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Abstract

In this paper, we present an integral pre-training frame-
work based on masked image modeling (MIM). We advo-
cate for pre-training the backbone and neck jointly so that
the transfer gap between MIM and downstream recogni-
tion tasks is minimal. We make two technical contributions.
First, we unify the reconstruction and recognition necks
by inserting a feature pyramid into the pre-training stage.
Second, we complement mask image modeling (MIM) with
masked feature modeling (MFM) that offers multi-stage su-
pervision to the feature pyramid. The pre-trained mod-
els, termed integrally pre-trained transformer pyramid net-
works (iTPNs), serve as powerful foundation models for vi-
sual recognition. In particular, the base/large-level iTPN
achieves an 86.2%/87.8% top-1 accuracy on ImageNet-1K,
a 53.2%/55.6% box AP on COCO object detection with 1×
training schedule using Mask-RCNN, and a 54.7%/57.7%
mIoU on ADE20K semantic segmentation using UPerHead
– all these results set new records. Our work inspires
the community to work on unifying upstream pre-training
and downstream fine-tuning tasks. Code is available at
github.com/sunsmarterjie/iTPN.

1. Introduction
Recent years have witnessed two major progresses in vi-

sual recognition, namely, the vision transformer architec-
ture [22] as network backbone and masked image mod-
eling (MIM) [3, 28, 68] for visual pre-training. Combin-
ing these two techniques yields a generalized pipeline that
achieves state-of-the-arts in a wide range of visual recogni-
tion tasks, including image classification, object detection,
and instance/semantic segmentation.

One of the key issues of the above pipeline is the transfer
gap between upstream pre-training and downstream fine-
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prev. best 85.5 [50] 50.0 [13] 44.0 [13] 53.0 [50]
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models cls. acc. det. AP seg. AP seg. mIoU

iTPN-L 87.8 55.6 48.6 57.7
prev. best 87.3 [50] 54.5 [13] 47.6 [13] 56.7 [50]

Figure 1. Top: on ImageNet-1K classification, iTPN shows sig-
nificant advantages over prior methods, either only using pixel su-
pervision (top) or leveraging knowledge from a pre-trained teacher
(bottom, in the parentheses lies the name of teacher model). Bot-
tom: iTPN surpasses previous best results in terms of recognition
accuracy (%) on several important benchmarks. Legends – IN-1K:
ImageNet-1K, MR: Mask R-CNN [30], UP: UPerHead [66].

tuning. From this point of view, we argue that downstream
visual recognition, especially fine-scaled recognition (e.g.,
detection and segmentation), requires hierarchical visual
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features. However, most existing pre-training tasks (e.g.,
BEiT [3] and MAE [28]) were built upon plain vision trans-
formers. Even if hierarchical vision transformers have been
used (e.g., in SimMIM [68], ConvMAE [25], and Green-
MIM [33]), the pre-training task only affects the backbone
but leaves the neck (e.g., a feature pyramid) un-trained. This
brings extra risks to downstream fine-tuning as the opti-
mization starts with a randomly initialized neck which is
not guaranteed to cooperate with the pre-trained backbone.

In this paper, we present an integral pre-training frame-
work to alleviate the risk. We establish the baseline with
HiViT [74], an MIM-friendly hierarchical vision trans-
former, and equip it with a feature pyramid. To jointly op-
timize the backbone (HiViT) and neck (feature pyramid),
we make two-fold technical contributions. First, we unify
the upstream and downstream necks by inserting a feature
pyramid into the pre-training stage (for reconstruction) and
reusing the weights in the fine-tuning stage (for recogni-
tion). Second, to better pre-train the feature pyramid, we
propose a new masked feature modeling (MFM) task that
(i) computes intermediate targets by feeding the original
image into a moving-averaged backbone, and (ii) uses the
output of each pyramid stage to reconstruct the intermedi-
ate targets. MFM is complementary to MIM and improves
the accuracy of both reconstruction and recognition. MFM
can also be adapted to absorb knowledge from a pre-trained
teacher (e.g., CLIP [52]) towards better performance.

