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Abstract

Despite considerable recent progress in Visual Question
Answering (VQA) models, inconsistent or contradictory an-
swers continue to cast doubt on their true reasoning ca-
pabilities. However, most proposed methods use indirect
strategies or strong assumptions on pairs of questions and
answers to enforce model consistency. Instead, we propose
a novel strategy intended to improve model performance by
directly reducing logical inconsistencies. To do this, we in-
troduce a new consistency loss term that can be used by a
wide range of the VQA models and which relies on know-
ing the logical relation between pairs of questions and an-
swers. While such information is typically not available in
VQA datasets, we propose to infer these logical relations
using a dedicated language model and use these in our pro-
posed consistency loss function. We conduct extensive ex-
periments on the VQA Introspect and DME datasets and
show that our method brings improvements to state-of-the-
art VQA models while being robust across different archi-
tectures and settings.

1. Introduction
Visual Questioning Answering (VQA) models have

drawn recent interest in the computer vision community as
they allow text queries to question image content. This
has given way to a number of novel applications in the
space of model reasoning [8, 29, 54, 56], medical diagno-
sis [21,37,51,60] and counterfactual learning [1,2,11]. With
the ability to combine language and image information in a
common model, it is unsurprising to see a growing use of
VQA methods.

Despite this recent progress, however, a number of im-
portant challenges remain when making VQAs more pro-
ficient. For one, it remains extremely challenging to build
VQA datasets that are void of bias. Yet this is critical to
ensure subsequent models are not learning spurious cor-
relations or shortcuts [49]. This is particularly daunting
in applications where domain knowledge plays an impor-
tant role (e.g., medicine [15, 27, 33]). Alternatively, ensur-
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Figure 1. Top: Conventional VQA models tend to produce incon-
sistent answers as a consequence of not considering the relations
between question and answer pairs. Bottom: Our method learns
the logical relation between question and answer pairs to improve
consistency.

ing that responses of a VQA are coherent, or consistent, is
paramount as well. That is, VQA models that answer differ-
ently about similar content in a given image imply inconsis-
tencies in how the model interprets the inputs. A number of
recent methods have attempted to address this using logic-
based approaches [19], rephrashing [44], question gener-
ation [18, 40, 41] and regularizing using consistency con-
straints [47]. In this work, we follow this line of research
and look to yield more reliable VQA models.

We wish to ensure that VQA models are consistent in an-
swering questions about images. This implies that if multi-
ple questions are asked about the same image, the model’s
answers should not contradict themselves. For instance, if
one question about the image in Fig. 1 asks “Is there snow
on the ground?”, then the answer inferred should be consis-
tent with that of the question “Is it the middle of summer?”
As noted in [43], such question pairs involve reasoning and
perception, and consequentially lead the authors to define
inconsistency when the reasoning and perception questions
are answered correctly and incorrectly, respectively. Along
this line, [47] uses a similar definition of inconsistency to
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regularize a VQA model meant to answer medical diagno-
sis questions that are hierarchical in nature. What is crit-
ical in both cases, however, is that the consistency of the
VQA model depends explicitly on its answers, as well as
the question and true answer. This hinges on the assump-
tion that perception questions are sufficient to answer rea-
soning questions. Yet, for any question pair, this may not be
the case. As such, the current definition of consistency (or
inconsistency) has been highly limited and does not truly
reflect how VQAs should behave.

To address the need to have self-consistent VQA mod-
els, we propose a novel training strategy that relies on logi-
cal relations. To do so, we re-frame question-answer (QA)
pairs as propositions and consider the relational construct
between pairs of propositions. This construct allows us to
properly categorize pairs of propositions in terms of their
logical relations. From this, we introduce a novel loss
function that explicitly leverages the logical relations be-
tween pairs of questions and answers in order to enforce
that VQA models be self-consistent. However, datasets typ-
ically do not contain relational information about QA pairs,
and collecting this would be extremely laborious and dif-
ficult. To overcome this, we propose to train a dedicated
language model that infers logical relations between propo-
sitions. Our experiments show that we can effectively in-
fer logical relations from propositions and use them in our
loss function to train VQA models that improve state-of-
the-art methods via consistency. We demonstrate this over
two different VQA datasets, against different consistency
methods, and with different VQA model architectures. Our
code and data are available at https://github.com/
sergiotasconmorales/imp_vqa.

