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Abstract

In this paper we introduce the Temporo-Spatial Vision
Transformer (TSViT), a fully-attentional model for general
Satellite Image Time Series (SITS) processing based on
the Vision Transformer (ViT). TSViT splits a SITS record
into non-overlapping patches in space and time which
are tokenized and subsequently processed by a factorized
temporo-spatial encoder. We argue, that in contrast to nat-
ural images, a temporal-then-spatial factorization is more
intuitive for SITS processing and present experimental evi-
dence for this claim. Additionally, we enhance the model’s
discriminative power by introducing two novel mechanisms
for acquisition-time-specific temporal positional encodings
and multiple learnable class tokens. The effect of all
novel design choices is evaluated through an extensive
ablation study. Our proposed architecture achieves state-
of-the-art performance, surpassing previous approaches
by a significant margin in three publicly available SITS
semantic segmentation and classification datasets. All
model, training and evaluation codes can be found at
https://github.com/michaeltrs/DeepSatModels.

1. Introduction
The monitoring of the Earth surface man-made impacts

or activities is essential to enable the design of effective in-
terventions to increase welfare and resilience of societies.
One example is the sector of agriculture in which monitor-
ing of crop development can help design optimum strategies
aimed at improving the welfare of farmers and resilience of
the food production system. The second of United Nations
Sustainable Development Goals (SDG) of Ending Hunger
relies on increasing the crop productivity and revenues of
farmers in poor and developing countries [35] - approxi-
mately 2.5 billion people’s livelihoods depend mainly on
producing crops [10]. Achieving SDG 2 goals requires to be
able to accurately monitor yields and the evolution of culti-
vated areas in order to measure the progress towards achiev-
ing several goals, as well as to evaluate the effectiveness of
different policies or interventions. In the European Union

Figure 1. Model and performance overview. (top) TSViT archi-
tecture. A more detailed schematic is presented in Fig.4. (bottom)
TSViT performance compared with previous arts (Table 2).

(EU) the Sentinel for Common Agricultural Policy program
(Sen4CAP) [2] focuses on developing tools and analytics to
support the verification of direct payments to farmers with
underlying environmental conditionalities such as the adop-
tion of environmentally-friendly [50] and crop diversifica-
tion [51] practices based on real-time monitoring by the
European Space Agency’s (ESA) Sentinel high-resolution
satellite constellation [1] to complement on site verifica-
tion. Recently, the volume and diversity of space-borne
Earth Observation (EO) data [63] and post-processing tools
[18, 61, 70] has increased exponentially. This wealth of
resources, in combination with important developments in
machine learning for computer vision [20, 28, 53], provides
an important opportunity for the development of tools for
the automated monitoring of crop development.
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Towards more accurate automatic crop type recognition,
we introduce TSViT, the first fully-attentional1 architecture
for general SITS processing. An overview of the proposed
architecture can be seen in Fig.1 (top). Our novel design
introduces some inductive biases that make TSViT particu-
larly suitable for the target domain:

• Satellite imagery for monitoring land surface variabil-
ity boast a high revisit time leading to long temporal
sequences. To reduce the amount of computation we
factorize input dimensions into their temporal and spa-
tial components, providing intuition (section 3.4) and
experimental evidence (section 4.2) about why the or-
der of factorization matters.

• TSViT uses a Transformer backbone [64] following
the recently proposed ViT framework [13]. As a result,
every TSViT layer has a global receptive field in time
or space, in contrast to previously proposed convolu-
tional and recurrent architectures [14, 24, 40, 45, 49].

• To make our approach more suitable for SITS mod-
elling we propose a tokenization scheme for the in-
put image timeseries and propose acquisition-time-
specific temporal position encodings in order to extract
date-aware features and to account for irregularities in
SITS acquisition times (section 3.6).

• We make modifications to the ViT framework (sec-
tion 3.2) to enhance its capacity to gather class-specific
evidence which we argue suits the problem at hand
and design two custom decoder heads to accommodate
both global and dense predictions (section 3.5).

Our provided intuitions are tested through extensive abla-
tion studies on design parameters presented in section 4.2.
Overall, our architecture achieves state-of-the-art perfor-
mance in three publicly available datasets for classification
and semantic segmentation presented in Table 2 and Fig.1.

