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Abstract

Large volumes of data required to train accurate deep
neural networks (DNNs) are seldom available with any sin-
gle entity. Often, privacy concerns prevent entities from
sharing data with each other or with a third-party learning
service provider. While cross-silo federated learning (FL)
allows collaborative learning of large DNNs without shar-
ing the data itself, most existing cross-silo FL algorithms
have an unacceptable utility-privacy trade-off. In this work,
we propose a framework called Confidential and Private
Decentralized (CaPriDe) learning, which optimally lever-
ages the power of fully homomorphic encryption (FHE) to
enable collaborative learning without compromising on the
confidentiality and privacy of data. In CaPridDe learn-
ing, participating entities release their private data in an
encrypted form allowing other participants to perform in-
ference in the encrypted domain. The crux of CaPriDe
learning is mutual knowledge distillation between multi-
ple local models through a novel distillation loss, which is
an approximation of the Kullback-Leibler (KL) divergence
between the local predictions and encrypted inferences of
other participants on the same data that can be computed
in the encrypted domain. Extensive experiments on three
datasets show that CaPriDe learning can improve the ac-
curacy of local models without any central coordination,
provide strong guarantees of data confidentiality and pri-
vacy, and has the ability to handle statistical heterogene-
ity. Constraints on the model architecture (arising from the
need to be FHE-friendly), limited scalability, and compu-
tational complexity of encrypted domain inference are the
main limitations of the proposed approach. The code can
be found at https://github.com/tnurbek/capride-learning.

1. Introduction

Rapid strides have been made in machine learning (ML)
(in particular, deep learning) over the past decade. How-
ever, in many important application domains such as health-

care and finance, the absence of large, centralized datasets
is a significant obstacle to realizing the full benefits of deep
learning algorithms. Data in these applications often resides
in silos and is governed by strict regulations (e.g., HIPAA,
GDPR, etc.) because of its privacy sensitive nature [22].
Competing business interests of data owners and the lack
of appropriate incentives for data sharing further accentuate
the problem. To overcome these issues, there is a need for
collaborative learning algorithms that ideally satisfy the fol-
lowing requirements [15]: (i) confidentiality - no sharing of
raw data, (ii) privacy - minimal leakage of information via
the knowledge exchange mechanism (e.g., gradients or pre-
dictions), (iii) utility - gain in accuracy (over the individual
models) resulting from the collaboration, even in the pres-
ence of statistical heterogeneity, (iv) efficiency - minimize
computational complexity and communication burden, (v)
robustness - handle unintentional failures and attacks em-
anating from malicious entities, and (vi) fairness - utility
should be proportional to the individual contributions.

Federated learning (FL) [15] is a special case of collab-
orative learning, which works under the orchestration of a
central server. FL allows multiple entities to collaboratively
solve a ML problem by sharing of focused updates (e.g.,
gradients), instead of raw data. Specifically, cross-silo FL
(typically between 2-100 participants) has been touted as a
promising solution to address the data fragmentation prob-
lem in finance [8] and healthcare [16,23]. Most prior cross-
silo FL algorithms assume that all the parties are collec-
tively training a single model with a common architecture,
which is too restrictive in practice. Furthermore, knowl-
edge exchange usually happens through sharing of gradi-
ents or model parameters. Recent gradient inversion at-
tacks [9, 14] demonstrate that it is indeed possible to re-
cover high fidelity information from individual gradient up-
dates, thus violating the privacy requirement. While dif-
ferential privacy (DP) [24], secure multi-party computation
(MPC) [26], and trusted execution environment (TEE) [21]
have been proposed as potential remedies to safeguard pri-
vacy in FL, none of the existing solutions offer an accept-
able privacy-utility trade-off with reasonable efficiency. As
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noted in [5], sharing of high dimensional gradients/model
parameters is a fundamental privacy limitation of standard
FL methods, which cannot be addressed by simply wrap-
ping around a DP, MPC, or TEE solution.

