and speech, is an emergent direction.
Inspired by the immense success in natural language process-
ing, computer vision and speech processing, model architec-
tures in multimodal learning is converging to Transformers.
One type of works concatenates text token embeddings and
projected image patches as the input [6, 42] to a multimodal
Transformer. Other models uses two-tower or three-tower
architecture where each modality is encoded respectively.
Projection heads or fusion networks on top of the two-tower
architecture generate multimodal representations [38, 56].
Unifying Tasks with the Generative Framework. Re-
search on unifying training processes across different tasks
and domains recently has made significant progress. [8] fine-
tunes language models with instructions on 1.8k tasks. [7]
unifies several vision-language tasks by converting train-
ing objectives to sequence generation. [31, 49, 50] further
combines more tasks, e.g., image generation, by converting
images and bounding boxes to discrete tokens.
Document Artificial Intelligence. LayoutLM [53] pre-
trains BERT models on document data with masked lan-
guage modeling and document classification task, with 2D
positional information and image embeddings integrated.
Subsequent works [15, 16, 55] also adopt VL-BERT alike
architecture and includes additional pretraining tasks, e.g.,
masked image/region modeling proposed, and leverages
the reading order in layout information [12]. [11, 29] use
a multimodal encoder to model region features extracted
by CNN with sentence-level text representations and train
with self-supervised objectives. [20] proposes an OCR-free
model to directly generate textual output from document
images. [36] trains generative language models on both un-
labeled and labeled document data using generative training
objectives. [10] proposed to model documents as collections
of tokens bounding boxes.

3. Universal Document Processing
We introduce UDOP, a novel document AI framework

with unified learning objectives and model architecture for
text, vision, and layout as shown in Figure 1. In this sec-
tion, we will concretely discuss the proposed Vision-Text-
Layout Transformer in UDOP, and will introduce the uni-
fied generative pretraining method in the next section. In
document processing, given a document image v, typically
optical character recognition (OCR) is used on v to extract
text tokens {si} in the document and their bounding boxes
{(x1

i
, y1

i
, x2

i
, y2

i
)}, i.e., the layout information for each token.

(x1
i
, y1

i
) and (x2

i
, y2

i
) respectively represent the coordinates

of the left-upper and right-bottom corner of the bounding
box. Thus, suppose we have M word tokens, the input is the
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Figure 2. Layout-induced vision-text embedding.

triple, (v, {si}Mi=1, {(x1
i
, y1

i
, x2

i
, y2

i
)}M

i=1). Figure 1 shows
an example document (left) and downstream tasks (right).

3.1. A Unified Vision, Text, and Layout Encoder
We fuse the vision, text, and layout modalities in the input

stage using one unified transformer encoder. For traditional
vision-text data, the text modality is usually the high-level
description of the corresponding image or task prompt (e.g.,
question). While in document images, text is embedded
inside the image, i.e., text and image pixels have one-to-
one correspondence. To leverage this correspondence, we
propose a new Vision-Text-Layout (VTL) Transformer ar-
chitecture to dynamically fuse and unite the image pixels
and text tokens based on the layout information.

Concretely, given the document image v 2 RH⇥W⇥C ,
M word tokens {si}Mi=1 inside the image and the extracted
layout structure {(x1

i
, y1

i
, x2

i
, y2

i
)}M

i=1, we first partition v
into H

P
⇥ W

P
image patches, where each patch is of size

P ⇥ P ⇥ C. We then encode each patch with a D-dim
vector and group all patch embeddings into a sequence of
vectors {vi 2 RD}N

i=1 where N = H

P
⇥ W

P
. Text tokens are

also converted to numerical D-dim embeddings {si}Mi=1 by
vocabulary look-up.

Layout-Induced Vision-Text Embedding. Next, we build
a unified representation for vision, text, and layout as shown
in Figure 2. We define the layout indicator function � of
image patch and token embeddings as follows:

�(si,vj) =

8
><

>:

1, if the center of si’s bounding box
is within the image patch vj .

0, otherwise.
(1)

Then for each text token embedding si, the joint represen-
tation is the sum of its image patch feature2 and the text

2Some text token like manually crafted prompts have no locations. So,
we set their layout bounding boxes to be (0, 0, 0, 0), i.e., they fall into a
pseudo image patch.
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feature:
s0
i
= si + vj , where �(si,vj) = 1.