The obtained models are named integrally pre-trained
pyramid transformer networks (iTPNs). We evaluate them
on standard visual recognition benchmarks. As highlighted
in Figure 1, the iTPN series report the best known down-
stream recognition accuracy. On COCO and ADE20K,
iTPN largely benefits from the pre-trained feature pyra-
mid. For example, the base/large-level iTPN reports a
53.2%/55.6% box AP on COCO (1× schedule, Mask
R-CNN) and a 54.7%/57.7% mIoU on ADE20K (UPer-
Net), surpassing all existing methods by large margins. On
ImageNet-1K, iTPN also shows significant advantages, im-
plying that the backbone itself becomes stronger during the
joint optimization with neck. For example, the base/large-
level iTPN reports an 86.2%/87.8% top-1 classification
accuracy, beating the previous best record by 0.7%/0.5%,
which is not small as it seems in such a fierce competition.
In diagnostic experiments, we show that iTPN enjoys both
(i) a lower reconstruction error in MIM pre-training and (ii)
a faster convergence speed in downstream fine-tuning – this
validates that shrinking the transfer gap benefits both up-
stream and downstream parts.

Overall, the key contribution of this paper lies in the inte-
gral pre-training framework that, beyond setting new state-
of-the-arts, enlightens an important future research direc-
tion – unifying upstream pre-training and downstream fine-
tuning to shrink the transfer gap between them.

2. Related Work
In the deep learning era [36], visual recognition algo-

rithms are mostly built upon deep neural networks. There
are two important network backbones in the past decade,
namely, the convolutional neural networks [31,35,53] and
the vision transformers [23,45,59,74]. This paper focuses
on the vision transformers which were transplanted from
the natural language processing field [58]. The core idea is
to extract visual features by treating each image patch as a
token and computing self-attentions among them.

The vanilla vision transformers appeared in a plain
form [11,23,41,70,75] where, throughout the backbone, the
number of tokens keeps a constant and the attention among
these tokens are totally symmetric. To compensate the in-
ductive priors in computer vision, the community designed
hierarchical vision transformers [16,45,59,65,74] that al-
low the number of tokens to gradually decrease throughout
the backbone, i.e., similar as in convolutional neural net-
works. Other design principles were also inherited, such as
introducing convolution into the transformer architecture so
that the relationship between neighborhood tokens is better
formulated [16,24,40,47,59,60], interacting between hybrid
information [51], using window [20, 45, 74] or local [71]
self-attentions to replace global self-attentions, adjusting
the geometry for local-global interaction [69], decomposing
self-attentions [57], and so on. It was shown that hierarchi-
cal vision transformers can offer high-quality, multi-level
visual features that easily cooperate with a neck module (for
feature aggregation, e.g., a feature pyramid [42]) and benefit
downstream visual recognition tasks.

The continuous growth of vision data calls for visual pre-
training, in particular, self-supervised learning that learns
generic visual representations from unlabeled vision data.
At the core of self-supervised learning lies a pretext task,
i.e., an unsupervised learning objective that the model pur-
sues. The community started with preliminary pretext tasks
such as geometry-based tasks (e.g., determining the rel-
ative position between image patches [19, 48, 62] or the
transformation applied to an image [26]), and generation-
based tasks (e.g., recovering the removed contents [49] or
attributes [55, 56, 72] of an image), but these methods suf-
fer unsatisfying accuracy (i.e., trailed by fully-supervised
pre-training significantly) when transferred to downstream
recognition tasks. The situation was changed when new
pretext tasks were introduced, in particular, contrastive
learning [7, 8, 12, 27, 27, 29, 67] and masked image mod-
eling (MIM) [1, 3, 15, 28, 37, 38, 68], where the latter is yet
another type of generation-based learning objective.

This paper focuses on MIM, which takes the advantage
of vision transformers that formulate each image patch into
a token. Hence, the tokens can be arbitrarily masked (dis-
carded from the input data) and the learning objective is to
recover the masked contents at the pixel level [28, 55, 68],
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Figure 2. The comparison between a conventional pre-training (left) and the proposed integral pre-training framework (right). We use a
feature pyramid as the unified neck module, and apply masked feature modeling for pre-training the feature pyramid. The green and red
blocks indicate that the network weights are pre-trained and un-trained (i.e., randomly initialized for fine-tuning), respectively.

the feature level [3, 61], or in the frequency space [44].
MIM has shown an important property named scalabil-
ity, i.e., augmenting the amount of pre-training data (e.g.,
from ImageNet-1K to ImageNet-22K) and/or increasing
the model size (e.g., from the base level to the large or
huge level) can boost the downstream performance [13,28],
which aligns with the observations in language model-
ing [5, 18].