2. Related work
2.1. Crop type recognition

Crop type recognition is a subcategory of land use recog-
nition which involves assigning one of K crop categories
(classes) at a set of desired locations on a geospatial grid.
For successfully doing so modelling the temporal patterns
of growth during a time period of interest has been shown
to be critical [15, 44]. As a result, model inputs are time-
series of T satellite images of spatial dimensions H × W
with C channels, X ∈ RT×H×W×C rather than single ac-
quisitions. There has been a significant body of work on
crop type identification found in the remote sensing liter-
ature [8, 9, 19, 39, 41, 55]. These works typically involve

1without any convolution operations

multiple processing steps and domain expertise to guide
the extraction of features, e.g. NDVI [25], that can be
separated into crop types by learnt classifiers. More re-
cently, Deep Neural Networks (DNN) trained on raw op-
tical data [22, 26, 29, 46, 47, 62] have been shown to outper-
form these approaches. At the object level, (SITS classi-
fication) [24, 40, 48] use 1D data of single-pixel or parcel-
level aggregated feature timeseries, rather than the full SITS
record, learning a mapping f : RT×C → RK . Among
these works, TempCNN [40] employs a simple 1D convo-
lutional architecture, while [48] use the Transformer archi-
tecture [64]. DuPLo [24] consists of an ensemble of CNN
and RNN streams in an effort to exploit the complementar-
ity of extracted features. Finally, [16] view satellite images
as un-ordered sets of pixels and calculate feature statistics
at the parcel level, but, in contrast to previously mentioned
approaches, their implementation requires knowledge of the
object geometry. At the pixel level (SITS semantic seg-
mentation), models learn a mapping f(X) ∈ RH×W×K .
For this task, [47] show that convolutional RNN variants
(CLSTM, CGRU) [54] can automatically extract useful fea-
tures from raw optical data, including cloudy images, that
can be linearly separated into classes. The use of CNN
architectures is explored in [45] who employ two models:
a UNET2D feature extractor, followed by a CLSTM tem-
poral model (UNET2D-CLSTM); and a UNET3D fully-
convolutional model. Both are found to achieve equivalent
performances. In a similar spirit, [7] use a FPN [31] feature
extractor, coupled with a CLSTM temporal model (FPN-
CLSTM). The UNET3Df architecture [60] follows from
UNET3D but uses a different decoder head more suited to
contrastive learning. The U-TAE architecture [14] follows
a different approach, in that it employs the encoder part of
a UNET2D, applied on parallel on all images, and a sub-
sequent temporal attention mechanism which collapses the
temporal feature dimension. These spatial-only features are
further processed by the decoder part of a UNET2D to ob-
tain dense predictions.

2.2. Self-attention in vision

Convolutional [20, 28, 57] and fully-convolutional net-
works (FCN) [52, 53] have been the de-facto model of
choice for vision tasks over the past decade. The convo-
lution operation extracts translation-equivariant features via
application of a small square kernel over the spatial extent
of the learnt representation and grows the feature recep-
tive field linearly over the depth of the network. In con-
trast, the self-attention operation, introduced as the main
building block of the Transformer architecture [64], uses
self-similarity as a means for feature aggregation and can
have a global receptive field at every layer. Following the
adoption of Transformers as the dominant architecture in
natural language processing tasks [6, 12, 64], several works
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have attempted to exploit self-attention in vision architec-
tures. Because the time complexity of self-attention scales
quadratically with the size of the input, its naive implemen-
tation on image data, which typically contain more pixels
than text segments contain words, would be prohibitive. To
bypass this issue, early works focused on improving effi-
ciency by injecting self-attention layers only at specific lo-
cations within a CNN [5, 67] or by constraining their re-
ceptive field to a local region [38, 42, 65], however, in prac-
tice, these designs do not scale well with available hard-
ware leading to slow throughput rates, large memory re-
quirements and long training times. Following a different
approach, the Vision Transformer (ViT) [13], presented in
further detail in section 3.1, constitutes an effort to apply
a pure Transformer architecture on image data, by propos-
ing a simple, yet efficient image tokenization strategy. Sev-
eral works have drawn inspiration from ViT to develop
novel attention-based architectures for vision. For image
recognition, [32, 69] re-introduce some of the inductive bi-
ases that made CNNs successful in vision, leading to im-
proved performances without the need for long pre-training
schedules, [43, 59] employ Transformers for dense predic-
tion, [11,58,71] for object detection and [3,36,68] for video
processing. Among these works, our framework is more
closely related to [3] who use ViT for video processing.
However, we deviate significantly from their design by in-
troducing a dictionary of acquisition-time-specific position
encodings to accommodate an uneven distribution of im-
ages in time, by employing a different input factorization
strategy more suitable to SITS, and by being interested in
both global and dense predictions (section 3.4). Finally,
we are using a multi-token strategy that allows better han-
dling of spatial interactions and leads to improved class
separation. Multiple cls tokens have also been employed
in [11, 59]. However, while both studies use them as class
queries inputs to a decoder module, we introduce the cls to-
kens as an input to the encoder in order to collapse the time
dimension and obtain class-specific features.