For image patches vj without any text tokens, i.e.
8i, �(si,vj) = 0, the joint representation, v0

j
is itself:

v0
j
= vj .

Note we do not have a designated joint representation for
image patch containing tokens, since features of these im-
age patches are already integrated with the text embeddings.
Then {s0

i
} and {v0

j
} are fed into the VTL transformer en-

coder. These joint representations greatly enhance the in-
teraction between vision, text and layout in the model input
stage by explicitly leveraging their spatial correlations.

To further unify layout and text representation, inspired
by the recent progress in generative object detection [4, 49],
we discretize the layout modality, i.e., continuous coordi-
nates text bounding box, to layout tokens. Suppose we have
bounding box (x1

i
, y1

i
, x2

i
, y2

i
) normalized in [0, 1]. The re-

sulting layout token will be each coordinate multiplied by
vocabulary size and then rounded to nearest integer. For
example, if we have bounding box (0.1, 0.2, 0.5, 0.6) with
layout vocabulary size 500, the layout tokens will then be
<50><100><250><300>. Layout tokens can be conve-
niently inserted into text context, and elegantly used for lay-
out generation tasks (e.g., location detection). More details
are discussed in Section 4.

Position Bias. We follow TILT [36] to encode 2D text
token position as 2D relative attention bias, similar to the rel-
ative attention bias used in T5. However, unlike T5, TILT, or
transformer models in previous Document AI works [16,36],
we do not use 1D position embeddings in VTL transformer
encoder, since the joint embedding and the 2D position bias
already incorporate the layout structure of the input docu-
ment.

3.2. Vision-Text-Layout Decoder
As introduced in the previous section, the VTL encoder

is able to compactly and jointly encode vision, text, and their
layout. To perform various document generative tasks (will
be discussed in Section 4), the VTL decoder is designed to
jointly generate all vision, text, and layout modalities.

The VTL decoder consists of a text-layout decoder and
a vision decoder, as shown in Figure 1 (middle). The text-
layout decoder is a uni-directional Transformer decoder to
generate text and layout tokens in a sequence-to-sequence
manner. For the vision decoder, we adopt the decoder of
MAE [14] and directly generate the image pixels with text
and layout information. Details of the image decoding pro-
cess will be discussed in the segment “Masked Image Re-
construction with Text and Layout ” of Section 4.1. Both

text-layout decoder and vision decoder will cross-attend to
the VTL encoder.

Information such as model configurations are presented
in Section 5.1.

4. Unified Generative Pretraining
To unify across different training objectives and datasets,

we create a universal generative task format with task prompt.
We pretrain UDOP on large-scale documents with and with-
out human labels. We summarize the tasks prompts and
targets in Table 1 which includes all self-supervised and
supervised tasks respectively in upper and lower blocks.

4.1. Self-Supervised Pretraining Tasks

We propose various innovative self-supervised learning
objectives for unlabeled documents. The unlabeled docu-
ment contains OCR text inputs with token-level bounding
boxes and the document image. In the rest of this subsection,
we use the following input text as example:
“Ship Date to Retail: Week of March 14, 1994”
(1) Joint Text-Layout Reconstruction requires the model to
reconstruct the missing texts and locate them in the document
image. Concretely, we mask a percentage of text tokens and
ask the model to both the tokens and their bounding boxes
(i.e. layout tokens). E.g., assume masking “Ship Date” and
“of”, the input sequence and target sequence is given below:

Input Sequence:
“Joint Text-Layout Reconstruction. <text_layout_0>
to Retail: Week <text_layout_1> March 14, 1994”

Target Sequence:
“<text_layout_0> Ship Date <100><350><118><372>
<text_layout_1> of <100><370><118><382>”

Here <text_layout_0> and <text_layout_1> denote the
text-layout sentinel tokens, <100><350><118><372> and
<100><370><118><382>” represent the layout tokens of
“Date to” and “of” respectively. We use masking ratio 15%
similar to Masked Language Modeling (MLM) [9] as this
task can be interpreted as masked text-layout modeling.
(2) Layout Modeling asks the model to predict positions
of (group of) text tokens, given the document image and
context text. E.g., to predict positions of “Ship Date” and
“of”, the input sequence and target sequence is given below:

Input Sequence:
“Layout Modeling. <layout_0> Ship Date </layout_0>
to Retail: Week <layout_1> of </layout_1> March 14,
1994”

Target Sequence:
“<layout_0> <100><350><118><372> <layout_1>
<100><370><118><382>”
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Table 1. A summary of all generative pretraining objectives with task names, task prompts, and task targets.

