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Abstract

Many perception systems in mobile computing, au-
tonomous navigation, and AR/VR face strict compute con-
straints that are particularly challenging for high-resolution
input images. Previous works propose nonuniform downsam-
plers that "learn to zoom" on salient image regions, reducing
compute while retaining task-relevant image information.
However, for tasks with spatial labels (such as 2D/3D ob-
Jject detection and semantic segmentation), such distortions
may harm performance. In this work (LZU), we "learn to
zoom" in on the input image, compute spatial features, and
then "unzoom'" to revert any deformations. To enable ef-
ficient and differentiable unzooming, we approximate the
zooming warp with a piecewise bilinear mapping that is
invertible. LZU can be applied to any task with 2D spa-
tial input and any model with 2D spatial features, and we
demonstrate this versatility by evaluating on a variety of
tasks and datasets: object detection on Argoverse-HD, se-
mantic segmentation on Cityscapes, and monocular 3D ob-
ject detection on nuScenes. Interestingly, we observe boosts
in performance even when high-resolution sensor data is
unavailable, implying that LZU can be used to "learn to up-
sample" as well. Code and additional visuals are available
at https://tchittesh.github.io/lzu/.

1. Introduction

In many applications, the performance of perception sys-
tems is bottlenecked by strict inference-time constraints.
This can be due to limited compute (as in mobile computing),
a need for strong real-time performance (as in autonomous
vehicles), or both (as in augmented/virtual reality). These
constraints are particularly crippling for settings with high-
resolution sensor data. Even with optimizations like model
compression [4] and quantization [23], it is common practice
to downsample inputs during inference.

However, running inference at a lower resolution undeni-
ably destroys information. While some information loss is
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Figure 1. LZU is characterized by "zooming" the input image,
computing spatial features, then "unzooming" to revert spatial de-
formations. LZU can be applied to any task and model that makes
use of internal 2D features to process 2D inputs. We show visual
examples of output tasks including 2D detection, semantic segmen-
tation, and 3D detection from RGB images.

unavoidable, the usual solution of uniform downsampling
assumes that each pixel is equally informative towards the
task at hand. To rectify this assumption, Recasens et al. [20]
propose Learning to Zoom (LZ), a nonuniform downsampler
that samples more densely at salient (task-relevant) image
regions. They demonstrate superior performance relative
to uniform downsampling on human gaze estimation and
fine-grained image classification. However, this formulation
warps the input image and thus requires labels to be invariant
to such deformations.

Adapting LZ downsampling to tasks with spatial labels
is trickier, but has been accomplished in followup works
for semantic segmentation (LDS [11]) and 2D object de-
tection (FOVEA [22]). LDS [ 1] does not unzoom during
learning, and so defines losses in the warped space. This
necessitates additional regularization that may not apply to
non-pixel-dense tasks like detection. FOVEA [22] does un-
zoom bounding boxes for 2D detection, but uses a special
purpose solution that avoids computing an inverse, making
it inapplicable to pixel-dense tasks like semantic segmenta-
tion. Despite these otherwise elegant solutions, there doesn’t
seem to be a general task-agnostic solution for intelligent
downsampling.
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Our primary contribution is a general framework in which
we zoom in on an input image, process the zoomed im-
age, and then unzoom the output back with an inverse warp.
Learning to Zoom and Unzoom (LZU) can be applied to
any network that uses 2D spatial features to process 2D spa-
tial inputs (Figure 1) with no adjustments to the network
or loss. To unzoom, we approximate the zooming warp
with a piecewise bilinear mapping. This allows efficient and
differentiable computation of the forward and inverse warps.

To demonstrate the generality of LZU, we demonstrate
performance a variety of tasks: object detection with Reti-
nalNet [17] on Argoverse-HD [14], semantic segmentation
with PSPNet [29] on Cityscapes [7], and monocular 3D
detection with FCOS3D [26] on nuScenes [2]. In our experi-
ments, to maintain favorable accuracy-latency tradeoffs, we
use cheap sources of saliency (as in [22]) when determining
where to zoom. On each task, LZU increases performance
over uniform downsampling and prior works with minimal
additional latency.

