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Abstract

Annotating new datasets for machine learning tasks is
tedious, time-consuming, and costly. For segmentation ap-
plications, the burden is particularly high as manual delin-
eations of relevant image content are often extremely expen-
sive or can only be done by experts with domain-specific
knowledge. Thanks to developments in transfer learning
and training with weak supervision, segmentation models
can now also greatly benefit from annotations of different
kinds. However, for any new domain application looking
to use weak supervision, the dataset builder still needs to
define a strategy to distribute full segmentation and other
weak annotations. Doing so is challenging, however, as it
is a priori unknown how to distribute an annotation budget
for a given new dataset. To this end, we propose a novel ap-
proach to determine annotation strategies for segmentation
datasets, whereby estimating what proportion of segmen-
tation and classification annotations should be collected
given a fixed budget. To do so, our method sequentially
determines proportions of segmentation and classification
annotations to collect for budget-fractions by modeling the
expected improvement of the final segmentation model. We
show in our experiments that our approach yields annota-
tions that perform very close to the optimal for a number of
different annotation budgets and datasets.

1. Introduction

Semantic segmentation is a fundamental computer vi-
sion task with applications in numerous domains such as
autonomous driving [11, 43], scene understanding [45],
surveillance [50] and medical diagnosis [9, 18]. As the ad-
vent of deep learning has significantly advanced the state-
of-the-art, many new application areas have come to light

and continue to do so too. This growth has brought and
continues to bring exciting domain-specific datasets for seg-
mentation tasks [0, 19,29,32,52].

Today, the process of establishing machine learning-
based segmentation models for any new application is rel-
atively well understood and standard. Only once an image
dataset is gathered and curated, can machine learning mod-
els be trained and validated. In contrast, building appropri-
ate datasets is known to be difficult, time-consuming, and
yet paramount. Beyond the fact that collecting images can
be tedious, a far more challenging task is producing ground-
truth segmentation annotations to subsequently train (semi)
supervised machine learning models. This is mainly be-
cause producing segmentation annotations often remains a
manual task. As reported in [4], generating segmentation
annotations for a single PASCAL image [15] takes over
200 seconds on average. This implies over 250 hours of
annotation time for a dataset containing a modest 5’000
images. What often further exacerbates the problem for
domain-specific datasets is that only the dataset designer,
or a small group of individuals, have enough expertise to
produce the annotations (e.g., doctors, experts, etc.), mak-
ing crowd-sourcing ill-suited.

To overcome this challenge, different paradigms have
been suggested over the years. Approaches such as Active
Learning [7, 8,26] aim to iteratively identify subsets of im-
ages to annotate so as to yield highly performing models.
Transfer learning has also proved to be an important tool
in reducing annotation tasks [13,17,24,25,30,36]. For in-
stance, [37] show that training segmentation models from
scratch is often inferior to using pre-training models de-
rived from large image classification datasets, even when
the target application domain differs from the source do-
main. Finally, weakly-supervised methods [2,40] combine
pixel-wise annotations with other weak annotations that are
faster to acquire, thereby reducing the annotation burden.
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Figure 1. Illustration of different semantic segmentation applications; OCT: Pathologies of the eye in OCT images, SUIM: Underwater
scene segmentation [ 19], Cityscape: street level scene segmentation [1 1], PASCAL VOC: natural object segmentation.

In particular, Papandreou et al. [40] showed that combina-
tions of strong and weak annotations (e.g., bounding boxes,
keypoints, or image-level tags) delivered competitive results
with a reduced annotation effort. In this work, we rely on
these observations and focus on the weakly supervised seg-
mentation setting.

In the frame of designing annotation campaigns, weakly-
supervised approaches present opportunities for efficiency
as well. Instead of completely spending a budget on a few
expensive annotations, weakly-supervised methods allow a
proportion of the budget to be allocated to inexpensive, or
weak, labels. That is, one could spend the entire annotation
budget to manually segment available images, but would
ultimately lead to relatively few annotations. Conversely,
weak annotations such as image-level labels are roughly
100 times cheaper to gather than their segmentation coun-
terparts [4]. Thus, a greater number of weakly-annotated
images could be used to train segmentation models at an
equal cost. In fact, under a fixed budget, allocating a pro-
portion of the budget to inexpensive image-level class labels
has been shown to yield superior performance compared to
entirely allocating a budget to segmentation labels [4].