Self-Supervised Tasks Task Prompts Task Targets
Layout Modeling Layout Modeling. <layout_0> Ship Date to Retail </lay-

out_0> Week of March 14, 1994
<layout_0>
<100><350><118><372>

Visual Text Recognition Visual Text Recognition. <text_0> <100><350><118>
<372> </text_0> to Retail: Week of March 14, 1994

<text_0> Ship Date

Joint Text-Layout Reconstruction Joint Text-Layout Reconstruction. <text_layout_0> to Re-
tail: Week of March 14, 1994

<text_layout_0> Ship Date <100>
<350><118><372>

Masked Image Reconstruction Masked Image Reconstruction. Ship Date to Retail: Week
of March 14, 1994

[Pixels of the original image]

Supervised Tasks
Classification Document Classification. Ship Date to Retail: Week of

March 14, 1994
Memo.

Layout Analysis Layout Analysis. Paragraph. Paragraph <82><35><150><439>
Information Extraction Information Extraction. Ship Date to Retail Week of March 14, 1994
Question Answering Question Answering. What is the ship year? 1994
Document NLI Document Natural Language Inference. Ship Date to Re-

tail: Week of March 14, 1994
Entailment.

Note this pretraining task has a different sentinel token,
<layout_sent_0>, from the previous task “Joint Text-Layout
Reconstruction” because the generation content is different
(layout vs. text + layout). We use large masking ratio 75%
since masking with small ratio results in an easy task.
(3) Visual Text Recognition identifies text at
given location in the image. E.g., to recognize
the text tokens at <100><350><118><372> and
<100><370><118><382>, the input and target is:

Input Sequence:
“Visual Text Recognition. <text_0> <100><350><118>
<372> </text_0> to Retail: Week <text_1> <100><370>
<118><382> </text_1> March 14, 1994”

Target Sequence:
“<text_0> Ship Date <text_1> of”

Note this pretraining task also has a different sentinel
token, <text_0> . We use masking ratio 50% to distinguish
this task from “Joint Text-Layout Reconstruction” and set
the layout (bounding box) of sentinel token, e.g., <text_0>,
and layout token, e.g., <0><10><2><20>, to (0,0,0,0).
This objective helps model learn joint vision-text embedding
by understanding vision-text correspondence.
(4) Masked Image Reconstruction with Text and Layout
aims to reconstruct image with text and layout as shown in
Figure 3. We adopt the MAE objective [14] for vision self-
supervised learning. Originally, MAE masks a percentage of
the image patches and feed non-masked patches into a vision
encoder. It then feeds encoder outputs to a vision decoder
to reconstruct masked patches. MAE uses mean squared
error and apply loss only on masked patches. We make the
following modifications to the MAE decoding process to
customize it for document image generation and our task

Figure 3. Masked autoencoding with text and layout.

unification framework:
(4.a) Cross-Attention with Character Embeddings. In
document, the textual content mostly consists of alphabetic
characters, numbers and punctuation. The character-level
composition of text tokens should be helpful for the vision
generation. We add cross-attention in the vision decoder that
it attends to both the text token encoder features and embed-
dings of characters in the token (Figure 3 left upper). These
characters embeddings are trainable parameters and not en-
coded by the encoder. This cross-attention with characters
only adds linear computation complexity but considerably
improves the image generation quality.
(4.b) Image Decoding. Next, we describe the MAE decod-
ing process. For UDOP, we cannot directly feed the unified
encoder output to the vision decoder, since the joint vision-
text embedding only contains non-masked image patches
to the unified encoder (Section 3.1), and image patches are
fused with text tokens. Therefore, we propose that the vision
decoder takes in a sequence of trainable placeholder embed-
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dings. The length and order of the placeholder sequence is
same as the patches of target image. We use two types of
placeholder embeddings to indicate whether the image patch
is masked in the input document image. The vision decoder
attends to encoder vision-text output AND character embed-
dings via cross-attention. The above process is illustrated in
Figure 3. We show the high quality generation visualization
in Section 6.1.