Most existing MIM methods worked on the plain vision
transformers, yet the hierarchical vision transformers have
higher potentials in visual recognition. The first work which
tried to bridge the gap was SimMIM [68], but the overall
pre-training overhead was largely increased because the en-
tire image (with dummy masked patches) were fed to the
encoder. This issue was later alleviated by reforming the
hierarchical vision transformers [33, 74] to fit MIM better.
This paper inherits the design and goes one step further by
integrating the neck (e.g., a feature pyramid) into the pre-
training phase, constructing the integrally pre-trained trans-
former pyramid network.

3. The Proposed Approach

3.1. Motivation: Integral Pre-Training

We first establish a notation system. The pre-training
stage is built upon a dataset Dpt = {xpt

n }Nn=1, where N
is the number of samples. Note that these samples are not
equipped with labels. The fine-tuning phase involves an-
other dataset Dft = {xft

m,yft
m}Mm=1, where M is the num-

ber of samples and yft
m is the semantic label of xft

m. Let the
target deep neural network be composed of backbone, neck,

and head1, denoted as f(·;θ), g(·;ϕ), h(·;ψ), respectively,
where θ, ϕ, ψ are learnable parameters and can be omitted
for simplicity. f(·) directly takes x as input, while g(·) and
h(·) works on the outputs of f(·) and g(·), i.e., the entire
function is h(g(f(x;θ);ϕ);ψ).

Throughout this paper, the pre-training task is masked
image modeling (MIM) and the fine-tuning tasks can be im-
age classification, object detection, and instance/semantic
segmentation. Existing approaches assumed that they share
the same backbone, but need different necks and heads.
Mathematically, the pre-training and fine-tuning objectives
are written as:

minEDpt∥xpt
n − hpt(gpt(f(xpt

n ;θ),ϕpt),ψpt)∥,
minEDft∥yft

m − hft(gft(f(xft
m;θ),ϕft),ψft)∥,

(1)

where parameters are not shared between ϕpt, ϕft and ψpt,
ψft. We argue that such a pipeline leads to a significant
transfer gap between pre-training and fine-tuning, and thus
brings two-fold drawbacks. First, the backbone parameters,
θ, are not optimized towards being used for multi-level fea-
ture extraction. Second, the fine-tuning phase starts with
optimizing a randomly initialized ϕft and ψft, which may
slow down the training procedure and lead to unsatisfying
recognition results. To alleviate the gap, we advocate for
an integral framework that unifies gpt(·) and gft(·), so that
the pre-trained ϕpt is easily reused to be an initialization of
ϕft, and thus only ψft is randomly initialized.

The overall framework is illustrated in Figure 2.

1We follow the conventional definition that the neck is used for multi-
stage feature aggregation (e.g., a feature pyramid [42]) while the head is
used for final prediction (e.g., a linear classifier).
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3.2. Unifying Reconstruction and Recognition

Let a hierarchical vision transformer contain S stages
and each stage has several transformer blocks. Most often,
the backbone (a.k.a encoder) gradually down-samples the
input signal and produces S + 1 feature maps:

f(x;θ) = U0,U1, . . . ,US , (2)

where U0 denotes the direct embedding of input, and a
smaller superscript index indicates a stage closer to the in-
put layer. Each feature map is composed of a set of tokens
(feature vectors), i.e., Us = {us

1,u
s
2, . . . ,u

s
Ks}, where Ks

is the number of tokens in the s-th feature map.
We show that gpt(·) and gft(·) can share the same archi-

tecture and parameters because both of them start with US

and gradually aggregate it with lower-level features. Thus,
we write the neck part as follows:

VS = US ,

Vs = Us + gs(Vs+1;ϕs), 1 ⩽ s < S,
(3)

where gs(·) up-samples Vs+1 to fit the resolution of Vs.
Note that the learnable parameters, ϕ, are composed of
a layer-wise parameter set, {ϕs}. With these parameters
being reused in fine-tuning, we largely shrink the transfer
gap: the only modules that remain individual between pre-
training and fine-tuning are the heads (e.g., the decoder for
MIM vs. the Mask R-CNN head for detection).

Before entering the next part that discusses the loss
terms, we remind the readers that other differences exist be-
tween pre-training and fine-tuning, while they do not impact
the overall design of network architectures.

• MIM samples a random mask M and applies it to x,
i.e., x is replaced by x ⊙ M. Consequently, all the
backbone outputs, U0, . . . ,US , do not contain the to-
kens with indices in M, and so are V1, . . . ,VS . At
the start of decoder, V =

∑S
s=1 V

s is complemented
by adding dummy tokens to the masked indices, and
then fed into a decoder for image reconstruction.