Yet, allocating how an annotation budget should be dis-
tributed among strong and weak annotations is challenging,
and inappropriate allocations may severely impact the qual-
ity of the final segmentation model. For example, spend-
ing the entire budget on image-level annotations will clearly
hurt the performance of a subsequent segmentation model.
Instead, a naive solution would be to segment and classify
a fixed proportion of each (e.g., say 80% - 20%). Knowing
what proportion to use for a given dataset is unclear, how-
ever. Beyond this, there is no reason why the same fixed
proportion would be appropriate across different datasets or
application domains. That is, it would be highly unlikely

that the datasets shown in Fig. | all require the same pro-
portion of strong and weak annotations to yield optimal seg-
mentation models.

Despite its importance, choosing the best proportion
of annotation types remains a largely unexplored research
question. Weakly-supervised and transfer-learning meth-
ods generally assume that the annotation campaign and the
model training are independent and that all annotations are
simply available at training time. While active learning
methods do alternate between annotation and training, they
focus on choosing optimal samples to annotate rather than
choosing the right type of annotations. Moreover, most ac-
tive learning methods ignore constraints imposed by an an-
notation budget. More notable, however, is the recent work
of Mahmood et. al. [33, 34] which aims to determine what
weak and strong annotation strategy is necessary to achieve
a target performance level. While noteworthy, this objective
differs from that here, whereby given a fixed budget, what
strategy is best suited for a given new dataset?

To this end, we propose a novel method to find an opti-
mal budget allocation strategy in an online manner. Using a
collection of unlabeled images and a maximum budget, our
approach selects strong and weak annotations, constrained
by a given budget, that maximize the performance of the
subsequent trained segmentation model. To do this, our
method iteratively alternates between partial budget alloca-
tions, label acquisition, and model training. At each step,
we use the annotations performed so far to train multiple
models to estimate how different proportions of weak and
strong annotations affect model performance. A Gaussian
Process models these results and maps the number of weak
and strong annotations to the expected model improvement.
Computing the Pareto optima between expected improve-
ment and costs, we choose a new sub-budget installment
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and its associated allocation so to yield the maximum ex-
pected improvement. We show in our experiments that our
approach is beneficial for a broad range of datasets, and il-
lustrate that our dynamic strategy allows for high perfor-
mances, close to optimal fixed strategies that cannot be de-
termined beforehand.

2. Related work
2.1. Weak annotations for segmentation

Weakly supervised semantic segmentation (WSSS) re-
lies on coarser annotations, such as bounding boxes [46],
scribbles [31, 49] or image-level classification labels [1],
to train a segmentation network. WSSS methods have of-
ten employed saliency maps as weak annotations for seg-
mentation models, as these are typically obtained from
CAM [55], which leverages image-level classification an-
notation. These methods then focus on refining the saliency
maps with a variety of techniques [16,28]. Others make use
of attention to achieve coarse segmentations [20,23]. Con-
versely, [54] combined annotations in the form of bounding
boxes and image-level labels to accurately generate image
graphs, to be used by a graph neural network to predict node
values corresponding to pixel labels. In this context, the
work in [33] and [34] are close to this one, whereby their
objective is to determine what annotation strategy over an-
notation types is likely to yield a target performance level.

2.2. Transfer learning

Due to the limited availability of annotated image data
in some domains, it is now common to use neural net-
works pre-trained on large image classification tasks [12]
for subsequent target tasks. Specifically, in cases where
the target task has limited data or annotations, this has
been shown to be particularly advantageous. Among oth-
ers, this practice is now widely used in medical imaging
and has been linked to important performance gains after
fine-tuning [13, 14,24,36,48].