4.2. Supervised Pretraining Tasks

Self-supervised tasks leverage large-scale unlabeled data
to learn robust representations. On the other hand, supervised
tasks use labeled data for fine-grained model supervision.
We include the following supervised tasks in pretraining:
document classification, layout analysis, information extrac-
tion, question answering, and document natural language
inference. Details of the following supervised dataset are in
Appendix E. Note that we do not conduct self-supervised
tasks on the supervised datasets since we already have large-
scale and diverse unlabeled data. Note that the validation
or test set of downstream tasks is not used in supervised
pretraining.
Classification. The task is to predict the document type. The
task prompt is “Document Classification on (Dataset Name)”
like “Document Classification on RVLCDIP”, then followed
by text tokens. The target is the document class. We use
RVL-CDIP [13] with 16 document categories.
Layout Analysis. This task is to predict locations of an entity
in the document like title, paragraph, etc. The task prompt
is “Layout Analysis on (Dataset Name)”, then followed by
the entity name. The target are all bounding boxes that cover
the given entity. We use PubLayNet [57].
Information Extraction. This task predict the entity type
and location of a text query (e.g., the abstract paragraph).
The task prompt is “Information Extraction on (Dataset
Name) (Text Query)”. The target is the entity label and
the bounding box of each token of the query. We use
DocBank [28], Kleister Charity (KLC) [41], PWC [19],
and DeepForm [43].
Question Answering. The task is to answer a given ques-
tion associated with the document image. The task prompt
is “Question Answering on (Dataset Name)”, then fol-
lowed by the question and all document tokens. The tar-
get is the answer. We use WebSRC [3], VisualMRC [45],
DocVQA [33], InfographicsVQA [32], and WTQ (Wik-
iTableQuestions) [35].
Document NLI. Document Natural Language Inference
predicts the entailment relationship between two sentences
in a document. The prompt is “Document Natural Language
Inference on (Dataset Name)”, then followed by the sentence
pair. The target is the “Entailment” or ”Not Entailment”. We
use TabFact [5] for this task.

5. Experimental Setup
5.1. Model Pretraining
Model Configuration. In UDOP, the unified encoder and
text-layout decoder follows the encoder-decoder architecture
of T5-large [39]. The vision decoder is MAE-large decoder
[14]. Overall UDOP has 794M trainable parameters. For
tokenizer, we use T5 tokenizer and embedding from Hugging
Face Transformers [51]. We also extend the vocabulary to
accommodate special tokens (e.g., new sentinel and layout
tokens).
Data. For self-supervised learning, we use IIT-CDIP Test
Collection 1.0 [25], a large-scale document collections
commonly-used in previous works [16, 53, 55]. It contain 11
million scanned document with contains text and token-level
bounding boxes extracted by OCR. Supervised datasets are
as introduced in Section 4.2.
Curriculum Learning. We use large image resolution,
1024, in our final settings since low resolution makes docu-
ment text unidentifiable for both detection and generation.
It will result in (1024/16)2 = 4096 image patch sequence
length which takes longer training time than small image
resolution, e.g., 224. Therefore, we use curriculum learn-
ing to start from a relatively small resolution and gradually
scale up to 1024 resolution. In practice, we use scale with 3
resolutions during the pretraining 224 ! 512 ! 1024. We
show the performance of the 3 stages in Appendix I.
Training. We use Adam [23] optimizer with learning rate
5e-5, 1000 warmup steps, batch size 512, weight decay of 1e-
2, �1 = 0.9, and �2 = 0.98. For each curriculum learning
stage, we train for 1 epoch.

5.2. Downstream Evaluations
We report the results on FUNSD [18], CORD [34], RVL-

CDIP [13], and DocVQA [33] in Table 3 and describe their
respective settings in below. We also report the results on
7 datasets of DUE-Benchmark [2] in Table 2. Finetuning
training details are available in Appendix E.6 and perfor-
mance variance is available in Table 7 and Table 8. Note that
for all downstream tasks, we use the original OCR annota-
tions provided in the datasets. We include their details in
Appendix C.
Results. Pretrained models are finetuned on each evaluation
dataset. As shown in Table 2, our models UDOP achieve
SOTA performance on all 7 tasks of DUE-Benchmark, rank-
ing the 1st place on the leaderboard as of November 11, 2022.
It also sets SOTA on CORD and (Table 3). It is worth noting
that UDOP is an open-vocabulary generative model and
uses one single model for all tasks. In comparison, most
baselines leverage task-specific network for each dataset and
are classification-based models. Nonetheless, UDOP still
exhibits better results than those models.