2. Related work
Since its initial presentation in Antol et al. [4], VQA

has thoroughly advanced. Initial developments focused on
multimodal fusion modules, which combine visual and text
embeddings [8, 36]. From basic concatenation and sum-
mation [4] to more complex fusion mechanisms that ben-
efit from projecting the embeddings to different spaces, nu-
merous approaches have been proposed [6, 16, 32]. The
addition of attention mechanisms [8, 31, 36] and subse-
quently transformer architectures [50] has also contributed
to the creation of transformer-based vision-language mod-
els, such as LXMERT, which have shown state-of-the-art
performances [46].

More recently, methods have proposed to improve other
aspects of VQA, including avoiding shortcut learning and
biases [12, 25], improving 3D spatial reasoning [5], Out-
Of-Distribution (OOD) generalization [9, 49], improving
transformer-based vision-language models [57,61], external
knowledge integration [14, 17] and model evaluation with
visual and/or textual perturbations [22,52]. With the aware-

ness of bias in VQA training data, some works have also
addressed building better datasets (e.g., v2.0 [20], VQA-
CP [3], CLEVR [30] and GCP [28]).

Furthermore, these developments have now given rise
to VQA methods in specific domains. For instance, the
VizWiz challenge [10,23,24] aims at creating VQA models
that can help visually impaired persons with routine daily
tasks, while there is a growing number of medical VQA
works with direct medicine applications [21, 37, 51, 60].

Consistency in VQA Consistency in VQA can be defined
as the ability of a model to produce answers that are not
contradictory. This is, given a pair of questions about an
image, the answers predicted by a VQA model should not
be contrary (e.g. answering “Yes” to “Is it the middle of
summer?” and “Winter” to “What season is it?”). Due to its
significance in reasoning, consistency in VQA has become
a focus of study in recent years [19,29,41,43,44]. Some of
the first approaches for consistency enhancement focused
on creating re-phrasings of questions, either by dataset de-
sign or at training time [44]. Along this line, entailed ques-
tions were proposed [19, 41], such that a question genera-
tion module was integrated into a VQA model [18,40], used
as a benchmarking method to evaluate consistency [59] or
as a rule-based data-augmentation technique [41]. Other
approaches tried to shape the embedding space by impos-
ing constraints in the learned representations [48] and by
imposing similarities between the attention maps of pairs
of questions [43]. Another work [47] assumed entailment
relations between pairs of questions to regularize training.
A more recent approach attempts to improve consistency
by using graph neural networks to simulate a dialog in the
learning process [29].

While these approaches show benefits in some cases,
they typically only consider that a subset of logical relation-
ships exists between pairs of question-answers or assume
that a single relation holds for all QA pairs. Though true
in the case of re-phrasings, other question generation ap-
proaches cannot guarantee that the produced questions pre-
serve unique relations or that grammatical structure remains
valid. Consequently, these methods often rely on metrics
that either over or under-estimate consistency by relying on
these assumptions. In the present work, we propose a strat-
egy to alleviate these limitations by considering all logical
relations between pairs of questions and answers.

Entailment prediction Natural Language Inference
(NLI), or Recognizing Textual Entailment (RTE), is
the task of predicting how two input sentences (namely
premise and hypothesis) are related, according to three
pre-established categories: entailment, contradiction and
neutrality [35]. For example, if the premise is “A soccer
game with multiple males playing” and the hypothesis is
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“Some men are playing a sport,” then the predicted relation
should be an entailment, because the hypothesis logically
follows from the premise. Several benchmarking datasets
(e.g., SNLI [58], MultiNLI [55], SuperGLUE [53], WIKI-
FACTCHECK [42] and ANLI [38]) have contributed to the
adaption of general-purpose transformer-based models like
BERT [13], RoBERTa [34] and DeBERTa [26] for this task.
In this work, we will leverage these recent developments
to build a model capable of inferring relations between
propositions.