Efforts are now pivoting towards the use of in-domain
pre-training, avoiding the leap of faith that is often taken
with Imagenet [17, 30]. In [30], the model is pre-trained
on ChestX-ray14 [51] to more accurately detect pneumonia
in chest X-ray images from children. In [17], the authors
show that joint classification and segmentation training,
along with pre-training on other medical datasets that have
domain similarity, increases segmentation performances
with respect to the segmentation using Imagenet-based pre-
training.

Alternatively, cross-task methods seek to transfer fea-
tures learned on one task (e.g. classification, normal estima-
tion, etc.) to another, usually more complex one. Along this
line, Taskonomy [53] explored transfer learning capabilities
among a number of semantic tasks and built a task similarity

tree that provided a clustered view of how much information
is available when transferring to other tasks. Similarly, [37]
performed an extensive study of cross-task transfer capabil-
ities for a variety of datasets, reaching the conclusion that
Imagenet pre-training outperforms random initialization in
all cases, but further training on related tasks or domains
also brings additional benefits.

2.3. Active learning

In active learning, the goal is to train a model while
querying an oracle to label new samples that are expected
to improve the model’s accuracy. In computer vision, it
has been applied to image classification [22,41] or seman-
tic segmentation [3, 5, 44] among others. As a byproduct,
Active learning has also been used as a way to reduce label-
ing time. For example, [27] describes a method that cou-
ples Reinforcement Learning and Active Learning to derive
the shortest sequence of annotation actions that will lead
to object detection within an image. Others have focused
on speeding up this process via eye-tracking [38] or ex-
treme clicking [39]. As such, Active Learning is related
to the present work in the sense that our approach is adap-
tive but differs in that our method determines what annota-
tions types should be collected under a constrained budget
instead of predicting at each time step which samples should
be added to the annotated set.

3. Method

Training segmentation models using a combination of
expensive pixel-wise annotations and other types of cheaper
annotations, such as image-wise labels or single-pixel an-
notations is known to be beneficial, as well as using cross-
task transfer learning techniques [37]. This is motivated by
empirical findings showing that, under a limited annotation
budget, allocating a proportion of the budget to inexpen-
sive image-level class labels led to superior performance
compared to allocating the budget entirely to segmentation
labels [4]. However, the optimal proportion of the budget
to allocate per annotation type is a-priori unknown before-
hand and data-dependent. Thus, the goal of our method is to
find this data-specific optimal budget allocation in an online
manner, as it is necessary for any dataset builder starting off.

We describe our method in the subsequent sections. For
clarity, we focus on image segmentation and assume two
kinds of annotations are possible: strong annotations as
segmentation labels and weak annotations as image-level
classification labels. Generalizing this formulation to other
tasks or settings with more than two annotations types
should follow directly.

3.1. Problem formulation

Let pgaa(x) be the distribution of training images for
which we have no annotations initially. Each training im-
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age x can be annotated with a pixel-wise segmentation la-
beling (X, y) ~ Paaa(X)Psem(y | X) or an image-wise clas-
sification annotation (X, ¢) ~ Pgaa(X)pas(c | x)Sampling
from the distributions pcis and psgm represents the task of
manually annotating the image and has associated costs
of ac > 0 and « > 0, respectively. Supported by pre-
vious work [4,33,37], we will assume that oy > a.

By sampling C classifications from pjs and S segmenta-
tion from pgem, we can build an annotated training dataset
T = (Te,Ts) ~ (0§ Pogm)- The dataset 7 then has an
annotation cost,

a.C + oy, (1)

which we assume to be bounded by an upper limit, or bud-
get, B.

To annotate 7, however, we can choose different allo-
cation strategies, or combinations of C' and S, that have
different costs and that yield different segmentation model
performances. The utility u of an allocation strategy (C, .S)
is the expected performance of a model trained with datasets
that follow that strategy,

u(C,8) = E(r, 7)m (oG ps) [T, To)] (2)

where m(7., T) is the performance score (e.g., Dice score,
IoU) of a segmentation model trained with datasets (7¢, 75)
and evaluated on a separate fixed test dataset. Note that in
contrast to Active Learning, the utility is defined over the set
of strategies (C, S) and not over the individual samples of a
fixed training set. This is motivated by our aim to estimate
the performance of the annotation strategy (C,.S) and not
the ensuing specific training dataset.