3. Method
In this section we present the TSViT architecture in de-

tail. First, we give a brief overview of the ViT (section 3.1)
which provided inspiration for this work. In section 3.2 we
present our modified TSViT backbone, followed by our to-
kenization scheme (section 3.3), encoder (section 3.4) and
decoder (section 3.5) modules. Finally, in section 3.6, we
discuss several considerations behind the design of our po-
sition encoding scheme.

3.1. Primer on ViT

Inspired by the success of Transformers in natural lan-
guage processing tasks [64] the ViT [13] is an application
of the Transformer architecture to images with the fewest

Figure 2. Backbone architectures. (a) Transformer backbone,
(b) ViT architecture, (c) TSViT backbone employs additional cls
tokens (red), each responsible for predicting a single class.

possible modifications. Their framework involves the to-
kenization of a 2D image X ∈ RH×W×C to a set of
patch tokens Z ∈ RN×d by splitting it into a sequence of
N = ⌊H

h ⌋⌊
W
w ⌋ same-size and non-overlapping patches of

spatial extent (h × w) which are flattened into 1D tokens
xi ∈ RhwC and linearly projected into d dimensions. Over-
all, the process of token extraction is equivalent to the appli-
cation of 2D convolution with kernel size (h×w) at strides
(h,w) across respective dimensions. The extracted patches
are used to construct model inputs as follows:

Z0 = concat(zcls,Z+P) ∈ RN+1×d (1)

A set of learned positional encoding vectors P ∈ RN×d,
added to Z, are employed to encode the absolute posi-
tion information of each token and break the permutation
invariance property of the subsequent Transformer layers.
A separate learned class (cls) token zcls ∈ Rd [12] is
prepended to the linearly transformed and positionally aug-
mented patch tokens leading to a length N + 1 sequence
of tokens Z0 which are used as model inputs. The Trans-
former backbone consists of L blocks of alternating lay-
ers of Multiheaded Self-Attention (MSA) [64] and residual
Multi-Layer Perceptron (MLP) (Fig.2(a)).

Yl = MSA(LN(Zl)) + Zl (2)

Zl+1 = MLP (LN(Yl)) +Yl (3)

Prior to each layer, inputs are normalized following Layer-
norm (LN) [4]. MLP blocks consist of two layers of linear
projection followed by GELU non-linear activations [21].
In contrast to CNN architectures, in which spatial dimen-
sions are reduced while feature dimensions increase with
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Figure 3. SITS Tokenization. We embed each satellite image
independently following ViT [13]

layer depth, Transformers are isotropic in that all feature
maps Zl ∈ R1+N×d have the same shape throughout the
network. After processing by the final layer L, all tokens
apart from the first one (the state of the cls token) are dis-
carded and unormalized class probabilities are calculated by
processing this token via a MLP. A schematic representation
of the ViT architecture can be seen in Fig.2(b).

3.2. Backbone architecture

In the ViT architecture, the cls token progressively re-
fines information gathered from all patch tokens to reach a
final global representation used to derive class probabilities.
Our TSViT backbone, shown in Fig.2(c), essentially fol-
lows from ViT, with modifications in the tokenization and
decoder layers. More specifically, we introduce K (equal to
the number of object classes) additional learnable cls tokens
Zcls ∈ RK×d, compared to ViT which uses a single token.