Interestingly, for both 2D and 3D object detection, we
also see performance boosts even when processing low reso-
lution input data. While prior works focus on performance
improvements via intelligent downsampling [20, 22], our
results show that LZU can also improve performance by
intelligently upsampling (suggesting that current networks
struggle to remain scale invariant for small objects, a well-
known observation in the detection community [18]).

2. Related Work

We split related work into two sections. The first dis-
cusses the broad class of methods aiming to improve effi-
ciency by paying "attention" to specific image regions. The
second delves into works like LZU that accomplish this by
differentiably resampling the input image.

2.1. Spatial Attentional Processing

By design, convolutional neural networks pay equal "at-
tention" (perform the same computations) to all regions of
the image. In many cases, this is suboptimal, and much work
has gone into developing attentional methods that resolve
this inefficiency.

One such method is Dynamic Convolutions [24], which
uses sparse convolutions to selectively compute outputs at
only the salient regions. Similarly, gated convolutions are
used in [12,28]. Notably, these methods implement "hard" at-
tention in that the saliency is binary, and non-salient regions
are ignored completely.

Deformable Convolutions [8, 30] provides a softer imple-
mentation of spatial attention by learning per pixel offsets
when applying convolutions, allowing each output pixel to at-
tend adaptively to pixels in the input image. SegBlocks [25]
also provides a softer attention mechanism by splitting the
image into blocks and training a lightweight reinforcement

learning policy to determine whether each block should be
processed at a high or low resolution. This is akin to our
method, which also has variable resolution, albeit in a more
continuous manner. Our method is also generalizable to
tasks in which it’s infeasible to "stitch" together outputs
from different blocks of the image (e.g. in detection where
an object can span multiple blocks).

2.2. Spatial Attention via Differentiable Image Re-
sampling

Spatial Transformer Networks [10] introduces a differen-
tiable method to resample an image. They originally propose
this to invert changes in appearance due to viewpoint, thereby
enforcing better pose invariance.

Learning to Zoom (LZ) [20] later adapts this resampling
operation to "zoom" on salient image regions, acting as a spa-
tial attention mechanism. Their key contribution is a trans-
formation parameterized by a saliency map such that regions
with higher saliency are more densely sampled. However,
this deforms the image, requiring the task to have non-spatial
labels.

Followup works [11,19,22] adapt LZ downsampling to
detection and semantic segmentation. For object detection,
FOVEA [22] exploits the fact that image resampling is imple-
mented via an inverse mapping to map predicted bounding
boxes back into the original image space. This allows all
processing to be done in the downsampled space and the
final bounding box regression loss to be computed in the
original space. However, when there are intermediate losses,
as is the case with two-stage detectors containing region
proposal networks (RPNs) [2 1], this requires more complex
modifications to the usual delta loss formulation, due to the
irreversibility of the inverse mapping. For semantic segmen-
tation, Jin et al. [1 1] apply LZ downsampling to both the
input image and the ground truth and computes the loss in
the downsampled space. This is elegant and model-agnostic
but leads to misalignment between the training objective
and the desired evaluation metric. In the extreme case, the
model learns degenerate warps that sample "easy" parts of
the image to reduce the training loss. To address this, they
introduce additional regularization on the downsampler. In-
dependently, [ 1 9] handcraft an energy minimization formu-
lation to sample more densely at semantic boundaries.

In terms of warping and unwarping, the closest approach
to ours is Dense Transformer Networks [13], which also
inverts deformations introduced by nonuniform resampling.
However, their warping formulation is not saliency-based,
which makes it hard to work with spatial or temporal priors
and also makes it time-consuming to produce the warping
parameters. Additionally, they only show results for seman-
tic segmentation, whereas we show that our formulation
generalizes across spatial vision tasks.
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Figure 2. Tllustration of 71,z [20]. Suppose we have a saliency
map S € R"™ (visualized in the background) and want a
warped image of size H' x W'. (1) We start with a uniform
grid of sample locations Grid(h,w). (2) Grid points are "at-
tracted" to nearby areas with high saliency. (3) Applying this
"force" yields Tr.z[Grid(h,w)]. (4) Bilinear upsampling yields
Tz [Crid(H', W")].

2(Grid(h, w)] Tiz,ae|Crid (h, w) Tizs0p[Grid (I, w)] TizsepaclCrid(h, w))

Figure 3. Examples of the anti-cropping (ac) and separable (sep)
variants of 71,z from [22].