3. Method
Given an image x ∈ I, a question q ∈ Q about the

image and a set A = {a1, . . . , aK} of possible answers to
choose from, a VQA model is expected to infer the answer
â ∈ A that matches the true answer a∗. This can be formu-
lated as,

â = argmax
a∈A

p(a|x,q; θ), (1)

where θ represents the parameters of the VQA model.
In this context, we observe that two QA pairs (qi, ai)

and (qj , aj) for the same image x can have different kinds
of logical relations. In the simplest case, the two pairs may
be unrelated, as with the pairs (“Is it nighttime?”, “Yes”)
and (“Is there a bench in the image?”, “No”). Knowing that
one of the pairs is true gives no information about the truth
value of the other.

On the other hand, two pairs may be related by a logical
implication, as in the pairs (“Is the horse brown?”, “No”)
and (“What is the color of the horse?”, “White”). Knowing
that the second pair is true implies that the first pair must be
true as well. Conversely, if the first pair is false (the horse
is brown), it implies that the second pair must also be false.
In this case, the first pair is a necessary condition for the
second one or, equivalently, the second pair is a sufficient
condition for the first one.

Finally, it can be that two QA pairs are related by a dou-
ble logical implication, as with the pairs (“Is this a vege-
tarian pizza?”, “Yes”) and (“Does the pizza have meat on
it?”, “No”). The veracity of the former implies the veracity
of the latter, but the veracity of the latter also implies the
veracity of the former. In this case, each pair is simultane-
ously a necessary and sufficient condition for the other pair,
and both pairs are then equivalent.

Note that the logical implication existing between two
QA pairs is an intrinsic property of the QA pairs, and does
not depend on the correctness of the predictions coming
from a VQA model. If a VQA model considers a suffi-
cient condition true and a necessary condition false, it is
incurring an inconsistency regardless of the correctness of
its predictions.

Since logical implications are the basis of reasoning, we
propose to explicitly use them when training a VQA model

to reduce its inconsistent predictions. Unfortunately, do-
ing so requires overcoming two important challenges: (1) a
strategy is needed to train VQA models with logical rela-
tions that leverage consistency in a purposeful manner. Un-
til now, no such approach has been proposed; (2) VQA
datasets do not typically contain logical relations between
pairs of QA. Acquiring these manually would, however, be
both time-consuming and difficult.

We address these challenges in this work by formal-
izing the idea of consistency and treating QA pairs as
logical propositions from which relations can comprehen-
sively be defined. Using this formalism, we first propose
a strategy to solve (1) and train a VQA model more effec-
tively using logical relations and the consistency they pro-
vide (Sec. 3.2). We then show in Sec. 3.3 how we infer
relations between pairs of propositions, whereby allowing
standard VQA datasets to be augmented with logical rela-
tions.

3.1. Consistency formulation

We begin by observing that QA pairs (q, a) can be con-
sidered and treated as logical propositions. For instance,
the QA (“Is it winter?”, “Yes”) can be converted to “It is
winter,” which is a logical proposition that can be evaluated
as true or false (i.e., its truth value). Doing so allows us to
use a broad definition of consistency, namely one that estab-
lishes that two propositions are inconsistent if both cannot
be true at the same time [7]. In the context of this work, we
assume the truth value of a proposition (q, a) is determined
by an agent (either a human annotator or the VQA model)
after observing the information contained in an image x.

Let D = I × Q × A be a VQA dataset that contains
triplets (x(n),q

(n)
i , a

(n)
i ), where x(n) is the n-th image and

(q
(n)
i , a

(n)
i ) is the i-th question-answer pair about x(n). In

the following, we omit the index n for succinctness. For a
given image x, we can consider a pair of related question-
answers as (qi, ai) and (qj , aj) as a pair of propositions.
Following propositional logic notation, if both propositions
are related in such a way that (qi, ai) is a sufficient con-
dition for the necessary condition (qj , aj), we write that
(qi, ai) → (qj , aj). For convenience, this arrow notation
can be adapted to indicate different orderings between the
necessary and sufficient conditions:

• (qi, ai)← (qj , aj) if the proposition (qi, ai) is a nec-
essary condition for (qj , aj).