Confidential and private collaborative learning (CaPC)
[7] is the only method that claims to achieve both confi-
dentiality and privacy in a collaborative setting. In CaPC
learning, each participant is able to query other parties via
a private inference protocol based on 2-party computation
(2PC). However, the answering parties cannot directly re-
veal the inference logits to the querying party because it
leaks information about their local models (e.g., through
model extraction attacks). To circumvent this problem, dif-
ferential privacy, private aggregation of teacher ensembles,
and secure argmax computation through a central privacy
guardian (PG) are employed to output only the predicted la-
bel to the querying party. A drawback of the CaPC approach
is that it achieves all privacy guarantees using the help of
a semi-trusted PG. Moreover, the use of differential pri-
vacy reduces the performance of FL algorithms, especially
if strong privacy guarantees are required. Finally, the use of
MPC requires multiple rounds of communication between
the parties for each query. All other approaches that have
been proposed to achieve knowledge transfer through distil-
lation [18] require a non-private labeled/unlabeled/synthetic
dataset that can be shared among participants.

In this work, we propose a new protocol called
Confidential and Private Decentralized (CaPriDe) learning,
where participants learn from each other in a collaborative
setting while preserving their confidentiality and privacy
(see Figure 1). Unlike the 2PC protocols used in CaPC,
we leverage fully homomorphic encryption (FHE) to en-
able participants to publish their encrypted data. Since the
published data is encrypted using the data owner’s pub-
lic key and only the owner can decrypt the data (using
the secret key), confidentiality is preserved. However, the
CaPriDe framework allows other collaborators to perform
encrypted inference on the published (encrypted) data by
applying their own local model. Mutual knowledge distilla-
tion (KD) [13] between the data owner’s local model and the
local models of the collaborators is used to transfer knowl-
edge between models and ensure a collaborative gain. KD is
typically achieved through minimizing the distillation loss
between the student and teacher responses (logits). Since
the collaborators in CaPriDe learning make predictions on
encrypted data, a loss function that can be computed with-
out any decryption is required. Hence, we propose a new
distillation loss, which is an approximation of the KL di-
vergence that can be securely computed. Only an encrypted
value of the distillation loss aggregated over an entire batch
is sent back to the data owner, which ensures strong privacy.
Data owners can decrypt this aggregate loss value and use
it for updating their local models. Our contributions are:

• We introduce the CaPriDe learning framework, which
exploits FHE-based encrypted inference and knowl-
edge distillation to achieve confidential and private
collaborative learning without any central orchestra-
tion and any need for non-private shared data.

• To enable CaPriDe learning, we propose an
encryption-friendly distillation loss that estimates
the approximate KL divergence between two model
predictions and design a protocol to securely compute
this loss in the encrypted domain.

• We conduct extensive experiments to show that
CaPriDe learning enables participants to achieve col-
laborative gain, even in the non-iid setting. To prove
feasibility, we implement encrypted inference using
the Tile Tensors library with a FHE-friendly model.

2. Background
Federated learning (FL) was first proposed in [20] as a

distributed ML algorithm that does not use user data di-
rectly. Subsequent works attempted to address various chal-
lenges in FL, including privacy [7,19], communication effi-
ciency [12], convergence, catastrophic forgetting [25], and
secure aggregation [3]. Though several privacy-enhancing
solutions have been proposed, most of them fail to provide
a satisfactory balance between accuracy and privacy. Only
recently, some promising solutions such as CaPC have been
proposed [7]. These advancements have been made by jetti-
soning the conventional gradient sharing approach and bor-
rowing ideas from the knowledge distillation literature [13].
Specifically, it has been shown that it is possible for an ML
model to benefit from predictions made by other models,
by aligning the local predictions with those obtained from
external parties. Deep mutual learning (DML) [27] is an
important work in this direction, where models learn collab-
oratively and teach each other throughout the training pro-
cess. Compared to the distillation by a pre-defined static
teacher network, DML achieves better performance, and
mutually learned models outperform independently trained
models irrespective of model capacity. Knowledge Distilla-
tion via Collaborative Learning (KDCL) [11], Cronus [5],
and Ensemble Distillation [18] also follow a similar idea.