Z0 = concat(Zcls,Z+P) ∈ RN+K×d (4)

Without deviating from ViT, all cls and positionally aug-
mented patch tokens are concatenated and processed by the
L layers of a Transformer encoder. After the final layer,
we discard all patch tokens and project each cls token into
a scalar value. By concatenating these values we obtain a
length K vector of unormalised class probabilities. This
design choice brings the following two benefits: 1) it in-
creases the capacity of the cls token relative to the patch
tokens, allowing them to store more patterns to be used by
the MSA operation; introducing multiple cls tokens can be
seen as equivalent to increasing the dimension of a single
cls token to an integer multiple of the patch token dimen-
sion dcls = kdpatch and split the cls token into k separate
subspaces prior to the MSA operation. In this way we can
increase the capacity of the cls tokens while avoiding is-
sues such as the need for asymmetric MSA weight matri-

ces for cls and patch tokens, which would effectively more
than double our model’s parameter count. 2) it allows for
more controlled handling of the spatial interactions between
classes. By choosing k = K and enforcing a bijective map-
ping from cls tokens to class predictions, the state of each
cls token becomes more focused to a specific class with net-
work depth. In TSViT we go a step further and explicitly
separate cls tokens by class after processing with the tempo-
ral encoder to allow only same-cls-token interactions in the
spatial encoder. In section 3.4 we argue why this is a very
useful inductive bias for modelling spatial relationships in
crop type recognition.

3.3. Tokenization of SITS inputs

A SITS record X ∈ RT×H×W×C consists of a series
of T satellite images of spatial dimensions H × W with
C channels. For the tokenization of our 3D inputs, we can
extend the tokenization-as-convolution approach to 3D data
and apply a 3D kernel with size (t×h×w) at stride (t, h, w)
across temporal and spatial dimensions. In this manner
N = ⌊T

t ⌋⌊
H
h ⌋⌊

W
w ⌋ non-overlapping tokens xi ∈ RthwC

are extracted, and subsequently projected to d dimensions.
Using t > 1, all extracted tokens contain spatio-temporal
information. For the special case of t = 1 each token
contains spatial-only information for each acquisition time
and temporal information is accounted for only through the
encoder layers. Since the computation cost of global self-
attention layers is quadratic w.r.t. the length of the token se-
quence O(N2), choosing larger values for t, h, w can lead
to significantly reduced number of FLOPS. In our experi-
ments, however, we have found small values for t, h, w to
work much better in practice. For all presented experiments
we use a value of t = 1 motivated in part because this choice
simplifies the implementation of acquisition-time-specific
temporal position encodings, described in section 3.6. With
regards to the spatial dimensions of extracted patches we
have found small values to work best for semantic segmen-
tation, which is reasonable given that small patches retain
additional spatial granularity. In the end, our tokenization
scheme is similar to ViT’s applied in parallel for each acqui-
sition as shown in Fig.3, however, at this stage, instead of
unrolling feature dimensions, we retain the spatial structure
of the original input as reshape operations will be handled
by the TSViT encoder submodules.

3.4. Encoder architecture

In the previous section we presented a motivation for us-
ing small values t, h, w for the extracted patches. Unless
other measures are taken to reduce the model’s computa-
tional cost this choice would be prohibitive for process-
ing SITS with multiple acquisition times. To avoid such
problems, we choose to factorize our inputs across their
temporal and spatial dimensions, a practice commonly em-
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Figure 4. TSViT submodules. (a) Temporal encoder. We reshape tokenized inputs, retaining the spatio-temporal structure of SITS, into
a set of timeseries for each spatial location, add temporal position encodings PT[t, :] for acquisition times t, concatenate local cls tokens
ZTcls (eq.5) and process in parallel with a Transformer. Only the first K output tokens are retained. (b) Spatial encoder. We reshape
the outputs of the temporal encoder into a set of spatial feature maps for each cls token, add spatial position encodings PS, concatenate
global cls tokens ZScls (eq.6) and process in parallel with a Transformer. (c) Segmentation head. Each local cls token is projected into hw
values denoting class-specific evidence for every pixel in a patch. All patches are then reassembled into the original image dimensions. (d)
Classification head. Global cls tokens are projected into scalar values, each denoting evidence for the presence of a specific class.