Our goal then is to find the annotation strategy that max-
imizes the expected performance constrained to a budget B,

max - u(C, S),
(C,S)EN (3)

st. a.C+ a8 < B.

In the following, we describe how we optimize Eq. (3).

3.2. Utility model

As defined Eq. (2), the utility function, u, marginalizes
over all possible training sets, which is intractable to com-
pute in practice. To overcome this computational challenge,
we approximate v with a collection M of discrete samples,
where each sample m € M is a tuple containing an al-
location strategy (C, S) and the estimated score m(7;, 7)
obtained for a dataset sampled with that allocation strat-
egy. To build M, one could simply sample a random strat-
egy (€', S), annotate a dataset (77, 77) ~ (pS. ,pSng)’ and
measure its performance. However, this would imply anno-
tating for different potential budgets and is thus infeasible
in practice. Instead, a practical alternative is to leverage

Algorithm 1 Build utility samples from annotated data

1: function BUILDUTILITYSAMPLES(7,, 7s)
C Tl S« ITi|
M —{((C,S),m(Te, Ts))}
all the available data
4 repeat N — 1 times
5 Sample (C’,S") € [0,C] x [0, S]
6: T. + {C' elements sampled from 7.}
7
8

> Add sample with

T. < {5’ elements sampled from 7T}
M = MU ((C',5),m(T,T))

9: end repeat

10: end function

previously annotated data (7., 7). For each sampled strat-
egy (C’,5), we build the corresponding dataset (7., 7.)
by taking random samples from the already annotated data
according to the strategy. While this procedure, formalized
in Alg. 1, leads to biased samples, we empirically found this
bias to have a minor impact on the final strategies compared
to estimations with unbiased sampling.

While M provides an estimation of u as a set of dis-
crete locations, we generalize these estimations to the en-
tire space of strategies by fitting a Gaussian process (GP) to
the samples in M. The Gaussian process, GP(u, k) is pa-
rameterized by a suitable mean function p and covariance
function k. In our case, we use the mean function,

;L(C, S) = Ye IOg(ﬂcC + 1) + s IOg(ﬂsS + 1)7 “4)

which accounts for the fact that the segmentation perfor-
mance increases logarithmically with the volume of the
training data [47] and that each annotation type has a dif-
ferent rate of performance growth. Similarly, the covari-
ance k is a combination of two RBF kernels with different
scales /., s for each annotation type,

_(c-ch? _(s-5")2

k((C,8),(C',8") =0 2 e 22 . (5)

The values ., B., Vs, Bs from the mean, the length
scales /., ¢ and the amplitude o from the covariance are
trainable parameters of the GP.

The trained GP models a distribution over utility func-
tions, u ~ GP(u, k), that are plausible under the sam-
ples M. This distribution represents not only the expected
utility, but also its uncertainty in different areas of the strat-
egy space. Sampling just a single u from the GP to solve
Eq. (3) would thus be suboptimal. For this reason, we sub-
stitute the utility u in Eq. (3) by a surrogate function u that
trades-off exploitation and exploration, thus incorporating
uncertainty information into the optimization problem. Fol-
lowing a Bayesian optimization approach [21], we choose @
to be the expected improvement (EI),

w(C,S) = Eygp, max{u(C,S) —m*,0}], (6)
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Figure 2. Illustration of proposed method. At a given iteration ¢, C'; and S; classification and segmentation annotations have already been
collected (blue region, left panel) with a budget of B;. For the next annotation phase, the budget is increased to B:41. To determine
how many new classification and segmentation annotations to collect, M combinations of different quantities (C @, S“)) are gathered
according to Alg. 1 to compute m(C’(i), S (i)). A Gaussian Process is then trained to estimate the utility of different combinations of
annotation types (light blue area, left panel). From this, we infer AC' and AS to select next by computing the combination that maximizes
the expected improvement along the Pareto front given by the budget B> (red point, left panel). The next iteration starts then with the new
proportions (red point, right panel) and follows the same steps (see text and Alg. 2 for details). For illustration purposes, the costs are set

hereto a. = as = 1.

where m* is the current maximum point.