• The downstream fine-tuning procedure makes use of
specific outputs of decoder for different tasks. For im-
age classification, VS is used. For detection and seg-
mentation, all of V1, . . . ,VS are used.

3.3. Masked Feature Modeling

We first inherit the reconstruction loss from MIM that
minimizes ∥x − hpt,0(V;ψpt,0)∥, where hpt,0(·) involves
a few transformer blocks that reconstruct the original im-
age from V =

∑S
s=1 V

s. To acquire the ability of cap-
turing multi-stage features, we add a reconstruction head to

each stage, termed hpt,s(·;ψpt,s), and optimize the follow-
ing multi-stage loss:

L = ∥x− hpt,0(V)∥︸ ︷︷ ︸
image reconstruction

+λ ·
S∑

s=1

∥xs − hpt,s(Vs)∥︸ ︷︷ ︸
feature reconstruction

, (4)

where xs is the expected output at the s-th decoder stage,
and λ = 0.3 is determined in a held-out validation set.
Since the goal is to recover the masked features, we name
the second term as the masked feature modeling (MFM)
loss that complements the first term, the masked image
modeling (MIM) loss. We illustrate MFM in Figure 2.

The remaining issue is to determine the intermediate re-
construction target, i.e., x1, . . . ,xS . We borrow the idea
from knowledge distillation [32] that makes use of a teacher
backbone f̂back(·) to generate the intermediate targets, i.e.,
f̂(x; θ̂) = x1, . . . ,xS . The teacher model is chosen to be
the moving-averaged [54] encoder (in this case, no exter-
nal knowledge is introduced) or another pre-trained model
(e.g., CLIP [52], as used by [63,64], that was pre-trained on
a large dataset of image-text pairs). In the former case, we
only feed the masked patches (x⊙M, not the entire image)
to the teacher model for acceleration. In the latter case, we
follow BEiT [3] to feed the entire image to the pre-trained
CLIP model.

3.4. Technical Details

We build the system beyond HiViT [74], a recently pro-
posed, hierarchical vision transformer. HiViT simplified the
Swin transformers [45] by (i) replacing early-stage shifted-
window attentions with channel-wise multi-layer percep-
trons (C-MLPs) and (ii) removing the 7 × 7 stage so that
global attentions are computed on the 14 × 14 stage. With
these improvements, when applied to MIM, HiViT allows
the masked tokens to be directly discarded from input (by
contrast, with Swin as the backbone, SimMIM [68] required
the entire image to be used as input), saving 30%–50% com-
putational costs and leading to better performance.

Table 1 summarizes the configuration of iTPN. We fol-
low the convention to use 224× 224 images during the pre-
training. HiViT produces three stages (S = 3) with spatial
resolutions of 56×56, 28×28, and 14×14, respectively. An
S-stage feature pyramid is built upon the backbone. We re-
place all convolutions in the feature pyramid with C-MLPs
to avoid leaking information from visible patches to invisi-
ble patches. As we shall see in ablation (Section 4.4), using
C-MLP in the feature pyramid leads to consistent accuracy
gain in various visual recognition tasks, and the improve-
ment is complementary to that brought by MFM.

Regarding MFM, we investigate two choices of the
teacher model. (i) The first option involves computing the
exponential moving average (EMA) of the online target
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Table 1. A comparison between ViT, Swin, HiViT, and the pro-
posed iTPN in terms of network configuration. We use 224× 224
input size to calculate the FLOPs. †: We add 4 Stage-3 blocks to
HiViT-B to keep the FLOPs of iTPN-B comparable to ViT.

Model ViT Swin [45] HiViT [74] iTPN

base-level models
# stages 1 4 3 3
# blocks 12 2+2+18+2 3+3+20 3+3+24†

Params (M) 86 88 66 79
FLOPs (G) 17.5 15.4 15.9 17.8

large-level models
# stages 1 4 3 3
# blocks 24 2+2+18+2 2+2+40 2+2+40
Params (M) 307 197 288 288
FLOPs (G) 61.3 34.5 61.2 61.2

model with a coefficient of 0.996. We extract the super-
vision from the last layer of each stage, so that for any s, xs

has the same spatial resolution as Vs, and thus hs(·) is a lin-
ear projection working on each token individually. (ii) The
second option directly inherits a CLIP pre-trained model.
Note that CLIP offers standard ViTs that do not produce
multi-resolution feature maps. In this scenario, we unify
the S MFM terms into one by down-sampling all the fea-
ture maps to the lowest spatial resolution (14× 14), adding
them together, and comparing the sum to the last-layer out-
put of the CLIP model.