3. Background

Since our method is a generalization of previous
works [11,20,22], we include this section as a condensed
explanation of prerequisite formulations critical to under-
standing LZU.

3.1. Image Resampling

Suppose we want to resample an input image I(x) to
produce an output image I'(x), both indexed by spatial co-
ordinates x € [0, 1]2. Resampling is typically implemented
via an inverse map T : [0,1]% — [0, 1] from output to input
coordinates [ |]. For each output coordinate, the inverse map
computes the source location from which to "steal" the pixel
value, i.e. I'(x) = I(7(x)). In practice, we are often given a
discretized input image I € R7*W > and are interested in
computing a discretized output I’ € R¥ *W'*xC To do so,
we compute I'(x) at grid points x € Grid(H', W), where
Grid(H,W) := Grid(H) x Grid(W) and Grid(D) :=

4=1 . d € [D]}. However, T (x) may return non-integer
pixel locations at which the exact value of I is unknown. In
such cases, we use bilinear interpolation to compute I(7 (x)).
As proven in [10], such image resampling is differentiable
with respect to 7 and 1.

3.2. Saliency-Guided Downsampling

When using nonuniform downsampling for information
retention, it is useful to parameterize 7 with a saliency
map S(x) representing the desired sample rate at each spa-
tial location x € [0,1]? [20]. Recasens et al. [20] go on

to approximate this behavior by having each sample co-
ordinate 7 (x) be "attracted" to nearby areas x’ with high
saliency S(x’) downweighted according to a distance kernel
k(x,x'), as illustrated in Figure 2. Concretely, T1z(x) =
(Tinn (), Tiz (x)). where

, S(xk(x,x')x!, dx’
fx T

Tiz,a(x) = fx/ S(x')k(x,x') dx’ ’

6]

Lo S(xX')k(x, x")x), dx’

Tizy(x) = [0 S(x)k(x,x)dx"

2

[22] proposes anti-cropping and separable variants
of this downsampler. The anti-cropping variant 7i,z ac
prevents the resampling operation from cropping the im-
age. The separable variant marginalizes the saliency map
S(x) into two 1D saliency maps S, (z) and S, (y), and re-
places the kernel k(x,x’) with a two 1D kernels k, and
ky (although generally k;, = k). Then, Trzeep(x) =
(Tiz,50p,x(X2)s TLz sep,y (Xy)) Where

Lo Sa(a ke (2, 2" )2 da’

Tizeensl) =708 e woanyde O
Jyr Sl y Yy dy
Tiz.sep.y(y) = j S v o) dy “)
y

This preserves axis-alignment of rectangles, which is crucial
to object detection where bounding boxes are specified via
corners. We refer to the above method and all variants as
LZ downsamplers, after the pioneering work "Learning to
Zoom" [20]. Examples of each variant are shown in Figure 3.

4. Method

We begin by discussing our general technique for warp
inversion. Then, we discuss the LZU framework and how
we apply warp inversion to efficiently "unzoom".

4.1. Efficient, Differentiable Warp Inversion

Suppose we have a continuous map 7 : [0, 1]> — [0, 1]2.
Our primary technical innovation is an efficient and differen-
tiable approximation of 7 ~!, even in cases where 7 has no
closed-form inverse.

Since 7 is potentially difficult to invert, we first approxi-
mate it as 7, a piecewise tiling of simpler invertible trans-
forms (illustrated in Figure 4). Formally,

T= U T )
i€lh—1]
jE€w—1]

where the ij-th tile 7' is any bljeCthe map from the rectan-
gle formed by corners

ZJ_{h 1’ h— 1} {w l’wl
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Figure 4. Given a warp 7, we construct an approximation T
designed for efficient inversion. As illustrated, 7 is a piecewise
tiling of 51mpler invertible maps. This allows us to approximate the
inverse 7!, even when 7" lacks a closed form.

to quadrilateral 7[R;;]. For our purposes, we choose bi-
linear maps as our tile function, although homographies
could work just as well. Then, so long as 7 is injec-
tive (if each of the tiles 7;; is nondegenerate and no two
tiles overlap), we are guaranteed a well-defined left inverse