3.3. Optimization

Training the GP requires annotated data to build the
set M, which in turn relies on an annotation strategy that
we are trying to find, whereby implying a circular depen-
dency. We address this circular dependency by optimizing
Eq. (3) in an iterative manner.

Our algorithm shown in Alg. 2, allocates the available
budget B in a fixed number of adaptive installments, al-
ternating between data annotation with the current strat-
egy, GP fitting, and strategy selection for the next budget
installment. More specifically, our method starts with an
initial strategy (Cy, Sp) with associated cost By. At each
iteration ¢, new data is annotated according to the current
strategy (Cy, S¢) so that the sets of annotated data (7., 75)
contain C classification and .S; segmentation annotations,
respectively. From the available annotated data (7, 7),
we extract new samples for M and fit the GP, which de-
fines the surrogate function 4. The corresponding cur-
rent maximal point m; is set to be the maximum perfor-
mance found so far, (i.e., the performance of the model
trained with all the annotated data available at this itera-
tion), m; = m(7.,Ts). Finally, this surrogate function is
used to estimate the next best strategy (Cyy1,Si4+1). We
find a delta strategy (AC, AS) that increases the expected
improvement by a fixed fraction of its maximum possible

value,
argmin  a.(Cy + AC) + o, (St + AS),
(AC,AS)eN?
. @)
S.t. ’lAl,t(Ct-f—AC,St-’—AS) 2 T—tﬁ:’

where 7' is the desired maximum number of itera-
tions of the algorithm and 4 is the maximum expected
improvement that can be reached using the entire bud-
get B for the current surrogate function @; according to
Eq. (3). The found delta strategy defines the new strat-
egy (Cit1,St41) = (Cy + AC, Sy + AS) for the next iter-
ation. The process is depicted in Fig. 2.

Note that solving Eq. (7) requires finding @y, which in
turn requires solving Eq. (3). While solving two optimiza-
tion problems may seem unnecessary, the solutions of both
problems are in the Pareto front of strategies (i.e., the set of
non-dominated strategies for which no other strategy has si-
multaneously smaller cost and larger or equal expected im-
provement). Given that the space of strategies is discrete,
the elements of the Pareto front can be easily found in linear
time by enumerating all possible strategies, computing their
costs and expected improvements with #;, and discarding
the dominated elements. Given the Pareto front, the strat-
egy with the maximum EI v} and the strategy of minimum
budget with EI larger than ﬁﬂ;‘, which correspond to the
solutions of Eq.(3) and Eq. (7), respectively, can be found
in linear time.
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4. Experimental setup

To validate our approach, we evaluated it on four dif-
ferent datasets, while comparing its performance to a set
of typical fixed budget allocation strategies. In addition,
we explore the impact of different hyper parameters on the
overall performance of the method.

4.1. Datasets

We chose a collection of datasets with different image
modalities, including a medical dataset as they often suffer
from data and annotation scarcity. In this context, they rep-
resent a typical new application domain where our method
could be particularly helpful. In each case, we enumerate
the number of images for which classification or segmenta-
tion images can be sampled by a method:

Augmented PASCAL VOC 2012 [15]: 5’717 classifica-
tion and 10’582 segmentation natural images with
21 classes for training. The validation sets contain
1’449 segmented images.

SUIM [19]: training set consists of 1°525 underwater im-
ages with annotations for 8 classes. For evaluation, we
used a separate split of 110 additional images. The
classification labels were estimated from the segmen-
tation ground-truth as a multi-label problem by setting
the class label to 1 if the segmentation map contained
at least one pixel assigned to that class.

Cityscapes [11]: 2°975 annotated images for both classi-
fication and segmentation are available for training.
We test on the official Cityscapes validation set, which
contains 500 images.