4. Experiments
4.1. Settings and Implementation Details

We pre-train iTPN on the ImageNet-1K dataset [17], a
subset of ImageNet that contains 1.28M training images of
1,000 classes. The class labels are not used during the pre-
training stage. Each training image is pre-processed into
224× 224 and partitioned into 14× 14 patches sized 16×
16 pixels. Following MAE [28], a random subset of 75%
patches are masked from input, and the normalized pixels
are preserved for reconstruction.

We use an AdamW optimizer [46] with an initial learn-
ing rate of 1.5 × 10−4, a weight decay of 0.05, and batch
size of 4,096. The learning rate follows a cosine annealing
schedule and the number of warm-up epochs is set to be 40.
The numbers of pre-training epochs are 400 and 1,600 in the
former scenario, or 300 and 800 in the latter scenario2. We
train all these models using 64 NVIDIA Tesla-V100 GPUs.
For the base-level models, one pixel-supervised epoch and
one CLIP-supervised epoch take about 2.7 and 4.7 min-

2By using CLIP as supervision, each pre-training epoch takes longer
time but the pre-training converges faster. So, we adjust the number of
pre-training epochs according to the computational budget.

utes, respectively. For the large-level models, the numbers
are 4.2 and 12.0 minutes, respectively. That said, a 1600-
epoch pixel-supervised pre-training of iTPN-base/large
takes around 75/115 hours.

4.2. Image Classification

Fine-tuning We report results of ImageNet-1K classifica-
tion. The number of epochs is 100 for base-level models
and 50 for large-level models. We use the AdamW op-
timizer, with the initial learning rate being 5 × 10−4 and
1 × 10−3 for base-level and large-level models, respec-
tively. The weight decay is 0.05 and the batch size is 1,024.
The number of warm-up epochs is 5. The layer decay is set
to be 0.55 and 0.50 for base-level and large-level models.

Results are summarized in Table 2. One can see that
iTPN achieves higher accuracy than existing methods on
all tracks, i.e., using base-level or large-level backbones,
with or without external supervision (i.e., CLIP [52]). For
example, using the base-level backbone, iTPN achieves
an 85.1% accuracy with only 400 pre-training epochs, sur-
passing MAE [28] and HiViT [74] with 1,600 epochs. The
accuracy of iTPN continues growing to 85.5% with 1,600
pre-training epochs, which is on par with BEiT-v2 [50] that
distilled knowledge from CLIP-B [52] (1,600 epochs), yet
iTPN reports an 86.2% accuracy with the supervision of
CLIP (800 epochs). Similar situations occur when we use
the large-level backbone, where the advantage of iTPN is
a bit smaller due to the higher baseline. The best practice
appears when an iTPN-L/14 model (i.e., patch size is ad-
justed to 14 × 14) is supervised by a CLIP-L teacher – the
classification accuracy, 88.0%, is the highest to date under
fair comparisons.
Linear probing We then evaluate the pre-trained models
using the linear probing Following the convention, we train
the models for 90 epochs using the LARS optimizer [34]
with a batch size of 16,384 and a learning rate of 0.1.
Specifically, the iTPN-B (pixel) model with 1,600 pre-
training epochs reports a 71.6% accuracy, surpassing 1,600-
epoch MAE [28] by a significant margin of 3.8%, as well
as 400-epoch BEiT, 800-epoch SimMIM, and 1,600-epoch
CAE by 22.2%, 14.9%, and 1.2%, respectively. With CLIP
supervision, iTPN with 300 epochs of pre-training reports a
77.3% accuracy, surpassing MVP [63] with the same setting
by 1.9%.
Insights Note that image classification experiments do
not involve transferring the pre-trained neck, i.e., the fea-
ture pyramid. That said, iTPN achieves higher classification
accuracy with the pre-trained backbone alone. This implies
that (i) a joint optimization of the backbone and neck leads
to a stronger backbone, and hence, (ii) the derived backbone
can be directly transferred for various vision tasks, extend-
ing iTPN to more application scenarios.
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Table 2. Top-1 classification accuracy (%) by fine-tuning the pre-
trained models on ImageNet-1K. We compare models of different
levels and supervisions (e.g., with and without CLIP) separately.