• (qi, ai) ↔ (qj , aj) if the propositions (qi, ai)
and (qj , aj) are equivalent, i.e., both are simulta-
neously necessary and sufficient. Note that this is
just notational convenience for the double implication
(qi, ai) → (qj , aj) ∧ (qj , aj) → (qi, ai), and in the
following derivations the double arrow will be always
considered as two independent arrows.
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• Finally, we will write (qi, ai) − (qj , aj) if the propo-
sitions (qi, ai) and (qj , aj) are not related.

If a VQA model is asked questions qi and qj about an
image x and there exists a relation (qi, ai) → (qj , aj), the
answers of the model will be inconsistent whenever it pro-
vides answers âi = ai and âj ̸= aj (i.e., the model evalu-
ates the first proposition as true and the second proposition
as false). More generally, for a pair of necessary and suf-
ficient conditions, the agent will be inconsistent if it evalu-
ates the necessary condition as false and the sufficient con-
dition as true [7]. In what follows, we exploit these ideas
to quantify model inconsistencies in our experiments and to
develop a new loss function that encourages logically con-
sistent VQA models.

3.2. Logical implication consistency loss

The core aim of our method is to encourage the VQA
model to avoid inconsistent answers. When training, as-
sume that the model receives an image x fromD and two as-
sociated propositions (q1, a1) and (q2, a2) that are related
by a logical implication (q1, a1)→ (q2, a2). We define,

πi = π ((qi, ai),x) = p(ai | x,qi, θ), (2)

as the probability assigned by the VQA model that the
proposition (q, a) is true for the image x. The model has
a high probability of incurring an inconsistency if it simul-
taneously gives a high probability π1 to the sufficient con-
dition and a low probability π2 to the necessary condition.

We thus define our consistency loss as a function,

Lcons(x, (q1, a1), (q2, a2)) = −(1− π2) log(1− π1)

−π1 log(π2),
(3)

that takes an image and a pair of sufficient and necessary
propositions, and penalizes predictions with a high prob-
ability of inconsistency. As illustrated in Fig. 2, Lcons is
designed to produce maximum penalties when π1 = 1
and π2 < 1 (i.e., when the sufficient condition is abso-
lutely certain but the necessary condition is not), and when
π2 = 0 and π1 > 0 (i.e., when the necessary condition can
never be true but the sufficient condition can be true). At the
same time, Lcons produces minimum penalties when either
π1 = 0 or π2 = 1, as no inconsistency is possible when the
sufficient condition is false or when the necessary condition
is true. Interestingly, despite its resemblance, Lcons is not a
cross-entropy, as it is not an expectation over a probability
distribution.

Our final loss is then a linear combination of the consis-
tency loss and the cross-entropy loss LVQA typically used to
train VQA models. Training with this loss then optimizes,

min
θ

ED[LVQA] + λE((xi,qi,ai),(xj ,qj ,aj))∼D2

xi=xj ,(qi,ai)→(qj ,aj)

[Lcons], (4)
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Figure 2. Consistency loss Lcons as a function of the estimated
probabilities for the sufficient, π1, and necessary, π2, conditions.
Note that the loss diverges to ∞ when π1 = 1, π2 < 1 and
when π1 > 0, π2 = 0.

where the first expectation is taken over the elements of the
training set D and the second expectation is taken over all
pairs of necessary and sufficient propositions from D de-
fined for the same image. In practice, we follow the sam-
pling procedure described in [43, 47], where mini-batches
contain pairs of related questions. The hyperparameter λ
controls the relative strength between the VQA loss and the
consistency term.