2.1. Fully Homomorphic Encryption

Let E(x) denote the encrypted value of x using the public
key κ. The encryption scheme is called homomorphic over
an operation ⊕ if it supports the following equation:

E(x1 ⊕ x2) = E(x1)⊗ E(x2),∀x1, x2

where operators ⊗ and ⊕ need not be the same. The
scheme is fully homomorphic if for some arbitrary function
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Figure 1. Illustration of confidential and private decentralized (CaPriDe) learning framework for K participants, showing the learning
process for only participant P1. Here, D1 = (X1, Y1) = {xj,1, yj,1}N1

j=1 is the local data of P1, E(X1) denotes the collection of
encrypted unlabeled samples of P1, and p(1,l) and z(1,l) are the prediction probabilities and logits obtained by applying model Mθl of
participant Pl to X1. Black dashed line represents exchange of encrypted data between participants in each round, and blue dashed line
denotes a single transfer at the beginning of the protocol. LCE and LDL represent the cross-entropy and distillation losses, respectively.

f(x1, x2, ..., xn), there exists a function g and decryption
method d such that:

f(x1, x2, ..., xn) = d(g(E(x1), E(x2), ..., E(xn))),

where d uses secret key κ̃ to decrypt the given ciphertext
value. Gentry [10] first constructed somewhat homomor-
phic encryption (SWHE) and later developed bootstrapping
of ciphertexts to reduce noise. Among the various FHE
schemes such as BGV, BFV, and CKKS [6], only CKKS
works with real numbers and approximate computations.

2.2. Preliminaries

Typically, a supervised classifier M is mapping from
the input space x ∈ X ⊂ Rn to the label space y ∈
Y = {1, 2, · · · ,M}, where M is the number of classes.
For convenience, we assume that M : X → Z , where
Z denotes the logits space (Z ⊂ RM ). In other words,
M maps the input x to a M -dimensional logits vector
z = [z1, z2, · · · , zM ]. A softmax function (σ) can be ap-
plied to the logits vector z to obtain the probability distri-
bution p = σ(z) = [p1, p2, · · · , pM ] over M labels, i.e.,

pm =
exp(zm/T )

C
, (1)

where T is the softmax temperature parameter and C =∑M
i=1 exp(z

i/T ) is a normalization constant that ensures∑M
m=1 p

m = 1. Here, pm denotes the probability that in-
put x belongs to class m,m = 1, 2, · · · ,M . Given two
V -dimensional vectors v1,v2 ∈ RV , let (v1 · v2) denote
the dot product, (v1 ⊙ v2) denote the element-wise prod-
uct, and f(v1) represent the vector obtained by applying

the function f to each element in v1. The cross entropy
loss of modelM on a sample (x, y) is defined as:

LCE(p, y) = −1y · log(p),

where p = σ(M(x)) and 1y is an indicator vector whose
yth element is 1 and other elements are 0. The KL diver-
gence between two distributions p1 and p2 is given by:

DKL(p2||p1) =

M∑
m=1

pm2 log
pm2
pm1

= (p2·log p2)−(p2·log p1).

(2)
The L2 distance between two logit vectors z1 and z2 is:

DL2(z2, z1) =

M∑
m=1

(zm2 − zm1 )2 = (z2 − z1) · (z2 − z1).

3. Proposed Framework
3.1. Problem Statement

Suppose that there are K participants P1,P2, · · · ,PK .
Each party Pk, k = 1, 2, · · · ,K has its own local train-
ing dataset Dk = {xj,k, yj,k}Nk

j=1 of size Nk using which
it learns its own local ML model Mθk , where M denotes
the architecture1 and θ represents the parameter set. We
also assume that each party Pk has its own validation set
D̃k = {x̃j,k, ỹj,k}Ñk

j=1 of size Ñk and the validation accu-
racy of modelMθk on D̃k is Ak. The goal of each partici-
pant is to collaborate with other parties in order to improve

1For simplicity of notation, we use the same symbol M to denote the
model architecture of all the K participants. The proposed framework does
not require all the parties to have the same model architecture.
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the accuracy of its local model, i.e., obtain a better model
Mθ∗

k
that has a higher validation accuracy A∗

k on D̃k com-
pared to Ak, without compromising on the confidentiality
and privacy of its local data Dk. In other words, no par-
ticipant Pl, l ̸= k can access Dk in its plaintext form or
learn any private information aboutDk such as the xj,k and
yj,k values. The utility of the framework is measured as the
average collaboration gain, i.e., U = 1

K

∑K
k=1 (A∗

k −Ak).