7-1:]0,1)2 — [0, 1]2 given by
~ . ~
F-1(x) = {7;; (x) ifx € Range(7;;) . ©)
0 else

Equation 6 is efficient to compute, since determining if
x € Range(7;;) simply involves checking if x is in the
quadrilateral 7 [R;;| and computing the inverse ’7:;1 of a
bilinear map amounts to solving a quadratic equation [27].
This efficiency is crucial to maintaining favorable accuracy-
latency tradeoffs. 7! is guaranteed to be differentiable
with respect to 7T, since for each x € T[R(%, j)], the inverse
bilinear map can be written as a quadratic function of the four
corners of tile ¢j (see Appendix A.l for exact expression).
This allows gradients to flow back into 7T, letting us learn
the parameters of the warp.

In the case of LZ warps, T,z has no closed form inverse
to the best of our knowledge. Because Tr,z[Grid(h, w)] has
no foldovers [20], ’712 must be injective, implying its inverse
7};Z1 is well-defined.

When applying an LZ warp, saliency can be learned (with
trainable parameters) or unlearned (with fixed parameters),
and fixed (invariant across frames) or adaptive (changes ev-
ery frame). Adaptive saliency maps require efficient warp
inversion since a different warp must be applied on every
input. Learned saliency maps require differentiability. We
note that fixed unlearned saliency maps do not technically
require efficiency or differentiability, and most of our current
results show that such saliency maps are already quite effec-
tive, outperforming prior work. We posit that LZU would
shine even more in the learned adaptive setting, where it
could make use of temporal priming for top-down saliency.

(@) Grid(h) Tizsepx KEY

example inverse calculation:

@ TizsepxlGrid(h)]  Tizsepx et
i arget image space - Cose
. o = 7\ 1 1 7/11-056
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Figure 5. Inverting each axis of a separable warp. LZU first eval-
uates the forward warp 71z, sep,x (s0lid blue arrows) at a uniform
grid of target locations (blue points). The resulting source loca-
tions are shown as red points. LZU then approximates the warp
in between th~ese samples via a linear transform; this piecewise
liNnear map is 71.z,sep,x (dotted blue arrows). To evaluate the inverse
7L_Z}sep,x (dotted green arrows), we must determine for each green
point which red points it falls between and invert the corresponding
linear transform. An example is shown in the top-right.

4.2. Learning to Zoom and Unzoom

In the Learning to Zoom and Unzoom (LZU) frame-
work, we use existing LZ downsamplers (see Section 3.2)
to "zoom" in on the input image, compute spatial features,
and then use our warp inversion formulation to "unzoom"
and revert any deformations in the feature map, as shown
in Figure 1. This framework is applicable to all tasks with
2D spatial input and all models with some intermediate 2D
spatial representation. _

Notice that a poorly approximated inverse warp 7 !
would lead to misaligned features and a drop in performance.
As a result, we use the approximate forward warp 7 instead
of the true forward warp 7, so that the composition of for-
ward and inverse warps is actually the identity function. See
Appendix A.3 for a discussion of the associated tradeoff.

To maintain favorable accuracy-latency tradeoffs, we
make several optimizations to our forward and inverse warps.
As done in previous works [11,20,22], for the forward warp
or "zoom," instead of computing 71z [Grid(H', W')], we
compute 71z [Grid(h, w)] for smaller h < H' and w < W’
and bilinearly upsample this to get 71, [Grid(H', W')]. This
also reduces the complexity of computing the inverse, by
reducing the number of cases in our piecewise bilinear map
from H - W'to h - w.

We explore efficient implementations of both separable
and nonseparable warp inversion, but we find experimentally
that nonseparable warps perform no better than separable
warps for a strictly higher latency cost, so we use separable
warps for our experiments. Details for efficiently inverting
nonseparable warps are given in Appendix A.2. For separa-
ble warps Tr,z sep, We invert each axis separately and take
the Cartesian Product:

717Z%sep

(Grid(H', W")] = )

ﬁiz%sepvx [Grld(H/)] X LZ ,sep, y[Grld( )]
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This further reduces our problem from inverting a piecewise
bilinear map with h - w pieces to inverting two piecewise
linear maps with h and w pieces each. Figure 5 visualizes
how to invert each axis.