3.3. Inferring logical implications

By and large, VQA datasets do not include annota-
tions with logical relations between question-answers pairs,
which makes training a VQA with Lcons infeasible. To over-
come this, we propose to train a language model to predict
logical implications directly and use these predictions in-
stead. We achieve this in two phases illustrated in Fig. 3
and refer to our approach as the Logical-Implication model
(LI-MOD).

First, we pre-train BERT [13] on the task of Natural Lan-
guage Inference using the SNLI dataset [58], which consists
of pairs of sentences with annotations of entailment, con-
tradiction or neutrality. In this task, given two sentences,
a language model must predict one of the mentioned cat-
egories. While these categories do not exactly match the
logical implication relevant to our objective, they can be de-
rived from the entailment category. To this end, given two
propositions (qi, ai) and (qj , aj), we evaluate them using
the finetuned NLI model in the order (qi, ai), (qj , aj), and
then repeat the evaluation by inverting the order, to evaluate
possible equivalences or inverted relations. If the relation is
predicted as neutral in both passes, the pair is considered to
be unrelated.

Then, we finetune the NLI model on a sub-set of anno-
tated pairs from the VQA dataset Introspect [43]. In prac-
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Figure 3. LI-MOD: Approach to predict logical relations between
pairs of propositions. A BERT-based NLP model is first pre-
trained on the SNLI dataset [58] to solve a Natural Language Infer-
ence task and subsequently fine-tuned with annotated pairs from a
subset of Introspect dataset [43]. The resulting model is used to
predict the relations of the remaining part of the dataset.

tice, we use a subset of binary QA pairs that were manually
annotated with logical implications. Even though the re-
lation need not be limited to binary questions (i.e., yes/no
questions), we chose to do so because the relation annota-
tion is simpler than for open-ended questions. Since BERT
expects sentences and not QA pairs, these were first con-
verted into propositions using Parts Of Speech (POS) tag-
ging [39] and simple rules that apply to binary questions
(e.g., to convert “Is it winter?,” “Yes” we invert the first two
words of the question and remove the question mark). After
finetuning the model, the relations were predicted for the re-
maining part of the dataset. Further implementation details
on this are given in Sec. 4.3.

4. Experiments
We evaluate our proposed consistency loss function on

different datasets and using a variety of VQA models.

4.1. Datasets

Introspect [43]: Contains perception questions (or sub-
questions) created by annotators for a subset of reasoning
questions (or main questions) of the VQA v1.0 and v2.0
datasets [4,20]. It contains 27,441 reasoning questions with
79,905 sub-questions in its training set and 15,448 reason-
ing questions with 52,573 sub-questions for validation. For
images that have the same sub-question repeated multiple
times, we remove duplicates in the sub-questions for every
image in both the train and validation sets.

DME Dataset [47]: Consists of retinal fundus images for
the task of Diabetic Macular Edema (DME) staging. It con-
tains 9,779 QA pairs for training, 2,380 QA pairs for valida-
tion and 1,311 QA pairs for testing. There are three types of
questions in the dataset: main, sub, and independent ques-

tions. Main questions ask about diagnosis information (i.e.
the stage of the disease) and sub-questions ask about the
presence and location of biomarkers. Sub-questions are fur-
ther subdivided into grade questions, questions about the
whole image, questions about a region of the eye called
macula, and questions about random regions in the image.
To deal with questions about image regions, we follow the
procedure described in [47], whereby only the relevant re-
gion is shown to the model.

4.2. Baseline methods and base models

We consider 3 different consistency enhancement
baseline methods. To ensure fair comparisons, all methods
use the same VQA base models and only differ in the
consistency method used. These consist in:

- None: Indicating that no consistency preserving method
is used with the VQA model. This corresponds to the case
where λ = 0.
- SQuINT [43]: Optimizes consistency by maximizing the
similarity between the attention maps of pairs of questions.
As such, it requires a VQA model that uses guided attention.
- CP-VQA [47]: Assumes entailment relations and uses a
regularizer to improve consistency.