ployed for video processing [17,27,37,56,66,72]. We note
that all these works use a spatial-temporal factorization or-
der, which is reasonable when dealing with natural images,
given that it allows the extraction of higher level, semanti-
cally aware spatial features, whose relationship in time is
useful for scene understanding. However, we argue that in
the context of SITS, reversing the order of factorization is
a meaningful design choice for the following reasons: 1) in
contrast to natural images in which context can be useful for
recognising an object, in crop type recognition context can
provide little information, or can be misleading. This arises
from the fact that the shape of agricultural parcels, does not
need to follow its intended use, i.e. most crops can gener-
ally be cultivated independent of a field’s size or shape. Of
course there exist variations in the shapes and sizes of agri-
cultural fields [34], but these depend mostly on local agri-
cultural practices and are not expected to generalize over
unseen regions. Furthermore, agricultural parcels do not in-
herently contain sub-components or structure. Thus, know-
ing what is cultivated in a piece of land is not expected to
provide information about what grows nearby. This is in
contrast to other objects which clearly contain structure, e.g.
in human face parsing there are clear expectations about
the relative positions of various face parts. We test this hy-
pothesis in the supplementary material by enumerating over
all agricultural parcels belonging to the most popular crop
types in the T31TFM S2 tile in France and taking crop-type-
conditional pixel counts over a 1km square region from their
centers. Then, we calculate the cosine similarity of these

values with unconditional pixel counts over the extent of
the T31TFM tile and find a high degree of similarity, sug-
gesting that there are no significant variations between these
distributions; 2) a small region in SITS is far more informa-
tive than its equivalent in natural images, as it contains more
channels than regular RGB images (S2 imagery contains 13
bands in total) whose intensities are averaged over a rela-
tively large area (highest resolution of S2 images is 10× 10
m2); 3) SITS for land cover recognition do not typically
contain moving objects. As a result, a timeseries of single
pixel values can be used for extracting features that are in-
formative of a specific object part found at that particular
location. Therefore, several objects can be recognised us-
ing only information found in a single location; plants, for
example, can be recognised by variations of their spectral
signatures during their growth cycle. Many works perform-
ing crop classification do so using only temporal informa-
tion in the form of timeseries of small patches [47], pixel
statistics over the extent of parcels [46] or even values from
single pixels [40, 48]. On the other hand, the spatial pat-
terns in a single image are uninformative of the crop type,
as evidenced by the low performance of systems relying on
single images [14]. Our encoder architecture can be seen
in Fig.4(a,b). We now describe the temporal and spatial en-
coder submodules.

Temporal encoder Thus, we tokenize a SITS record
X ∈ RT×H×W×C into a set of tokens of size (NT ×NH ×
NW × d), as described in section 3.3 and subsequently re-
shape to ZT ∈ RNHNW×NT×d, to get a list of token time-
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series for all patch locations. The input to the temporal en-
coder is:

Z0
T = concat(ZTcls,ZT+PT[t, :]) ∈ RNHNW×K+NT×d

(5)
where PT[t, :] ∈ RNT×d and ZTcls ∈ RK×d are respec-
tively added and prepended to all NHNW timeseries and
t ∈ RT is a vector containing all T acquisition times. All
samples are then processed in parallel by a Transformer
module. Consequently, the final feature map of the tem-
poral encoder becomes ZL

T ∈ RNHNW×K+NT×d in which
the first K tokens in the temporal dimension correspond to
the prepended cls tokens. We only keep these tokens, dis-
carding the remaining NT vectors.

Spatial encoder We now transpose the first and second
dimensions in the temporal encoder output, to obtain a list
of patch features ZS ∈ RK×NHNW×d for all output classes.
In a similar spirit, the input to the spatial encoder becomes:

Z0
S = concat(ZScls,ZS +PS) ∈ RK×1+NHNW×d (6)

where PS ∈ RNHNW×d are respectively added to all
K spatial representations and each element of ZScls ∈
RK×1×d is prepended to each class-specific feature map.
We note, that while in the temporal encoder cls tokens were
prepended to all patch locations, now there is a single cls
token per spatial feature map such that ZScls are used to
gather global SITS-level information. Processing with the
spatial encoder leads to a similar size output feature map
ZL

S ∈ RK×1+NHNW×d.