When unwarping after feature pyramid networks
(FPNs) [16], we may have to evaluate the inverse 7;,' at
multiple resolutions Grid(H’, W), Grid(H' /2, W'/2), etc.
In practice, we evaluate 7~1le [Grid(H’, W')] and then ap-
proximate the inverse at lower resolutions via bilinear down-
sampling. This is surprisingly effective (see Appendix A.3)
and leads to no observable loss in performance.

Finally, as introduced in [22], we can also use a fixed warp
to exploit dataset-wide spatial priors, such as how objects
are concentrated around the horizon in many autonomous
driving datasets. This allows us to cache forward and inverse
warps, greatly reducing additional latency.

5. Experiments

First, we compare LZU to naive uniform downsampling
and previous works on the tasks of 2D object detection and
semantic segmentation. We include ablations to evaluate
the effectiveness of training techniques and explore the up-
sampling regime. Then, we evaluate LZU on monocular
3D object detection, a task which no previous works have
applied "zooming" to. We perform all timing experiments
with a batch size of 1 on a single RTX 2080 Ti GPU. Fig-
ure 6 contains qualitative results and analysis across all tasks.
Full implementation details and hyperparameters are given
in Appendix A.6.

5.1. 2D Object Detection

For 2D object detection, we evaluate LZU using Reti-
naNet [ 1 7] (with a ResNet-50 backbone [9] and FPN [16])
on Argoverse-HD [14], an object detection dataset for au-
tonomous driving with high resolution 1920 x 1200 videos.
For our baselines, we compare to uniform downsampling
and FOVEA [22], a previous work that applies LZ down-
sampling to detection by unwarping bounding boxes. We
keep the same hyperparameters and setup as in FOVEA [22].
Experiments are run at 0.25x, 0.5x, 0.75x, and 1x scales, to
measure the accuracy-latency tradeoff.

Our LZU models "unzoom" the feature map at each level
after the FPN [16]. We adopt the low-cost saliency genera-
tors introduced in [22] — a "fixed" saliency map exploiting
dataset-wide spatial priors, and an "adaptive" saliency map
exploiting temporal priors by zooming in on detections from
the previous frame. When training the adaptive version, we
simulate previous detections by jittering the ground truth for
the first two epochs. For the last epoch, we jitter detections
on the current frame to better simulate previous detections;
we call this "cascaded" saliency. To determine saliency hy-
perparameters, we run grid search at 0.5x scale on splits
of the training set (details in Appendix A.4, A.6). We use

Scale Method AP APso AP7s APg APjp; APy Lat (ms)

0.25x Uniform 105 180 99 03 52 386 233
0.25x LZU, fixed 124 226 112 10 71 392 236
0.25x LZU, adaptive 12.3 22.8 113 14 6.6 380 264

0.5x Uniform 22,6 38.7 21.7 37 22.1 531 36.0

0.5x FOVEA [22] 249 403 253 7.1 277 506 379

0.5x LZU, fixed 252 42.1 248 55 267 51.8 364

0.5x LZU, adaptive 25.3 43.0 246 6.1 259 526 393

0.5x LZU, adaptive 22.8 39.3 223 5.1 227 489 393
w/o cascade sal.

0.75x Uniform 295 484 296 9.1 324 551 629
0.75x LZU, fixed 30.8 504 31.8 109 33,5 54.1 635
0.75x LZU, adaptive 26.5 44.6 26.7 83 287 487 66.3

1x Uniform 319 515 33.1 11.4 359 545 983
1x LZU, fixed 32.6 52.8 34.0 132 36.0 547 993
1x LZU, adaptive 32.0 52.4 33.1 125 363 529 102.0

Table 1. 2D object detection results of RetinaNet [17] on Argoverse-
HD [14]. Fixed LZU uses a dataset-wide spatial prior, and adaptive
LZU uses a temporal prior based on previous frame detections.
LZU consistently outperforms the uniform downsampling baseline
and prior work across all scales, with additional latency less than
4ms. We hypothesize that the drop in APy, is because objects that
are already large benefit less from zooming. Still, this drawback is
offset by larger improvements on small and medium objects.