OCT: 22’723 Optical Coherence Tomography (OCT) im-
ages with classification annotations and 1,002 images

Algorithm 2 Proposed approach

Input: Number of iterations 7', initial labelling strat-
egy (Co, So)
Lt 0,AC+ Cy,AS +— S0, To=0,Ts =0, M=10
2: whilet < T do
3 Annotate new data (AT;, AT;) ~ (p3F, pem)
4: Te+— T UAT., Ts+ TsUAT, > Note that
|7—c| = Ct and |7;| = St
: M «— MUBUILDUTILITYSAMPLES(7¢, T5)
Train GP with samples in M
Compute (AC, AS) from Eq. (7)
Ct+1 — Ct + AC, St+1 — St + AS
9: t—t+1
10: end while
Output: (Cr,St)

® W

with pixel-wise annotations corresponding to 4 differ-
ent types of retinal fluid for segmentation. We split the
data into 902 training images and 100 test images.

4.2. Baseline strategies.

We compared our method to ten different fixed budget al-
location strategies. Each of these randomly sample images
for classification and segmentation annotations according to
a specified and fixed proportion. We denote these policies
by the percentage dedicated to segmentation annotations:
By: 50%,55%, ...,95% with increases in 5%. For fair
comparison, the strategies are computed from the budget
By.

In addition, we consider an estimated-best-fixed bud-
get allocation strategy, whereby the method estimates what
fixed budget should be used for a given dataset. This is
done by using the initial budget B, to compute the best per-
forming fixed strategy (mentioned above) and then using
this fixed strategy for the annotation campaign until bud-
get B is reached. This strategy represents an individual that
chooses to explore all fixed strategies for an initial small
budget and then exploit it.

4.3. Implementation details.

Weakly supervised segmentation model: To train a
segmentation model that uses both segmentation and clas-
sifications, we first train the models with the weakly-
annotated data 7. until convergence and then with the
segmentation data 7;,. We use the U-Net segmentation
model [42] for OCT, and the DeepLabv3 model [10]
with a ResNet50 backbone on the SUIM, PASCAL, and
Cityscapes. For the U-Net, a classification head is appended
at the end of the encoding module for the classification task.
For the DeepLab-like models, we train the entire backbone
on the classification task and then add the ASPP head for
segmentation. In all cases, we use the cross-entropy loss for
classification and the average of the Dice loss and the cross-
Entropy loss for segmentation. While we choose this train-
ing strategy for its simplicity, other cross-task or weakly
supervised alternatives could have been used as well [2,40].
Additional details are provided in the supplementary mate-
rials.

Note that all models are randomly initialized to max-
imize the impact of classification labels, as Imagenet-
pretraining shares a high resemblance to images in PAS-
CAL and Cityscapes. Failing to do so would lead to classi-
fication training not adding significant information and may
even hurt performance due to catastrophic forgetting [35].

Hyperparameters: We measured costs in terms of
class-label equivalents setting oo, = 1 and leaving only «
as a hyperparameter of our method. We set oy = 12 for
all datasets following previous studies on crowdsourced an-
notations [4]. We predict the first GP surface with 8% of
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Figure 3. Performance of our method (orange line) on OCT, PASCAL VOC, SUIM and Cityscapes datasets. Shaded region is computed
from three seeds. Fixed strategies are shown in blue. Red points show the estimated-best-fixed strategy with By. Labels expressed as
percentage of the budget allocated to segmentation. Note that the first budget B fulfills B > By in all cases.
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Figure 4. Mean of our method with s = {5, 12, 25,50} on Cityscapes (orange, line). Shaded region is computed from three seeds. Fixed
strategies are shown in blue. Labels expressed as percentage of the budget allocated to segmentation.

the dataset for both classification and segmentation. This
quantity is reduced for OCT classification and VOC seg-
mentation due to the high number of labels available. In all
cases, we fixed the number of iterative steps to 8 and set the
learning rate of the GP to 0.1.

5. Results

Main results: Figure 3 compares the performance
achieved by our method against that of the different fixed
strategies and the estimated best fixed strategy when using
as = 12 across the different datasets. From these results
we can make a number of key observations.