3.5. Decoder architecture

The TSViT encoder architecture described in the pre-
vious section is designed as a general backbone for SITS
processing. To accommodate both global and dense pre-
diction tasks we design two decoder heads which feed on
different components of the encoder output. We view the
output of the encoder as ZL

S = [ZL
Sglobal|ZL

Slocal] respec-
tively corresponding to the states of the global and local
cls tokens. For image classification, we only make use of
ZL

Sglobal ∈ RK×d. We proceed, as described in sec.3.2, by
projecting each feature into a scalar value and concatenate
these values to obtain global unormalised class probabilities
as shown in Fig.4(d). Complementarily, for semantic seg-
mentation we only use ZL

Slocal ∈ RK×NHNW×d. These
features encode information for the presence of each class
over the spatial extent of each image patch. By project-
ing each feature into hw dimensions and further reshaping
the feature dimension to (h × w) we obtain a set of class-
specific probabilities for each pixel in a patch. It is pos-
sible now to merge these patches together into an output
map (H ×W ×K) which represents class probabilities for
each pixel in the original image. This process is presented
schematically in Fig.4(c).

3.6. Position encodings

As described in section 3.4, positional encodings are in-
jected in two different locations in our proposed network.
First, temporal position encodings are added to all patch to-
kens before processing by the temporal encoder (eq.5). This
operation aims at breaking the permutation invariance prop-
erty of MSA by introducing time-specific position biases to
all extracted patch tokens. For crop recognition encoding
the absolute temporal position of features is important as
it helps identifying a plant’s growth stage within the crop
cycle. Furthermore, the time interval between successive
images in SITS varies depending on acquisition times and
other factors, such as the degree of cloudiness or corrupted
data. To introduce acquisition-time-specific biases into the
model, our temporal position encodings PT[t, :] depend di-
rectly on acquisition times t. More specifically, we make
note of all acquisition times t′ = [t1, t2, ..., tT ′ ] found in
the training data and construct a lookup table PT ∈ RT ′×d

containing all learnt position encodings indexed by date.
Finding the date-specific encodings that need to be added
to patch tokens (eq.5) reduces to looking up appropriate in-
dices from PT. In this way temporal position encodings in-
troduce a dynamic prior of where to look at in the models’
global temporal receptive field, rather than simply encoding
the order of SITS acquisitions which would discard valu-
able information. Following token processing by the tem-
poral encoder, spatial position embeddings PS are added to
the extracted cls tokens. These are not dynamic in nature
and are similar to the position encodings used in the orig-
inal ViT architecture, with the difference that these biases
are now added to K feature maps instead of a single one.

4. Experiments
We apply TSViT to two tasks using SITS records X ∈

RT×H×W×C as inputs: classification and semantic seg-
mentation. At the object level, classification models learn
a mapping f(X) ∈ RK for the object occupying the center
of the H ×W region. Semantic segmentation models learn
a mapping f(X) ∈ RH×W×K , predicting class probabili-
ties for each pixel over the spatial extent of the SITS record.
We use an ablation study on semantic segmentation to guide
model design and hyperparameter tuning and proceed with
presenting our main results on three publicly available SITS
semantic segmentation and classification datasets.

4.1. Training and evaluation

Datasets To evaluate the performance of our proposed
semantic segmentation model we are using three publicly
available S2 land cover recognition datasets. The dataset
presented in [47] covers a densely cultivated area of interest
of 102×42 km2 north of Munich, Germany and contains 17
distinct classes. Individual image samples cover a 240×240
m2 area (24×24 pixels) and contain 13 bands. The PASTIS
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dataset [14] contains images from four different regions in
France with diverse climate and crop distributions, span-
ning over 4000 km2 and including 18 crop types. In total,
it includes 2.4k SITS samples of size 128× 128, each con-
taining 33-61 acquisitions and 10 image bands. Because
the PASTIS sample size is too large for efficiently train-
ing TSViT with available hardware, we split each sample
into 24 × 24 patches and retain all acquisition times for a
total of 60k samples. To accommodate a large set of ex-
periments we only use fold-1 among the five folds provided
in PASTIS. Finally, we use the T31TFM-1618 dataset [60]
which covers a densely cultivated S2 tile in France for years
2016-18 and includes 20 distinct classes. In total, it includes
140k samples of size 48 × 48, each containing 14-33 ac-
quisitions and 13 image bands. For the SITS classification
experiments, we construct the datasets from the respective
segmentation datasets. More specifically, for PASTIS we
use the provided object instance ids to extract 24× 24 pixel
regions whose center pixel falls inside each object and use
the class of this object as the sample class. The remain-
ing two datasets contain samples of smaller spatial extent,
making the above strategy not feasible in practice. Here, we
choose to retain the samples as they are and assign the class
of the center pixel as the global class. We note that this
strategy forces us to discard samples in which the center
pixels belongs to the background class. Additional details
are provided in the supplementary material.