3.2. CaPriDe Learning Framework Description

Let E(Xk) = {E(xj,k)}Nk
j=1 be the collection of en-

crypted input samples of participant Pk. Here, the encryp-
tion is based on a FHE scheme with public key κk of Pk.
In CaPriDe learning, each party initiates the collaboration
by publishing E(Xk) to the other participants. We now
describe how the learning proceeds at participant Pk. Let
zj,(k,l) and pj,(k,l) denote the logits vector and probabil-
ity distribution obtained when modelMθl of Pl is applied
on the input sample xj,k, i.e., the jth training sample of
Pk. Assume that we are at round (t + 1), 0 ≤ t < τ , of
the collaboration and the current model of Pk isMθt

k
. Pk

performs one forward pass on its own training set Dk to ob-
tain the predictions {pj,(k,k)}

Nk
j=1. The cross-entropy loss

of party Pk can be obtained as:

LCEk
=

Nk∑
j=1

LCE

(
pj,(k,k), yj,k

)
. (3)

To enable knowledge transfer between participants, we
make use of the knowledge distillation (KD) approach [13],
where a student model learns to mimic the predictions of a
teacher model. In CaPriDe learning, there is no designated
teacher model, and mutual KD between multiple peer mod-
els is used for knowledge transfer. Let LDL(k,l)

denote the
pairwise distillation loss between predictions of Pk and Pl,
which is defined as:

LDL(k,l)
=

Nk∑
j=1

DDL

(
pj,(k,k),pj,(k,l)

)
, (4)

where DDL(p1,p2) denotes the mimic distance between
two predictions p1 and p2. The total distillation loss for Pk

can be computed as:

LDLk
=

1

K − 1

K∑
l=1,l ̸=k

LDL(k,l)
. (5)

Therefore, the overall loss of Pk is given by:

Lk = LCEk
+ λkLDLk

, (6)

where λk is the weighting factor between the cross-entropy
and distillation losses for Pk. The model of participant Pk

is then updated through a backward pass as follows:

θt+1
k = θtk − αk∇θt

k
Lk, (7)

where αk is the learning rate of Pk.

3.3. Encryption-friendly Distillation Loss

The key missing component in the above CaPriDe learn-
ing framework is the computation DDL in Eq. 4. For par-
ticipant Pk, its logit vectors z.,(k,k) and predictions p.,(k,k)

are available in the plaintext domain. However, since partic-
ipantPl receives the input samples ofPk in encrypted form,
it can perform inference in the encrypted domain and obtain
only E

(
z.,(k,l)

)
, where E

(
z.,(k,l)

)
=Mθl (E(x.,k)). It is

not straightforward to obtain E
(
p.,(k,l)

)
from E

(
z.,(k,l)

)
because it involves computing a non-linear softmax func-
tion in the encrypted domain, which is a challenging task in
the FHE domain and consumes a large multiplicative depth.
Even if this softmax operation is somehow implemented, it
is not possible to send E

(
p.,(k,l)

)
back to Pk, who can de-

crypt it and obtain p.,(k,l). Since Pk also has knowledge of
x.,k, it becomes feasible for Pk to carry out a model extrac-
tion attack based on (x.,k,p.,(k,l)) pairs to glean informa-
tion about model Mθl . This violates the privacy require-
ments of participant Pl. Hence, there is a need for a loss
function that can be computed in the encrypted domain.

A straightforward solution is to compute the L2 distance
between logit vectors z.,(k,k) and z.,(k,l). In this case, par-
ticipant Pk can publish E

(
z.,(k,k)

)
and the pairwise distil-

lation loss LDL(k,l)
can be computed by participant Pl as:

E
(
DDL

(
pj,(k,k),pj,(k,l)

))
≡ E

(
DL2

(
zj,(k,k), zj,(k,l)

))
=

(
E
(
zj,(k,k)

)
− E

(
zj,(k,l)

))
·
(
E
(
zj,(k,k)

)
− E

(
zj,(k,l)

))
However, our experiments indicate the above simple solu-
tion based on L2 distance does not lead to high utility U . On
the other hand, we observed that using the KL divergence
between predictions of Pk and Pl almost always leads to
better utility. But, DKL

(
p.,(k,k)||p.,(k,l)

)
cannot be di-

rectly computed in the encrypted domain because partici-
pant Pl only has access to the encrypted logits E

(
z.,(k,l)

)
.

Fortunately, this problem can be solved by approximat-
ing the KL divergence. Combining Eqs. 1 and 2, we get:

DKL(p2||p1) =

M∑
m=1

pm2 log pm2 −
M∑

m=1

pm2 (zm1 /T )+M logC.