VQA architectures: We show experiments using three
VQA models depending on the dataset used. For experi-
ments on Introspect, we make use of the BAN model [31],
as its structure with guided attention allows the use of
SQuINT. In addition, we evaluate the vision-language ar-
chitecture LXMERT [46] on this dataset to evaluate im-
provement in state-of-the-art, transformer-based VQA mod-
els. For experiments on the DME dataset, we use the base
model described in [47], which we denote by MVQA.

4.3. Implementation details

LI-Model We first pre-train BERT on SNLI for 5 epochs
until it reaches a maximum accuracy of 84.32% on that
dataset. For this pre-training stage, we initialize BERT
with the bert-base-uncased weights and use a batch size
of 16. We use a weight decay rate of 0.01 and the AdamW
optimizer with a learning rate of 2 · 10−5. The same
setup was kept to finetune the model on a subset of 2’000
pairs of propositions from Introspect which were manu-
ally annotated (distribution of labels being: ← 60%,↔
17%,−12%,→ 11%), and an additional 500 pairs were an-
notated for validation. Notice that LI-MOD is only neces-
sary for the Introspect dataset since, for the DME dataset,
the implications annotations are available.

VQA models: For our base models, we use the offi-
cial and publicly available implementations (BAN [45],
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LXMERT [46] and MVQA [47]) with default configura-
tions. We re-implemented SQuINT [43] and used the pro-
vided implementation of CP-VQA [47], reporting the best
results, which were obtained with λ = 0.1, γ = 0.5 for
BAN and λ = 0.5, γ = 1 for MVQA (parameters refer to
original implementations). For SQuINT, we set the gain of
the attention map similarity term to 0.5 for BAN and 1.0
for MVQA. For Introspect, we train 5 models with differ-
ent seeds for each parameter set and for DME, we train 10
models with different seeds. To train LXMERT, BAN and
MVQA, we use batch sizes of 32, 64 and 128, respectively.
Regarding the VQA cross-entropy loss, we follow the orig-
inal implementations and use soft scores for the answers in
LXMERT and categorical answers for BAN and MVQA.

4.4. Quantifying consistency

Given a test set T = {tn}|T |
n=1, where tn = (x,q, a)

is a test sample triplet, we wish to measure the level of
consistency of a VQA model p. To this end, we de-
fine the set of implications G(T ) ⊂ T 2 as the collection
of all pairs of test samples ((xi,qi, ai), (xj ,qj , aj)) for
which (qi, ai) → (qj , aj) and xi = xj , and the set of
inconsistencies Ip(T ) produced by the VQA model as the
subset of G(T ) that contains the pairs for which the model
evaluated the sufficient condition as true and the necessary
condition as false,

Ip(T ) = {(ti, tj) ∈ G(T ) |
ep((qi, ai),x) ∧ ¬ep((qj , aj),x)}. (5)

The function ep returns the truth value of the proposi-
tion (q, a) for image x evaluated by the VQA model p,

ep((q, a),x) = [â = a], (6)

where â is the answer of maximum probability following
Eq. (1). In other words, ep returns whether the estimated
answer for question q matches the answer of the proposi-
tion a. Finally, the consistency ratio c for model p on the
test set T is the proportion of implications in G(T ) that did
not lead to an inconsistency,

cp(T ) = 1− |Ip(T )|
|G(T )|

. (7)

5. Results
Performance comparison: For both datasets, we first
compare the performance of our method against the base-
line consistency methods in Tab. 1 and Tab. 2. In either case,
we see that our method outperforms previous approaches by
not only increasing overall prediction accuracy but also by
increasing consistency. In Fig. 4 and Fig. 5, we show il-
lustrative examples of our approach on the Introspect and

DME datasets, respectively (see additional examples in the
Supplementary materials).