Curriculum learning on image resolution (appendix Ta-
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Table 2. Comparison with existing published models on the DUE-Benchmark. Modality T, L, V denote text, layout, or vision. Results with *
are obtained by training with auxiliary data following TILT [36] (details are in Appendix H).

Model Modality Question Answering Information Extraction Table QA/NLI Avg.
DocVQA InfoVQA KLC PWC DeepForm WTQ TabFact

Donut [21] V 72.1 - - - - - - -
BERTlarge [9] T 67.5 - - - - - - -
T5large [39] T 70.4 36.7 74.3 25.3 74.4 33.3 58.9 50.7
T5large+U [36] T 76.3 37.1 76.0 27.6 82.9 38.1 76.0 56.5
T5large+2D [36] T+L 69.8 39.2 72.6 25.7 74.0 30.8 58.0 50.4
T5large+2D+U [36] T+L 81.0 46.1 75.9 26.8 83.3 43.3 78.6 59.8
LAMBERT [10] T+L - - 81.3 - - - - -
StructuralLMlarge [26] T+L 83.9 - - - - - - -
LayoutLMv2large [55] V+T+L 78.8 - - - - - - -
LayoutLMv3large [16] V+T+L 83.4 45.1 77.1 26.9 84.0 45.7 78.1 62.9
UDOP V+T+L 84.7 (87.8*) 47.4 (63.0*) 82.8 28.0 85.5 47.2 78.9 64.8

Table 3. Performance on FUNSD, CORD, and RVL-CDIP datasets.
Modality V, T, L denote vision, text and layout.

Model Modality Info Ext. Classification

FUNSD CORD RVL-CDIP

Donut [21] V - 91.6 95.3
BERTlarge [9] T 65.63 90.25 89.92
BROSlarge [15] T+L 84.52 97.40 -
StructuralLMlarge [26] T+L 85.14 - 96.08
LiLT [48] T+L 88.41 96.07 95.68
FormNet [24] T+L 84.69 97.28 -
LayoutLMlarge [53] T+L 77.89 - 91.90
SelfDoc [29] V+T+L 83.36 - 92.81
UniDoc [11] V+T+L 87.93 96.86 95.05
DocFormerlarge [1] V+T+L 84.55 96.99 95.50
TILTlarge [36] V+T+L - 96.33 95.52
LayoutLMv2large [55] V+T+L 84.20 96.01 95.64
LayoutLMv3large [16] V+T+L 92.08 97.46 95.93
UDOP V+T+L 91.62 97.58 96.00

ble 6) shows that with larger resolution, UDOP steadily gains
stronger performance. E.g., UDOP average performance on
DUE-Benchmark with 224, 512 and 1024 resolution is 63.9,
64.3 and 65.1 respectively. Note our model with 224 resolu-
tion already outperform previous best models (e.g., average
62.9 on DUE-Benchmark). We then train UDOP only with
self-supervised objectives (224 resolution). Its performance
(Table 4) also surpasses baselines, which shows the effec-
tiveness of the unified representations, TVL transformer and
the proposed self-supervised objectives.
6. Analysis
6.1. Visualization Analysis
Masked Image Reconstruction. Figure 5 presents masked
image reconstruction. Even with high masking ratio, the
model can reconstruct the document image from text and
layout signals with high quality: reconstructed contents are
clear, consistent, and almost identical with the original image
(all demonstrations are conducted on unseen documents.).
Document Generation & Editing. For the first time in Doc-
ument AI, UDOP achieves controllable high-quality docu-

ment generation and editing. As shown in Fig. 4), one can
edit and add to the document image content with customized
contents. The generated content is of high resolution and is
consistent with the context in font, size, style and orientation
(e.g., vertical numbers in Fig. 4). More generation exam-
ples are available in Appendix B. This is done by masking
the regions to edit in the document image, and specifying
the customized content in the text input, and their positions
through layout embeddings. This novel functionality can
generate augmentation document data for future research.