(8)
Here, the first term can be denoted as (p2 · log p2) and mea-
sures the entropy (uncertainty) in p2. The second term mea-
sures the divergence (unnormalized cross-entropy) between
p2 and p1 and can be expressed as (p2 · z1/T ). The final
term M logC is just a normalization constant that does not
affect the relative ordering of the class predictions. We ob-
served that this normalization term does not appear to play
a major role in model training. Hence, we ignore this value
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Algorithm 1 CaPRiDe learning algorithm
Input: Number of participants K, weight parameter λk, learning rate αk for each participant
Assumption: Each participant has local training set Dk = {xj,k, yj,k}j=[1,Nk] of size Nk, a fully homomorphic encryption
function E with public key κk, a decryption function d with secret key κ̃k

for each participant k = 1, 2, · · · ,K do
Train initial modelMθ0

k
based on local data Dk

Publish encrypted data {E(xj,k)}j=[1,Nk]

end for
for each round t = 1, 2, · · · , τ do

for each participant k = 1, 2, · · · ,K do
{pj,(k,k)}j=[1,Nk] ← {σ(Mθt−1

k
(xj,k))}j=[1,Nk]

LCEk
← Compute cross-entropy loss of participant k using Equation 3

L̂KLk
← Compute local uncertainty of participant k using Equation 11

Publish encrypted inferences {E(pj,(k,k))}j=[1,Nk]

for each participant l = 1, 2, · · · ,K, l ̸= k do
{E(zj,(k,l))}j=[1,Nk] ← {Mθt−1

l
(E(xj,k))}j=[1,Nk] (Perform inference on encrypted data)

E(L̃KL(k,l)
)← Compute pairwise divergence in encrypted domain using Equation 12

Send E(L̃KL(k,l)
) to participant k

LDL(k,l)
← Compute pairwise distillation loss between participants k and l using Equation 10

end for
LDLk

← Compute distillation loss of participant k using Equation 5
Lk ← Compute total loss of participant k using Equation 6
θtk ← Update local model of participant k using Equation 7

end for
end for

and define the approximate KL divergence is defined as:

D̂KL(p2||p1) = (p2 · log p2)− (p2 · z1/T ). (9)

Going back to Eq. 4, the pairwise distillation loss based on
the above approximate KL divergence can be easily com-
puted in the encrypted domain as:

E
(
DDL

(
pj,(k,k),pj,(k,l)

))
≡ E

(
D̂KL

(
pj,(k,k)||pj,(k,l)

))
= E

(
pj,(k,k) · log pj,(k,k)

)
− E

(
pj,(k,k)

)
· E

(
zj,(k,l)

)
/T

The above distillation loss based on the approximate KL
divergence is encryption-friendly because it involves only
linear operations and scaling by a constant plaintext value
T . In practice, our goal is to computeLDL(k,l)

at participant
Pk. Therefore, Eq. 4 can be further reformulated as:

LDL(k,l)
= L̂KLk

− d
(
E
(
L̃KL(k,l)

))
, (10)

where

L̂KLk
=

Nk∑
j=1

(pj,(k,k) · log pj,(k,k)), (11)

E
(
L̃KL(k,l)

)
=

Nk∑
j=1

E
(
pj,(k,k)

)
· E

(
zj,(k,l)

)
/T. (12)

Since Pk has access to pj,(k,k), it is straightforward to
compute L̂KLk

in plaintext space. If participant Pk can

publish
{
E(pj,(k,k))

}Nk

j=1
in each round, Pl can compute

E
(
L̃KL(k,l)

)
in the encrypted domain because it already

has access to
{
E
(
zj,(k,l)

)}Nk

j=1
. The encrypted value of

L̃KL(k,l)
is sent back to participant Pk, who decrypts it to

compute the overall loss via Eqs. 10, 5 and 6.

Privacy Analysis: In the CaPriDe learning framework, the
only quantity that can potentially leak private information is
the pairwise distillation loss between participants L̃KL(k,l)

,
which has already been aggregated over all the Nk sam-
ples. A curious participant Pk attempting to reconstruct the
logit values zmj,(k,l) of participant Pl needs to dis-aggregate
this sum and compute per-sample loss, which is infeasible
in the absence of other constraints. Hence, the proposed
CaPriDe learning framework is privacy-preserving. It must
be emphasized that even gradient inversion attacks [9, 14]
are significantly harder when the batch size is large (above
16) due to the same reason. The proposed method also has
other advantages that enhance privacy: (i) A curious par-
ticipant cannot query its collaborator adaptively. The en-
crypted samples are published once at the beginning and do
not change. (ii) The responding participant can choose a
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random subset of samples in each round to compute the ag-
gregate loss. This can improve efficiency as well as provide
a privacy benefit by eliminating correlation across multiple
rounds. (iii) We can incorporate differential privacy (DP)
by adding noise to the aggregate pairwise distillation loss.
Since the framework allows exchange of only encrypted in-
put samples and encrypted predictions, which never get de-
crypted during the execution of the protocol, the CaPriDe
learning approach also preserves data confidentiality.