First, we can observe that no single fixed strategy is per-
forming optimally across the different datasets evaluated.
This is coherent with our initial claims and with the litera-
ture. Indeed, for OCT the best strategy appears to be one
that samples 90% of segmentations, while this same pol-
icy performs poorly on the SUIM dataset. This implies that
blindly using a fixed policy would on average not be very
effective.

Second, the estimated best-fixed strategy (in red) appears
to do well initially and progressively loses competitiveness
as the budget increases. This behaviour is expected as the
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Figure 5. Mean of our method when using different numbers of
iteration steps {3, 5, 8,10}. Results shown with three seeds.

estimated fixed strategy is that with By (the lowest budget),
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Figure 6. Cityscapes (top) and SUIM (bottom) ground truth
budget-segmentation surfaces. We note that segmentation perfor-
mance grows logarithmically with training set size on Cityscapes
(as well as OCT and VOC, see the Supplementary materials). This
trend is not observed on the SUIM dataset.

and becomes increasingly irrelevant as B grows. This is
particularly clear on VOC where the best low-budget strat-
egy allocates 95% of the budget to segmentation and still
achieves superior performance up to B = 12'000. How-
ever, that strategy drops below average performance with
budgets greater than B = 25'000. In the case of SUIM,
the best-fixed strategy corresponds to 50% of the budget al-
located to segmentation. Since the dataset contains only
1,525 segmentation samples, this strategy is not attainable
with B > 4000.

Last, we can observe that our method is consistently able
to produce good performances, across both different budget
quantities and datasets. We can also clearly see that our
strategy is not guaranteed to be the top performing strategy,
but that on average it performs well in different cases.

At the same time, we notice that the performance of our
approach on SUIM begins well and then drops after a 3’500
budget. This differs sharply from the other datasets. By ob-
serving the true budget-performance surface of SUIM and

the other datasets (see Fig. 6), we can see that the SUIM
surface does not grow logarithmically with the dataset size,
while it does for Cityscapes (and the other too, see the Sup-
plementary materials). This is relevant as our GP mean
prior (4) assumes this relationship and explains why our
approach fails when the true surface deviates from our GP
mean form. While the use of adaptive, higher-level order
priors would be beneficial to deal with such cases, we leave
this as future work to be researched.

5.1. Sensitivity to o and T

Different types of annotations or domains may have dif-
ferent ratios of cost. While we have fixed a in our exper-
iments across all datasets regardless of their domain, some
datasets such as OCT and VOC require different expertise
and domain knowledge to annotate and thus different a.
In Fig. 4, we three additional values of oy = {5, 12,25,50}
and show the performance implication it has on our methods
and the baselines. For Cityscapes, we see that the method is
robust regardless of the value of ag, showing above average
performance especially for oy = 25 and o = 50. This be-
havior is reproduced in all four datasets (see Supplementary
materials).

Similarly, the number of steps 1" given to reach the final
budget is a hyperparameter of our approach. While low T’
values could lead to poor solutions due to the unreliability
of the GP far from the sampled region, higher 7" values (i.e.,
therefore smaller steps) may exacerbate the intrinsic greedy
nature of our method. We thus seek a trade-off between
reliability and greediness. To study the sensitivity of the al-
gorithm with respect to this variable, we show the behaviour
of our method with different number of steps in Fig. 5. We
see that lower T' values greatly affect the reliability of the
found strategy, especially for OCT and SUIM (blue line).
However, as the number of steps increases, the variance of
the strategy reduces sharply. We can therefore conclude that
the method is robust to this hyperparameter as long as it is
kept within reasonable ranges.

6. Conclusion

In this paper, we propose a novel approach to determine
a dynamic annotation strategy for building segmentation
datasets. We design an iterative process that identifies ef-
ficient dataset-specific combinations of weak annotations
in the form of image-level labels and full segmentations.
We show in our experiments that the best strategies are of-
ten dataset and budget-dependent, and therefore the trivial
approaches do not always produce the best results. Our
method however is capable of adapting to different image
domains and finds combinations of annotations that reach
high-performance levels. We show our method is robust to
a number of hyperparameters and that it offers a good op-
tion for allocating annotation strategies.
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