Implementation details For all experiments presented
we train for the same number of epochs using the provided
data splits from the respective publications for a fair com-
parison. More specifically, we train on all datasets using
the provided training sets and report results on the valida-
tion sets for Germany and T31TFM-1618, and on the test
set for PASTIS. For training TSViT we use the AdamW op-
timizer [23] with a learning rate schedule which includes a
warmup period starting from zero to a maximum value 10−3

at epoch 10, followed by cosine learning rate decay [33]
down to 5 ∗ 10−6 at the end of training. For Germany and
T31TFM-1618 we train with the above settings and report
the best performances between what we achieve and the
original studies. Since we split PASTIS, we are training
with both settings and report the best results. Overall, we
find that our settings improve model performance. We train
with a batch size of 16 or 32 and no regularization on ×2
Nvidia Titan Xp gpus in a data parallel fashion. All mod-
els are trained with a Masked Cross-Entropy loss, masking
the effect of the background class in both training loss and
evaluation metrics. We report overall accuracy (OA), aver-
aged over pixels, and mean intersection over union (mIoU)
averaged over classes. For SITS classification, in addition
to the 1D models presented in section 2 we modify the best
performing semantic segmentation models by aggregating
extracted features across space prior to the application of a

Ablation Settings mIoU

Factorization order Spatial & Temporal 48.8
Temporal & Spatial 78.5

#cls tokens 1 78.5
K 83.6

Position encodings Static 80.8
Date lookup 83.6

Interactions between
cls tokens

Temporal Spatial
✓ ✓ 81.5
✓✓✓ 83.6

Patch size
2× 2 84.8
3× 3 83.6
6× 6 79.6

Table 1. Ablation on design choices for TSViT. All proposed
design choices are found to have a positive effect on performance.

classifier, thus, outputing a single prediction. Classification
models are trained with Focal Loss [30]. We report OA and
mean accuracy (mAcc) averaged over classes.