4. Experiments
4.1. Datasets

CIFAR-10 [17] is a dataset consisting of 60000 32 × 32
RGB images from 10 classes, with 6000 images per class.
It has 50000 training and 10000 test samples.
CIFAR-100 dataset [17] is similar to the CIFAR-10 dataset,
but it has 100 classes containing 600 samples each. Training
and evaluation sets are split in the same way as in CIFAR-
10. CIFAR-100 dataset is used with data augmentation to
account for the problem complexity. The data augmenta-
tions employed include random rotation (up to 15 degrees),
random crop, and horizontal flip.
HAM10000 is a multi-class imbalanced dataset compris-
ing of 10,015 dermoscopic images from diverse populations
with 7 categories of pigmented lesions. We randomly per-
form an 85%/15% split for training/ testing.

4.2. Experimental Setup

We compare the CaPriDe learning framework against
the following baselines: vanilla FL based on FedAvg (Fe-
dAvg) [20], FL with local differential privacy (FedAvg +
DP) [24], and deep mutual learning (DML) [27]. We use
ResNet-18 architecture for all our experiments. Stochastic
Gradient Descent (SGD) algorithm with momentum is used
as the optimizer. For all methods, 25 epochs of local train-
ing happens before 75 rounds of collaboration. Momen-
tum is set to 0.9, the initial learning rate is set to αk = 0.1
and the learning rate decays in rounds 50 and 75 by a fac-
tor γ = 0.1. The batch size is set to 128 for CIFAR-10
and CIFAR-100 and 32 for HAM10000. The weight fac-
tor λk between cross-entropy and distillation losses is set to
50 for CIFAR-10 and CIFAR-100 and 20 for HAM10000.
All algorithms are implemented using PyTorch and exper-
iments are carried out on a single NVIDIA RTX A6000
GPU. Additionally, in CaPriDe and DML, the logits are
scaled by a temperature parameter T = 5.0. Finally, for
FedAvg + DP, the Gaussian noise mechanism is used with
σg = 0.01. To implement an FHE-compatible version of
ResNet-18, we use the Tile Tensors framework [1,2], which
in turn relies on low-level FHE libraries such as HElib and
SEAL. For encrypted inference, ReLU is replaced with a
polynomial approximation of Gaussian Error Linear Unit

Figure 2. Accuracy trend of two (K = 2) collaboratively trained
models on different datasets (rows) and for different partition
strategies (columns).

(g(x) = 0.0711 + 0.5x+ 0.2576x2 − 0.0128x4).
We consider three types of strategies to partition the

training dataset among the participants: (i) Homogeneous:
each participant has an equal number of samples per class,
(ii) Heterogeneous: each participant has an unequal num-
ber of samples determined randomly (both total number and
number of samples per class), (iii) Non-overlapping class
distribution: (denoted as “no class overlap”) each partici-
pant has samples from a non-overlapping subset of classes
(e.g., for K = 2, participants get even and odd classes).
While homogeneous partitioning ensures that data distribu-
tions of participants are iid, heterogeneous split simulates
typical non-iid scenarios, and the no class overlap case cor-
responds to extreme statistical heterogeneity.

4.3. Collaborative Learning Results

To begin with, we establish the utility (collaborative
gain) of the proposed CaPriDe learning framework for the
case of K = 2 participants on all three datasets and all
three partition strategies 2. The results of these experiments
are shown in Figure 2. In each case, the collaboration gain
of CaPriDe learning is positive and the actual collaboration
gain values can be found in Table 1. We make the following
observations based on these results.