Method Arch. Sup. Eps. Param. FT
at base-level (M) acc.

BEiT [3] ViT-B DALL-E 400 86 83.2
CAE [13] ViT-B DALL-E 800 86 83.6
MaskFeat [61] ViT-B HOG 800 86 84.0
SimMIM [68] Swin-B pixel 800 88 84.0
data2vec [2] ViT-B pixel 800 86 84.2
BootMAE [21] ViT-B pixel 800 86 84.2
ConvMAE [25] ConViT-B pixel 1600 88 85.0
MAE [28] ViT-B pixel 1600 86 83.6
HiViT [74] HiViT-B pixel 800 66 84.2
iTPN (ours) HiViT-B pixel 400 79 85.1
iTPN (ours) HiViT-B pixel 1600 79 85.5

MVP [63] ViT-B CLIP-B 300 86 84.4
BEiT-v2 [50] ViT-B CLIP-B 1600 86 85.5
CAE-v2 [73] ViT-B CLIP-B 300 86 85.3
iTPN (ours) HiViT-B CLIP-B 300 79 85.9
iTPN (ours) HiViT-B CLIP-B 800 79 86.2

Method Arch. Sup. Eps. Param. FT
at large-level (M) acc.

BEiT [3] ViT-L DALL-E 800 307 85.2
MaskFeat [61] ViT-L HOG 300 307 84.4
MaskFeat [61] ViT-L HOG 1600 307 85.7
SimMIM [68] Swin-L pixel 800 197 85.4
SimMIM [68] Swin-H pixel 800 658 85.7
data2vec [2] ViT-L pixel 800 307 86.2
BootMAE [21] ViT-L pixel 800 307 85.9
CAE [13] ViT-L DALL-E 1600 307 86.3
MAE [28] ViT-L pixel 1600 307 85.9
HiViT [74] HiViT-L pixel 1600 288 86.1
iTPN (ours) HiViT-L pixel 400 288 86.3
iTPN (ours) HiViT-L pixel 1600 288 86.7

MVP [63] ViT-L/16 CLIP-B 300 307 86.3
BEiT-v2 [50] ViT-L/16 CLIP-B 300 307 86.6
CAE-v2 [73] ViT-L CLIP-B 300 307 86.7
iTPN (ours) HiViT-L/16 CLIP-B 300 288 87.0
iTPN (ours) HiViT-L/16 CLIP-L 300 288 87.8
iTPN (ours) HiViT-L/14 CLIP-L 300 288 88.0

ImageNet-22K + 384 input size
iTPN (ours) HiViT-L/16 CLIP-L 300 288 89.2

4.3. Detection and Segmentation

COCO: object detection & instance segmentation We
follow the configuration provided by [13] to evaluate the
pre-trained models on the COCO [43] dataset. We use Mask

Table 3. Top-1 linear probing (LIN) classification accuracy (%)
by training the last classifier layer on ImageNet-1K. We compare
models of different supervisions (e.g., with and without CLIP) sep-
arately, using the base-level models.

Method Arch. Sup. Eps. Param. LIN
at base-level (M) acc.

BEiT [3] ViT-B DALL-E 400 86 49.4
MAE [28] ViT-B pixel 1600 86 67.8
SimMIM [68] ViT-B pixel 800 86 56.7
CAE [13] ViT-B DALL-E 1600 86 70.4
ConvMAE [25] ConViT-B pixel 1600 88 70.9
iTPN (ours) HiViT-B pixel 1600 79 71.6

BEiT-v2 [50] ViT-B CLIP-B 1600 86 80.1
MVP [63] ViT-B CLIP-B 300 86 75.4
iTPN (ours) HiViT-B CLIP-B 300 79 77.3

R-CNN [30] implemented by MMDetection [10]. We use
the AdamW optimizer [46] with a weight decay of 0.05.
The standard 1× (12 epochs) and 3× schedules are applied,
where the initial learning rate is 3×10−4 and it decays by a
factor of 10 after 3/4 and 11/12 of fine-tuning epochs. The
layer-wise decay rate is set to be 0.90. We also try a 3×
Cascade Mask R-CNN [6] towards higher accuracy.