In Tab. 1, we also show the performance of the state-
of-the-art LXMERT VQA model when combined with our
method. In this case, too, we see that our method provides
increased performance via consistency improvements. Here
we investigate the performance induced when flipping the
answers of one of the members of each inconsistent pair
at test time. Suppose implication labels are present, either
by manual annotation or by LI-MOD. In that case, a triv-
ial manner of correcting an inconsistent QA pair of binary
answers is to flip or negate one of the answers. This is far
simpler than our proposed method as it permits training the
VQA model with the standard VQA loss. Having obtained
the answers from the model when λ = 0, we identify the
inconsistent pairs using the relations predicted by our LI-
MOD and then flip the answers (1) either randomly, (2)
of the first QA or (3) of the second QA. By including the
flipping baselines, we confirm that the added complexity in
training our method results in improved accuracy compared
to merely correcting inconsistencies post-hoc. Increases in
consistency at the expense of accuracy are explained by the
fact that an inconsistent QA pair guarantees that one of the
two answers is incorrect, but correcting the inconsistency
does not necessarily fix the incorrect answer. This phe-
nomenon is particularly noticeable in the flipping baselines,
as they fix inconsistencies without considering their correct-
ness.

In general, we observe that training LXMERT with our
consistency loss provides performance gains. Indeed, while
random flipping based on LI-MOD clearly deteriorates the
performance of LXMERT, so does flipping the first or sec-

Model Cons. Method Acc. Cons.

BAN

None 67.14±0.10 69.45±0.17
SQuINT [43] 67.27±0.19 69.87±0.45
CP-VQA [47] 67.18±0.24 69.52±0.45
Ours (λ = 0.01) 67.36±0.19 70.38±0.39

LXMERT

None 75.10±0.10 76.24±0.63
Random flip 69.67±1.24 75.99±3.91
Flip first 73.81±0.47 71.94±2.82
Flip second 65.82±1.03 87.56±2.51
Ours 75.17±0.08 78.75±0.21

Table 1. Results of different consistency methods on the Intro-
spect dataset using two different VQA models: (top) BAN and
(bottom) LXMERT. In the case of LXMERT, we show the impact
of randomly flipping the answer of either the first or the second
question for pairs detected as inconsistent using the relations from
LI-MOD. Similarly, flip first and flip second refer to flipping the
answer to the first and second question in inconsistent pairs, re-
spectively.
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Model Consis. Method Accuracy Consistencyall grade whole macula region

MVQA

None 81.15±0.49 78.17±2.07 83.44±1.87 87.25±1.20 80.38±2.02 89.95±3.20
SQuINT [43] 80.58±0.78 77.48±0.40 82.82±0.74 85.34±0.87 80.02 89.39±2.12
CP-VQA [47] 83.49±0.99 80.69±1.30 84.96±1.14 87.18±2.18 83.16±1.09 94.20±2.15
Ours (λ = 0.25) 83.59±0.69 80.15±0.95 86.22±1.67 88.18±1.07 82.62±1.02 95.78±1.19

Table 2. Comparison of methods on the DME dataset with common MVQA backbone. Accuracy and consistency are reported for all
questions, as well as for different medically relevant sub-question categories: grade, whole, macula and region.

Is the person about to do a trick?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is the woman sitting down? Yes

Relation

Is the elephant alive?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is the elephant a statue? Yes

Relation

Are the zebras crossing a wide river?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: Yes

Yes Are the zebras in the water? Yes

Relation

Figure 4. Qualitative examples from the Introspect dataset using BAN as backbone. Red siren symbols indicate inconsistent cases.

ond answers. This implies that our proposed method indeed
leverages the predictions of LI-MOD to make LXMERT
more consistent as it improves both model accuracy and
consistency.

Sensitivity of λ: We now show the sensitivity of our
method and its relation to λ. We evaluate the performance
of our method for different values of λ to understand the
behavior of the performance, both in terms of accuracy and
consistency.

Fig. 6 shows the accuracy and consistency of LXMERT
and MVQA for different values of λ. The difference in the
ranges of the values is due to the relative magnitude of the
loss function terms and depends on the used loss functions
(e.g., binary and non-binary cross-entropy) and the ground-
truth answer format (i.e., soft scores for LXMERT, as men-
tioned in Sec. 4.3).