• CaPriDe learning works not only in the iid setting but
also equally well in the two non iid settings. This

2Since HAM10000 already has a massive class imbalance and an odd
number of class, we omit the no class overlap setting for this dataset.
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Dataset Setting K FedAvg FedAvg+DP CaPriDe

CIFAR-10 Homogeneous 2 3.46 -20.54 1.58
CIFAR-10 Homogeneous 5 9.22 -11.8 3.55
CIFAR-10 Homogeneous 10 15.44 2.58 5.52

CIFAR-10 Heterogeneous 2 6.12 -17.04 0.93
CIFAR-10 Heterogeneous 5 13.78 -7.84 5.06
CIFAR-10 Heterogeneous 10 21.81 5.69 6.20

CIFAR-10 No class overlap 2 29.85 11.08 8.16

CIFAR-100 Homogeneous 2 7.08 -30.97 4.19
CIFAR-100 Homogeneous 5 22.68 -13.81 9.10
CIFAR-100 Homogeneous 10 26.10 -0.11 11.69

CIFAR-100 Heterogeneous 2 9.59 -28.89 6.28
CIFAR-100 Heterogeneous 5 22.50 -13.26 9.23
CIFAR-100 Heterogeneous 10 34.38 3.86 10.68

CIFAR-100 No class overlap 2 19.40 5.14 7.75

HAM10000 Homogeneous 2 0.97 0.48 1.81

HAM10000 Heterogeneous 2 1.93 -1.21 1.67

Table 1. Collaborative gain (%) on all datasets and all partition
strategies for different number of participants K using different
algorithms (columns 4-6). DML results are not reported here be-
cause there is negligible difference between CaPriDe and DML.

demonstrates that knowledge distillation is reasonably
effective even under extreme statistical heterogeneity.

• There is a negligible difference between the perfor-
mance of DML (which uses true KL divergence) and
CaPriDe learning (which uses approximate KL diver-
gence) in all the settings. This clearly justifies the
dropping of the normalization (third) term in Eq. 8 to
obtain the encryption-friendly distillation loss in Eq.
9. While DML offers no confidentiality or privacy,
CaPriDe learning offers both without any utility cost.

• In almost all the settings, there is a huge difference in
the collaboration gain between FedAvg and CaPriDe
learning. This is unsurprising because FedAvg in-
volves sharing and aggregation of full model param-
eters leading to high utility at a significant cost to pri-
vacy. On the other hand, FedAvg + DP provides strong
privacy, but this comes with a significant degradation
in utility. Hence, it can be argued that CaPriDe learn-
ing achieves a good trade-off between privacy and util-
ity compared to standard FL algorithms.

Next, we evaluate the utility of the proposed method
with the different number of participants K = 2, 5, 10 on
CIFAR-10 and CIFAR-100 datasets based on the homoge-
neous partition (iid) setting. From Figure 3 and Table 1
we observe that the collaboration gain increases with the
number of participants. This is to be expected because the
training samples per participant become less when there are
more participants, consequently resulting in lower individ-
ual accuracy.

Figure 3. Accuracy with different number of participants K based
on the homogeneous partition (iid) setting.

(a) Homogeneous (b) Heterogeneous (c) No overlap

Figure 4. Per-class accuracy of CaPriDe learning evaluated on
CIFAR-10 averaged across 5 participants. Dashed lines represent
mean accuracy and error bars indicate standard deviation.

(a) Homogeneous (b) Heterogeneous (c) No overlap

Figure 5. Per-participant accuracy of CaPriDe learning evaluated
on CIFAR-100 dataset.

Furthermore, we evaluate the class-wise and participant-
wise accuracy of our CaPriDe learning algorithm with K =
5 participants. Figure 4 shows class-wise accuracy averaged
across 5 participants for each setting. From this figure, it is
clear that almost all the classes benefit from collaboration,
and the per-class accuracy of the individual models after
collaboration has a lower standard deviation compared to
the case without collaboration, especially in homogeneous
and heterogeneous settings. Thus, in these two settings, the
individual models become similar to each other after col-
laboration proving the successful transfer of knowledge be-
tween participants. Note that Figure 4 displays the average
top-1 accuracy of the participants. The collaboration gains
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in the no class overlap case are significantly higher when
top-5 accuracy is considered. Finally, Figure 5 illustrates
participant-wise accuracy over all classes for each setting. It
is obvious that each participant has a positive collaboration
gain, which is the eventual goal that we set out to achieve.
Moreover, all the 5 participant models have a similar ac-
curacy at the end of the collaboration, once again demon-
strating good knowledge transfer. Other results such as the
sensitivity of the proposed method to weight factor λk, the
sensitivity of FedAvg + DP to noise variance, and the com-
parison between approximate KL divergence and L2 loss
are included in the supplementary material.