2D Object Detection

Uniform Resampling LZU Resampling
From From
To 0.25x 0.5x 0.75x 1x To 0.25x 0.5x 0.75x Ix

0.25x 10.5 105 105 10.5 025x 11.7 124 124 124
0.5x 17.0 22.6 22.6 22.6 0.5x 209 248 24.8 25.2
0.75x 23,5 285 295 295 0.75x 225 294 30.0 30.8
Ix 135 284 309 319 Ix 221 307 31.2 32.6

Monocular 3D Object Detection

Uniform Resampling LZU Resampling
From From
To 0.25x 0.5x 0.75x 1x To 0.25x 0.5x 0.75x Ix

0.25x 21.8 21.8 21.8 21.8 0.25x 225 235 234 234
0.5x 254 275 275 275 0.5x 27.0 29.2 291 293
0.75x 27.6 30.3 30.5 30.5 0.75x  29.0 31.6 31.6 31.8
Ix 284 30.7 31.1 312 Ix 30.1 325 327 32.6

Table 2. 2D and 3D object detection results in the upsampling
and downsampling regimes, using the "Uniform" and "LZU, fixed"
models from Tables 1 and 5. LZU is surprisingly effective even in
the upsampling regime! This demonstrates that simply allocating
more pixels to small objects (without retaining extra information)
can help performance, suggesting that detectors still struggle with
scale invariance for small objects.

a learning rate of 0.01 and keep all other training settings
identical to the baseline. Latency is measured by timing only
the additional operations (the "zoom" and "unzoom") and
adding it to the baseline. This is done to mitigate the impact
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Figure 6. Examples of the success and failure cases of LZU. Rows A and E show examples where zooming in on the horizon helps the
detector pick up smaller objects. On the other hand, sometimes zooming leads to false negatives, such as the black car in Row B and objects
near the edge in Row F. For segmentation, LZU consistently improves quality near the center of the image. The last column shows the
saliency map used in each case and the resulting spatial magnification ratios. For the Argoverse-HD [14] dataset, the magnification ratio at
the center is nearly 2x, meaning the "zoom" is preserving nearly all information in that region, at the cost of information at the corners.

of variance in the latency of the backbone and detector head.

Results are given in Table 1. We outperform both uni-
form downsampling and FOVEA in all but one case, while
incurring an additional latency of less than 4ms. The one
exception is adaptive LZU at 0.75x, which is evidence that
our adaptive saliency hyperparameters, chosen at 0.5x scale,

struggle to generalize to other resolutions. We also confirm
that using cascaded saliency to train adaptive LZU is crucial.
Although adaptive LZU outperforms fixed LZU at 0.5x scale,
plotting the accuracy-latency curves (Figure 7) reveals that
fixed LZU is Pareto optimal at all points.

Finally, we explore how LZU performs in the upsampling
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Figure 7. Plotting the accuracy-latency/FLOPs tradeoffs reveals the Pareto optimal methods for each task. Fixed LZU is Pareto optimal for

both 2D and 3D object detection, outperforming uniform downsampling and FOVEA [
] only reports FLOPS and LDS [

lieu of latency to enable fair comparisons (ES [

]. For semantic segmentation, we use FLOPs in
] has an unoptimized implementation). Although LDS

boasts large improvements in raw accuracy at each scale, it also incurs a greater cost due to its expensive saliency generator. Overall, the
Pareto frontier for segmentation is very competitive, with ES dominating at 64 x 64, LDS at 128 x 128, and LZU at 256 x 256.

Crop

Iou Latency

Size Method

mIOU road swalk build. wall fence pole tlight sign veg. terr. sky person rider car truck bus train mbike bike (ms)

64 Uniform 264 939 356 686 35 29 05
64 LZU, fixed 26.7 934 361 689 58 23 04

0.0 0.1 725 21.1 76.0 26.8
0.0 00 72.6 234 759 294 1.2 56.7 15.0 102 4.1

09 571 89 169 80 0.0 82 155

0.0 11.7 169

128 Uniform 393 963 540 784 150 79 81 85

16.6 81.2 344 86.7 429 13.8 74.4 229 41.6 244 102 29.6 16.1

128 LZU, fixed 41.7 96.4 552 787 12.7 134 8.1 114 19.0 81.7 39.0 86.5 45.7 17.9 76.8 219 48.2 31.7 11.6 363 18.0

256 Uniform 536 97.5 64.0 847 20.0 19.0 22.1 34.8 41.6 87.0 41.9 91.2 59.3 33.7 84.1 39.2 629 579 27.7 49.1 19.1
256 LZU, fixed 55.1 97.7 67.0 849 24.4 244 213 352 42.9 87.0 445 90.7 61.5 35.7 85.7 40.8 67.9 52.8 29.3 534 212