In general, we observe very similar behavior for the ac-
curacy, which increases and then slowly decreases as λ in-
creases. We sustain that the maximum value the accuracy
can reach is established by the number of related pairs that

are still inconsistent after training with λ = 0. In other
words, the limitations in size impose a limit on how much
our method can improve the accuracy. For LXMERT on In-
trospect, for instance, our model corrected 4,553 (78.9%)
of the 5’771 existing inconsistencies and introduced new
inconsistencies by mistakenly altering 1,562 (3.5%) of the
44,111 consistent samples.

Regarding consistency, we observe a constant increase as
λ increases. The simultaneous decrease in accuracy as λ in-
creases suggests that the relative weight of the consistency
loss dominates so that the model no longer focuses on opti-
mizing the cross-entropy. Since it is possible to be consis-
tent without answering correctly, the optimization process
results in an increase in consistency at the expense of accu-
racy for higher values of λ. However, it is clear from these
results that there is a set of λ values for which both metrics
improve.

LI-MOD performance: We report that the finetuning of
BERT on the subset of annotated relations from Introspect
produced 78.67% accuracy in the NLI task. We analyze
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What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 2 
Ans. SQuINT: 2
Ans. CP-VQA: 2
Ans. Ours: 2

Ans. None: No 
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

2 Are there hard exudates in this region? Yes

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

0 Are there hard exudates in this region? No

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 2
Ans. CP-VQA: 2
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

0 Are there hard exudates in the image? No

Relation

Figure 5. Examples from the DME dataset and comparison of methods. Red siren symbols indicate inconsistent cases. DME is a disease
that is staged into grades (0, 1 or 2), which depend on the number of visual pathological features of the retina. Top and middle: Although
all methods correctly predict the answer to the first question, some inconsistencies appear when a necessary condition is false. Bottom:
Only the None baseline produces an inconsistency. Note that SQuINT and CP-VQA’s answers do not produce inconsistent pairs because
both questions were answered incorrectly, and those answers (“2” and “yes”) respect all known relations.
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Figure 6. Behavior of the accuracy and consistency as a function
of λ with 95% confidence intervals. Left: LXMERT trained on the
Introspect dataset (5 models with random seeds for each value of
λ). Right: MVQA trained on the DME dataset (10 models with
random seeds for each λ).

the performance of this model for entailment and report an
AUC value of 0.86, which indicates good generalization ca-
pability considering that only ≈ 2% of the dataset was an-
notated with relations. In addition, the overlap in the QA
pairs between the train and validation sets of the Introspect
dataset is only 1.12% for binary questions. This shows that
our LI-MOD is generalizing to variations in questions and
to new combinations of QA pairs. Fig. 7 shows the ROC
curve for entailment and examples of LI-MOD’s predic-
tions. Some of the observed sources of errors in LI-MOD
include negations, unusual situation descriptions (e.g., a cat
typing a text message), and image-specific references (e.g.,
“is this animal real?”).

Sentence 1 Sentence 2True Pred.

The dog is 
asleep

The dog's eyes
are not open 

The birds are 
in flight

The birds are 
in the air

The girl is 
funny

The girl has 
a funny face

This is not a 
vegan meal

FPR

T
P

R

There is meat 
in the meal

The elephant 
is not alive

The elephant 
is a statue

The weather 
is not bad

There isn't 
snow

The cat is not 
typing a text 
message

The cat's 
paws are not 
on the phone0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC curve (area = 0.86)

Used operating point (t=0.5)

Figure 7. Left: Receiver Operating Characteristic (ROC) for the
entailment class of our LI-MOD in validation. Right: Qualitative
examples of LI-MOD’s predictions.

6. Conclusion and future work

In this paper, we propose a model-agnostic method to
measure and improve consistency in VQA by integrating
logical implications between pairs of questions in the train-
ing process. We also present a method to infer implica-
tions between QA pairs using a transformer-based language
model. We conduct experiments to validate the generaliz-
ability and robustness of our consistency loss against sev-
eral baselines and across different datasets. Our results
show that our method reduces incoherence in responses and
improves performance. Future work includes creating a
larger dataset with human-annotated relations to use as a
general-purpose relations database for VQA training.
Acknowledgements This work was partially funded by the
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