4.2. Ablation studies

We perform an ablation study on design parameters of
our framework using the Germany dataset [47]. Starting
with a baseline TSViT with L = 4 for both encoder net-
works, a single cls token, h = w = 3, t = 1, d =
128 we successively update our design after each ablation.
Here, we present the effect of the most important design
choices; additional ablations are presented in the supple-
mentary material. Overall, we find that the order of factor-
ization is the most important design choice in our proposed
framework. Using a spatio-temporal factorization from
the video recognition literature performs poorly at 48.8%
mIoU. Changing the factorization order to temporo-spatial
raises performance by an absolute +29.7% to 78.5% mIoU.
Including additional cls tokens increases performance to
83.6%mIoU (+5.1%), so we proceed with using K cls to-
kens in our design. We test the effect of our date-specific
position encodings compared to a fixed set of values and
find a significant −2.8% performance drop from using fixed
size PT compared to our proposed lookup encodings. Fur-
ther analysis is provided in the supplementary material. As
discussed in section 3.4 our spatial encoder blocks cross cls-
token interactions. Allowing interactions among all tokens
comes at a significant increase in compute cost, O(K2) to
O(K), and is found to decrease performance by −2.1%
mIoU. Finally, we find that smaller patch sizes generally
work better, which is reasonable given that tokens retain a
higher degree of spatial granularity and are used to predict
smaller regions. Using 2× 2 patches raises performance by
+1.2%mIoU to 84.8% compared to 3 × 3 patches. Our fi-
nal design which is used in the main experiments presented
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Germany [47] PASTIS [14] T31TFM-1618 [60]
Model #params. (M) IT (ms) Semantic segmentation (OA / mIoU)
BiCGRU [47] 4.5 38.6 91.3 / 72.3 80.5 / 56.2 88.6 / 57.7
FPN-CLSTM [7] 1.2 19.5 91.8 / 73.7 81.9 / 59.5 88.4 / 57.8
UNET3D [45] 6.2 11.2 92.4 / 75.2 82.3 / 60.4 88.4 / 57.6
UNET3Df [60] 7.2 19.7 92.4 / 75.4 82.1 / 60.2 88.6 / 57.7
UNET2D-CLSTM [45] 2.3 35.5 92.9 / 76.2 82.7 / 60.7 89.0 / 58.8
U-TAE [14] 1.1 8.8 93.1 / 77.1 82.9 / 62.4 (83.2 / 63.1) 88.9 / 58.5
TSViT (ours) 1.7 11.8 95.0 / 84.8 83.4 / 65.1 (83.4 / 65.4) 90.3 / 63.1
Model #params. (M) IT (ms) Object classification (OA / mAcc)
TempCNN∗ [40] 0.9 0.5 89.8 / 78.4 84.8 / 69.1 84.7 / 62.6
DuPLo∗ [24] 5.2 2.9 93.1 / 82.2 84.8 / 69.4 83.9 / 69.5
Transformer∗ [48] 18.9 4.3 92.4 / 84.3 84.4 / 68.1 84.3 / 71.4
UNET3D [45] 6.2 11.2 92.7 / 83.9 84.8 / 70.2 84.8 / 71.4
UNET2D-CLSTM [45] 2.3 35.5 93.0 / 84.0 84.7 / 70.3 84.7 / 71.6
U-TAE [14] 1.1 8.8 92.6 / 83.7 84.9 / 71.8 84.8 / 71.7
TSViT (ours) 1.7 11.8 94.7 / 88.1 87.1 / 75.5 87.8 / 74.2

Table 2. Comparison with state-of-the-art models from literature. (top) Semantic segmentation. (bottom) Object classification. ∗1D
temporal only models. For each model we note its number of parameters (#params. ×106) and inference time (IT) for a single sample
with T=52, H,W=24 and C=13 size input on a Nvidia Titan Xp gpu. We report overall accuracy (OA), mean intersection over union (mIoU)
and mean accuracy (mAcc). For PASTIS we report results for fold-1 only; average test set performance across all five folds is shown in
parenthesis for direct comparison with [14].

Figure 5. Visualization of predictions in Germany. The back-
ground class is shown in black, ”x” indicates a false prediction.

in Table 2 employs a temporo-spatial design with K cls to-
kens, acquisition-time-specific position encodings, 2×2 in-
put patches and four layers for both encoders.

4.3. Comparison with SOTA

In Table 2 and Fig.1, we compare the performance of
TSViT with state-of-the-art models presented in section 2.
For semantic segmentation, we find that all models from
literature perform similarly, with the BiCGRU being over-
all the worst performer, matching CNN-based architectures
only in T31TFM-1618. For all datasets, TSViT outperforms
previously suggested approaches by a very large margin. A
visualization of predictions in Germany for the top-3 per-

formers is shown in Fig.5. In object classification, we ob-
serve that 1D temporal models are generally outperformed
by spatio-temporal models, with the exception of the Trans-
former [48]. Again, TSViT trained for classification consis-
tently outperforms all other approaches by a large margin
across all datasets. In both tasks, we find smaller improve-
ments for the pixel-averaged compared to class-averaged
metrics, which is reasonable given the large class imbalance
that characterizes the datasets.

5. Conclusion

In this paper we proposed TSViT, which is the first
fully-attentional architecture for general SITS processing.
Overall, TSViT has been shown to significantly outperform
state-of-the-art models in three publicly available land cover
recognition datasets, while being comparable to other mod-
els in terms of the number of parameters and inference time.
However, our method is limited by its quadratic complexity
with respect to the input size, which can lead to increased
hardware requirements when working with larger inputs.
While this may not pose a significant issue for semantic seg-
mentation or SITS classification, it can present challenges
for detection tasks that require isolating large objects, thus
limiting its application. Future research is needed to address
this limitation and enable TSViT to scale more effectively
to larger inputs.
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