512 Uniform 63.8 98.3 733 88.8 292 343 40.6 544 61.6 90.7 47.7 94.0 72.7 50.6 89.1 45.6 72.1 59.1 445 649 323
512 LZU, fixed 64.2 98.3 734 88.6 30.0 35.7 38.8 56.0 63.8 90.4 47.0 93.4 724 439 90.1 50.5 76.4 59.6 454 653 344

Table 3. Full semantic segmentation results of PSPNet [

regime. We reuse the same models trained in our previ-
ous experiments, testing them with different pre-resampling
resolutions. Results are shown in Table 2. In this regime,
LZU consistently outperforms uniform downsampling, even
though information retention is no longer a factor.

5.2. Semantic Segmentation

For our semantic segmentation experiments, we compare
to previous works ES [19] and LDS [1 1], so we adopt their
setup. We test the PSPNet [29] model (with a ResNet-50
backbone [9] and FPN [16]) on Cityscapes [7]. Cityscapes is
an urban scene dataset with high resolution 1024 x 2048 im-
ages and 19 classes. We perform our experiments at several
image scales (64 x 64, 128 x 128, 256 x 256, and 512 x 512),
taken by resizing a centered square crop of the input image.
Our simple baseline trains and tests PSPNet with uniform
downsampling. To reduce overfitting, we allot 500 images
from the official training set into a mini-validation split. We
train our model on the remaining training images and eval-
uate at 10 equally spaced intervals on the mini-validation

] on Cityscapes [7]. At each resolution, LZU outperforms uniform downsampling.

split. We choose the best performing model and evaluate it
on the official validation set.

For our LZU model, we unzoom spatial features after the
FPN and use a fixed saliency map. Inspired by the idea of
zooming on semantic boundaries [19], we generate our fixed
saliency by averaging the ground truth semantic boundaries
over the train set. Notably, our saliency hyperparameters
are chosen qualitatively (for producing a reasonably strong
warp) and tested one-shot.

We report our full results in Table 3 and compare to
previous works in Table 4. Since our baseline results are
slightly different than reported in previous works [11, 19],
we compare results using a percent change relative to the
corresponding baseline. We find increased performance
over the baseline at all scales, and at 256 x 256, we beat
both previous works with only 2.3ms of additional latency.
Plotting the accuracy-FLOPs tradeoff (Figure 7) reveals that
the large improvements of LDS [11] at 64 x 64 and 128 x 128
input scales come at significant cost in FLOPs. In actuality,
ES [19] is Pareto optimal at 64 x 64 and 128 x 128, LDS [1 1]
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Downsampled Resolution

Method 64 x 64 128 x 128 256 x 256
Uniform (theirs) 29 40 54
Uniform (ours) 26.4 39.3 53.6
ES[19] 32 (+10.3%) 43 (+7.5%) 54 (+0.0%)
LDS[11] 36 (+24.1%) 47 (+17.5%) 55 (+1.9%)
LZU, fixed 26.7 (+1.1%) 41.7 (+6.1%) 55.1 (+2.9%)
Table 4. Semantic segmentation results of PSPNet [29] on

Cityscapes [7], in mIOU. Due to differing implementation, the
performance of our baseline varies from reported values, so we
report relative improvements. At 256 x 256, we outperform prior
works. At 64 x 64 and 128 x 128, LZU performs worse than prior
work, perhaps because "unzooming" features at such small scales
is more destructive. We posit the performance losses from such
aggressive downsampling factors (across all methods) may be too
impractical for deployment, and so focus on the 256 x 256 regime.