4.4. FHE Implementation Results

For FHE implementation using the Tile Tensors frame-
work, Table 2 summarizes the information about all three
datasets at the same security level of 128 bits. Two crit-
ical metrics to be kept in mind are the time required for
encrypted inference and the memory consumed by a cipher-
text. While encrypted inference time determines the com-
putational complexity and latency involved in each round,
the ciphertext size determines the communication burden.
Note that encrypted inference can be performed on a per-
sample basis or a batch of samples [4]. The single sam-
ple inference mode is preferred for machine learning as-a-
service applications, where low latency is a critical require-
ment. However, the batched inference is better suited for the
CaPriDe learning framework, where only the overall time
required to complete inference on all the samples matter.

CIFAR-10 CIFAR-100 HAM10000

Security Level 128 128 128

Number of slots 16384 16384 16384

Time taken to encrypt one sample 90 ms 103 ms 619 ms

Ciphertext size of one sample 29.101 KB 29.152 KB 1.359 MB

Time taken to encrypt a batch of 32 samples 1.31 s 1.26 s 15.57 s

Encrypted inference of a batch of 32 samples 110.21 s 112.09 s 896.12 s

Table 2. FHE configuration parameters and memory and compu-
tational requirements for the chosen datasets based on ResNet-18
architecture.

The encrypted inference time for a batch of 32 samples
is approximately 110s for CIFAR-10 and CIFAR-100 and
900s for HAM10000. Thus, if the local dataset of each
participant has 1024 training samples, it will take around
1 hour (8 hours) for encrypted inference per participant
and then computation of the pairwise distillation loss in
each communication round for CIFAR-10 and CIFAR-100
(HAM10000). While this is a significant computational
load, it is less of an issue in the cross-silo collaborative
learning setting, especially in sectors such as finance and
healthcare, where data confidentiality and privacy as well
as accuracy gain are more critical. Moreover, the ciphertext

size for one sample is approximately, 30KB for CIFAR-10
and CIFAR-100 and 1.36MB for HAM10000. For the same
local dataset size of 1024, the encrypted dataset will con-
sume 30MB for CIFAR-10 and CIFAR-100 and 1.36GB for
HAM10000. Fortunately, the encrypted dataset is published
and needs to be downloaded only once by each participant
at the beginning of the protocol. During every communi-
cation round, only the encrypted predictions and pairwise
losses are exchanged. Depending on the local dataset size,
the number of classes, and the ciphertext packing strategy
used, these intermediate values can be packed into at most
a few tens of ciphertexts (note that this does not depend on
the image size). Hence, the per round communication bur-
den of CaPriDe learning framework is relatively small.
Limitations and Potential Solutions: Note that all the
above complexity computations are based on the assump-
tion of K = 2 participants. As K increases, these re-
quirements will increase linearly for each participant bring-
ing the scalability of the system into question. Hence, the
vanilla CaPriDe learning framework is more appropriate for
a small network of participants. However, there are ways to
improve scalability borrowing on ideas from cross-device
FL. For example, instead of computing the pairwise distil-
lation loss with respect to each participant, a random sub-
set of participants can be sampled in each round for dis-
tillation. Similarly, the computational complexity for each
participant can be significantly reduced by performing en-
crypted inference only on a randomly selected subset of en-
crypted samples. Furthermore, these actions can be deter-
mined at the local level without any central orchestration.
The need to have FHE-friendly models for encrypted infer-
ence is a key limitation, which precludes the use of very
deep models within the proposed framework. One poten-
tial solution is to employ two models at each participant:
one deep model with large capacity and another smaller
FHE-friendly model for encrypted inference on other par-
ticipants’ data and perform an additional mutual distillation
between these two models after each round.

5. Summary

Collaborative learning without compromising on data
confidentiality and privacy is a valuable tool in applications
with stringent data privacy requirements. We have proposed
a new framework called CaPriDe learning based on infer-
ence in the FHE domain to achieve this goal. Knowledge
distillation is used to exchange useful information between
models, and a new distillation loss based on approximate
KL divergence has been proposed to enable secure loss
computation in the encrypted domain. While the proposed
approach has shown promising results, its efficiency can be
further improved. Other vulnerabilities such as poisoning
attacks will also be addressed in the future.
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