6.2. Ablation Analysis

Pretraining Objectives. Table 4 presents the ablation
study of pretraining objectives on DocVQA and RVL-CDIP
validation sets. We first develop a MLM (Masked Language
Modeling) baseline that is a UDOP model pre-trained only
on the BERT’s MLM [9] that masks 15% of the input to-
kens. UDOP models (224 image resolution) pretrained with
layout/text self-supervised objectives (“Layout Modeling”,
“Visual Text Dataition”, and “Joint Text-Layout Reconstruc-
tion”) outperforms the one trained with masked language
modeling (MLM), confirming their effectiveness. Table 4
also shows relative effectiveness of each pretraining task.
Layout modeling improves upon Joint Text-Layout Model-
ing; Masked Image Reconstruction improves on text-based
pretraining tasks. Adding vision self-supervised learning
(masked image reconstruction) and supervised learning fur-
ther improves the performance.

Table 4. Ablation study on pre-training objectives.

Pretrain Objectives #Pretrain Data DocVQA RVL-CDIP

MLM 11.0M 79.7 ± 0.4 95.3 ± 0.3

Joint Text-Layout 11.0M 82.8 ± 0.1 95.4 ± 0.3
+ Visual Text Recognition 11.0M 83.3 ± 0.2 95.4 ± 0.2

+ Layout Modeling 11.0M 84.0 ± 0.3 95.6 ± 0.2
+ Image Reconstruction 11.0M 84.4 ± 0.2 96.2 ± 0.2

+ Supervised 12.8M 85.0± 0.2 96.3 ± 0.1
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Replace Text

Change Serial
Numbers

Add Text

Replace Title

Figure 4. Document generation with customized content (right). Left is the original document. We show four document edits within the
same figure including title replacement, text addition, text replacement, and tilted text replacement. All edits are done with one model run.

Figure 5. MAE demonstrations with 75% masking. Middle: recon-
struction, Right: original.

Table 5. Ablations on model architecture.

Model Question Answering Information Extraction Table QA/NLI Avg.
DocVQA InfoVQA KLC PWC DeepForm WTQ TabFact

UDOP-Dual 84.4 47.1 81.9 28.0 85.2 46.7 79.5 64.6
UDOP 84.7 47.4 82.8 28.0 85.5 47.2 78.9 64.8

Modality-Specific Model Variant. In the field of multi-
modal learning, a common model architecture is the two-
tower model, where vision and text are encoded by two
modality-specific encoders respectively [38, 56]. Therefore,

we explore an variant of UDOP such that instead of hav-
ing one unified encoder, we separately use a text encoder
(to encode both text and layout tokens) and a vision en-
coder. Position bias are used in both encoders to represent
layout information following previous works. We name
this variant UDOP-Dual. For UDOP-Dual, the text-layout
encoder-decoder follows T5-large, and the vision encoder-
decoder has the same configuration as MAE-large. It has in
total 1098M trainable parameters. As shown in Table 5 and
Table 9, using one unified encoder is better than having sep-
arated encoders in most datasets. The exceptions are WTQ
and RVL-CDIP on which UDOP-Dual achieves SOTA.

7. Conclusion
In this work, we propose UDOP, a foundation model

for document AI. UDOP unifies the vision, text and layout
modalities of documents by utilizing their strong spatial cor-
relations through layout-induced vision-text representations
and Vision-Text-Layout transformer. It also unites all self-
supervised and supervised document tasks with a generative
framework. UDOP achieves SOTA on 8 tasks and currently
ranks the 1st place on the Document Understanding Bench-
mark Leaderboard. For the first time in document AI, UDOP
achieves customizable realistic document generation and
editing. We discuss the limitations and societal impact of
our work in the appendix.

19261



References
[1] Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota,

Yusheng Xie, and R Manmatha. Docformer: End-to-end
transformer for document understanding. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 993–1003, 2021. 1, 7, 14, 15

[2] Łukasz Borchmann, Michał Pietruszka, Tomasz Stanislawek,
Dawid Jurkiewicz, Michał Turski, Karolina Szyndler, and
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