Scale Method NDS mAP mATE mASE mAOE mAVE mAAE Lat (ms)

0.25x Uniform  21.8 11.4 96.7 32,6 90.1 125.0 19.8 54.7
0.25x LZU, fixed 23.4 13.1 96.8 319 827 1294 20.0 55.1

0.5x Uniform 275 17.5 90.1 288 755 131.6 178 58.1
0.5x LZU, fixed 29.3 20.1 889 283 739 130.6 16.7 58.5

0.75x Uniform  30.5 21.0 873 279 67.0 1328 175 59.2
0.75x LZU, fixed 31.8 22.4 838 275 672 1346 159 59.7

Ix Uniform 312 224 842 274 709 129.6 174 88.7
Ix LZU, fixed 32.6 248 84.6 275 682 131.6 183 89.4

Table 5. 3D object detection results of FCOS3D [26] on
nuScenes [2]. Higher NDS and mAP is better, and lower is better on
all other metrics. Intuitively, size is an important cue for depth, and
image deformations would stifle this signal. Suprisingly, this is not
the case. LZU improves upon the uniform downsampling baseline
at all scales with less than 1ms of additional latency. Notably, LZU
at 0.75x scale even outperforms uniform downsampling at 1x.

at 128 x 128, and LZU at 256 x 256. We hypothesize that
further improvements might be possible using an adaptive,
learned formulation for saliency.

5.3. Monocular 3D Object Detection

Finally, we evaluate LZU on monocular 3D object detec-
tion. To the best of our knowledge, no previous work has
applied LZ downsampling to this task. The closest existing
solution, FOVEA [22], cannot be extended to 3D object de-
tection, because 3D bounding boxes are amodal and cannot
be unwarped in the same manner as 2D bounding boxes.
For our base model, we use FCOS3D [26], a fully convolu-
tional model, with a ResNet-50 backbone [9] and FPN [16].
For our dataset, we use nuScenes [2], an autonomous driv-
ing dataset with multi-view 1600 x 900 RGB images for
1000 scenes and 3D bounding box annotations for 10 ob-
ject classes. As is standard practice, we use the nuScenes
Detection Score (NDS) metric, which is a combination of

the usual mAP and measures of translation error (mATE),
scale error (mASE), orientation error (mAOE), velocity error
(mAVE), and attribute error (mAAE). We run experiments at
0.25x, 0.5x, 0.75x, and 1x scales and test against a uniform
downsampling baseline. We train for 12 epochs with a batch
size of 16 with default parameters as in MMDetection3D [5].

For our LZU model, again we unzoom post-FPN features
and use a fixed saliency map. Inspired by FOVEA [22], our
fixed saliency is generated by using kernel density estima-
tion on the set of projected bounding boxes in the image
space. We reuse the same saliency hyperparameters from
2D detection. All other training settings are identical to the
baseline.

Results are given in Table 5. LZU performs consistently
better than uniform downsampling, with less than 1ms of
additional latency. Specifically, LZU improves mAP and the
aggregate metric NDS, with mixed results on mATE, mASE,
mAOE, mAVE, and mAAE. Since the latter five metrics
are computed on only true positives, this demonstrates that
LZU increases overall recall, while maintaining about equal
performance on true positives. Plotting the accuracy-latency
curves (Figure 7) shows that LZU is Pareto optimal. We also
repeat the same upsampling experiments as performed in
2D object detection. Results, shown in Table 2, reaffirm the
viability of LZU in the upsampling regime.

6. Conclusion

We propose LZU, a simple attentional framework consist-
ing of "zooming" in on the input image, computing spatial
features, and "unzooming" to invert any deformations. To
unzoom, we approximate the forward warp as a piecewise
bilinear mapping and invert each piece. LZU is highly gen-
eral and can be applied to any task with 2D spatial input
and any model with 2D spatial features. We demonstrate
the versatility of LZU empirically on a variety of tasks and
datasets, including monocular 3D detection which has never
been done before. We also show that LZU may even be used
when high-resolution sensor data is unavailable. For future
work, we can consider alternatives to the "unzoom" formula-
tion that are perhaps less destructive than simple resampling
of features.

Broader impact. Our work focuses on increasing the
efficiency and accuracy of flagship vision tasks (detection,
segmentation, 3D understanding) with high-resolution im-
agery. We share the same potential harms of the underlying
tasks, but our approach may increase privacy concerns as
identifiable information may be easier to decode at higher
resolutions (e.g., facial identities or license plates). Because
our approach is agnostic to the underlying model, it is repro-
ducible with minimal changes to existing codebases.
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