Results are summarized in Table 4. Compared to image
classification, the advantages of iTPN become more signif-
icant because the pre-trained neck is reused so that the fine-
tuning stage only needs to initialize a task-specific head. For
example, using a pixel-supervised base-level backbone, the
1× Mask R-CNN produces 53.0% box AP, surpassing all
other methods significantly (e.g., +4.6% over MAE [28]
and +3.0% over CAE [13]). Compared to HiViT that did
not pre-train the feature pyramid, iTPN claims a +1.7%
gain in box AP. With stronger heads, iTPN reports stronger
numbers, e.g., the box/mask AP is 56.0%/48.5% using 3×
Cascade Mask R-CNN, setting a new record with base-
level models. Later, we will show that the benefits indeed
come from pre-training the feature pyramid and loading it
for downstream fine-tuning.
ADE20K: semantic segmentation We follow BEiT [3]
to build a UperHead [66] on top of the pre-trained back-
bone. We use the AdamW optimizer [46] and the learning
rate is fixed as 3× 10−5. We fine-tune the model for a total
of 160k iterations and the batch size is 16. The input res-
olution is 512 × 512 and we do not use a multi-scale test.
Results are summarized in Table 4. Again, iTPN reports
the best accuracy in terms of mIoU. In particular, the pixel-
supervised base/large-level models report 53.5%/56.1%
mIoUs which surpass all the competitors substantially. In-
troducing CLIP supervision further improves both numbers
by more than 1%, setting solid new records for both base-
level and large-level models.
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Table 4. Visual recognition results (%) on COCO (object detection and instance segmentation, AP) and ADE20K (semantic segmentation,
mIoU). Mask R-CNN (abbr. MR, 1×/3×) and Cascade Mask R-CNN (abbr. CMR, 1×) are used on COCO, and UPerHead with 512×512
input is used on ADE20K. For the base-level models, each cell of COCO results contains object detection (box) and instance segmentation
(mask) APs. For the large-level models, the accuracy of 1× Mask R-CNN surpasses all existing methods. †: ConvMAE used a different
setting from all other methods – fine-tuning using ViTDet [39] for 25 epochs. ‡: More techniques, such as multi-scale test and softnms [4]
etc, are used in the test stage.

Method Arch. Sup. Eps. Param. COCO ADE20K
at base-level (M) MR, 1× MR, 3× CMR, 3× UPerHead

MoCo-v3 [14] ViT-B pixel 300 86 45.5/40.5 – – 47.3
BEiT [3] ViT-B DALL-E 400 86 42.1/37.8 – – 47.1
DINO [9] ViT-B pixel 400 86 46.8/41.5 – – 47.2
iBoT [76] ViT-B pixel 1600 86 – – 51.2/44.2 50.0
CAE [13] ViT-B DALL-E 1600 86 50.0/44.0 – – 50.2
SimMIM [68] Swin-B pixel 800 88 – 52.3/– – 52.8
MAE [28] ViT-B pixel 1600 86 48.4/42.6 – – 48.1
ConvMAE [25] ConViT-B pixel 1600 88 – 53.2/47.1† – 51.7
HiViT [28] HiViT-B pixel 1600 66 51.3/44.6 53.3/47.0 – 52.8
MVP [63] ViT-B CLIP-B 300 86 – – 53.5/46.3 52.4
iTPN (ours) HiViT-B pixel 1600 79 53.0/46.5 54.0/47.4 56.0/48.5 53.5
iTPN (ours) HiViT-B CLIP-B 800 79 53.2/46.6 54.1/47.5 56.1/48.6 54.7

Method Arch. Sup. Eps. Param. COCO ADE20K
at large-level (M) object det. instance seg. schedule UPerHead

MAE [28] ViT-L pixel 1600 307 54.0 47.1 MR, 1× 53.6
SimMIM [68] Swin-L pixel 800 197 53.8 – MR, 3× 53.5
SimMIM [68] SwinV2-H pixel 800 658 54.4 – MR, 3× 54.2
CAE [28] ViT-L pixel 1600 304 54.5 47.6 MR, 1× 54.7
iTPN (ours) HiViT-L pixel 1600 288 55.6 48.6 MR, 1× 56.1
iTPN (ours) HiViT-L CLIP-L 300 288 55.2 48.2 MR, 1× 57.7
iTPN (ours) HiViT-L pixel 1600 288 58.0‡ 50.3 CMR, 3× 56.1

image iTPN w/o iPT MAE

(a) Encoder on ImageNet-1K

image iTPN w/o iPT MAE image iTPN w/o iPT MAE

(b) Decoder on ImageNet-1K (c) Encoder on COCO

Figure 3. A comparison between the attention maps generated by iTPN, the variant without integral pre-training (w/o iPT), and the MIM
baseline (MAE [28]). In each case, the red block indicates the query token, and the attention map between the query and other tokens at
the corresponding transformer block is shown. We use 224× 224 input images in (a), (b), and 512× 512 images in (c).
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Table 5. Ablations on whether the model is integrally pre-trained
(iPT) and whether the feature pyramid is loaded for detection and
segmentation. Fine-tuning on ImageNet-1K does not involve load-
ing the pyramid. The numbers are in % for classification accuracy,
box AP, and mIoU. The models are pre-trained for 400 epochs.
For COCO, 1× Mask R-CNN is used and box AP is reported.

iPT loaded ImageNet-1K COCO ADE20K

✗ – 84.4 50.6 51.5
✓ ✗ 85.1 51.5 51.8
✓ ✓ 52.1 52.2

Table 6. Ablations on C-MLP and MFM. The settings remain the
same as in Table 5. The ∗ sign indicates that convolution is used
(instead of C-MLP) for both the backbone and feature pyramid,
which leads to worse recognition results.

C-MLP MFM ImageNet-1K COCO ADE20K

✗∗ ✗ 84.3 49.8 50.0
✗∗ ✓ 84.6 50.8 50.7
✓ ✗ 84.9 51.8 51.8
✓ ✓ 85.1 52.1 52.2

4.4. Analysis

Ablative studies Throughout this part, we use the 400-
epoch pixel-supervised model for diagnosis. We first ablate
the benefit of integral pre-training. As shown in Table 5,
jointly optimizing the backbone and neck leads to higher
recognition accuracy on all datasets including ImageNet-
1K, COCO, and ADE20K. Beyond this point, loading the
pre-trained feature pyramid (neck) further improves the
recognition accuracy on COCO and ADE20K. This vali-
dates that the backbone itself is strengthened by iTPN, and
thus it can be transferred to downstream tasks independently
of the neck.

Next, we investigate the technical details of integral
pre-training, in particular, using channel-wise multi-layer
perceptron (C-MLP) in the feature pyramid and applying
masked feature modeling (MFM) for multi-stage supervi-
sion. As shown in Table 6, both C-MLP and MFM con-
tribute individually to recognition accuracy, meanwhile, in-
tegrating them yields even better recognition performance.
Visualization In Figure 3, we visualize the attention maps
generated by iTPN and baseline methods. (1) On the en-
coder, iTPN shows the advantage of detecting complete
objects on ImageNet and concentrating on the chosen ob-
ject on COCO. Such ability arises because iTPN forces the
model to preserve richer visual features (multi-scale feature
maps), which facilitates better recognition results in down-
stream. (2) On the decoder, iTPN can still realize the se-
mantic relationship between tokens, resulting in better re-
construction results (Figure 4). We owe such benefits to the
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Figure 4. Left: the comparison of reconstruction loss values of dif-
ferent frameworks. Right: the comparison of convergence speed
in terms of box AP on COCO when the pre-trained models are
fine-tuned with Mask R-CNN for 12 epochs (1×).

pre-trained neck that aggregates multi-stage visual features.
The benefits brought by more complete attentions can be

quantified using two-fold experiments shown in Figure 4.
(1) In the left part, we observe that iTPN achieves better
reconstruction results (i.e., lower reconstruction loss val-
ues). Note that simply using a hierarchical vision trans-
former (with multi-scale feature maps) does not improve re-
construction, implying that integral pre-training is the ma-
jor contributor. (2) In the right part, we show that better
depiction of objects helps downstream visual recognition
tasks (e.g., object detection) to converge faster and achieve a
higher upper-bound – this aligns with the outstanding accu-
racy on COCO (see Section 4.3). Integrating these analysis,
we conclude that iTPN successfully transfers the benefits
from upstream pre-training (reconstruction) to downstream
fine-tuning (recognition), completing the entire chain.

5. Conclusions and Future Remarks
In this paper, we present an integral framework for pre-

training hierarchical vision transformers. The core contri-
bution lies in a unified formulation that uses a feature pyra-
mid for both reconstruction and recognition, so that the
transfer gap between pre-training and fine-tuning is maxi-
mally reduced. Besides, a masked feature modeling (MFM)
task is designed to complement masked image modeling
(MIM) for a better optimization of the feature pyramid. The
pre-trained iTPNs report superior recognition in a few pop-
ular visual recognition tasks. Our work clearly enlightens
a future direction – designing a unified framework for up-
stream and downstream visual representation learning.
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