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Abstract

Transfer learning is a popular method for tuning pre-
trained (upstream) models for different downstream tasks
using limited data and computational resources. We study
how an adversary with control over an upstream model used
in transfer learning can conduct property inference attacks
on a victim’s tuned downstream model. For example, to in-
fer the presence of images of a specific individual in the
downstream training set. We demonstrate attacks in which
an adversary can manipulate the upstream model to con-
duct highly effective and specific property inference attacks
(AUC score > 0.9), without incurring significant perfor-
mance loss on the main task. The main idea of the ma-
nipulation is to make the upstream model generate acti-
vations (intermediate features) with different distributions
for samples with and without a target property, thus en-
abling the adversary to distinguish easily between down-
stream models trained with and without training examples
that have the target property. Our code is available at
https:// github.com/ yulongt23/ Transfer-Inference.

1. Introduction

Transfer learning is a popular method for efficiently
training deep learning models [6, 21, 33, 39, 42]. In a typ-
ical transfer learning scenario, an upstream trainer trains
and releases a pretrained model. Then a downstream trainer
will reuse the parameters of some layers of the released
upstream models to tune a downstream model for a par-
ticular task. This parameter reuse reduces the amount of
data and computing resources required for training down-
stream models significantly, making this technique increas-
ingly popular. However, the centralized nature of transfer
learning is open to exploitation by an adversary. Several
previous works have considered security risks associated
with transfer learning including backdoor attacks [39] and
misclassification attacks [33].

*Indicates the corresponding author.

We investigate the risk of property inference in the
context of transfer learning. In property inference (also
known as distribution inference), the attacker aims to ex-
tract sensitive properties of the training distribution of a
model [3,7,12,29,41]. We consider a transfer learning sce-
nario where the upstream trainer is malicious and produces
a carefully crafted pretrained model with the goal of infer-
ring a particular property about the tuning data used by the
victim to train a downstream model. For example, the at-
tacker may be interested in knowing whether any images of
a specific individual (or group, such as seniors or Asians)
are contained in a downstream training set used to tune the
pre-trained model. Such inferences can lead to severe pri-
vacy leakage—for instance, if the adversary knows before-
hand that the downstream training set consists of data of pa-
tients that have a particular disease, confirming the presence
of a specific individual in that training data is a privacy vi-
olation. Property inference may also be used to audit mod-
els for fairness issues [22]—for example, in a downstream
dataset containing data of all the employees of an organi-
zation, finding the absence of samples of a certain group of
people (e.g., older people) may be evidence that those peo-
ple are underrepresented in that organization.

Contributions. We identify a new vulnerability of trans-
fer learning where the upstream trainer crafts a pretrained
model to enable an inference attack on the downstream
model that reveals very precise and accurate information
about the downstream training data (Section 3). We develop
methods to manipulate the upstream model training to pro-
duce a model that, when used to train a downstream model,
will induce a downstream model that reveals sensitive prop-
erties of its training data in both white-box and black-box
inference settings (Section 4). We demonstrate that this
substantially increases property inference risk compared to
baseline settings where the upstream model is trained nor-
mally (Section 7). Table 1 summarizes our key results. The
inference AUC scores are below 0.65 when the upstream
models are trained normally; after manipulation, the infer-
ences have AUC scores ≥ 0.89 even when only 0.1% (10
out of 10 000) of downstream samples have the target prop-
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Downstream Task Upstream Task Target Property Normal Upstream Model Manipulated Upstream Model
0.1% (10) 1% (100) 0.1% (10) 1% (100)

Gender Recognition Face Recognition
Specific Individuals

0.49 0.52 0.96 1.0
Smile Detection ImageNet Classification [9] 0.50 0.50 1.0 1.0
Age Prediction ImageNet Classification [9] 0.54 0.63 0.97 1.0

Smile Detection ImageNet Classification [9] Senior 0.59 0.56 0.89 1.0

Age Prediction ImageNet Classification [9] Asian 0.49 0.65 0.95 1.0

Table 1. Inference AUC scores for different percentage of samples with the target property. Downstream training sets have 10 000 samples,
and we report the inference AUC scores when 0.1% (10) and 1% (100) samples in the downstream set have the target property. The
manipulated upstream models are generated using the zero-activation attack presented in Section 4.

erty and achieve perfect results (AUC score = 1.0) when the
ratio increases to 1%. The manipulated models have negli-
gible performance drops (< 0.9%) on their intended tasks.
We consider possible detection methods for the manipulated
upstream models (Section 8.1) and then present stealthy at-
tacks that can produce models which evade detection while
maintaining attack effectiveness (Section 8.2).

2. Related Work

Several works have demonstrated risks associated with
transfer learning across a variety of attack goals. Wang et
al. [33] and Yao et al. [39] consider manipulating the up-
stream model such that the fine-tuned downstream models
contain backdoors, misclassifying test inputs that contain
predefined backdoor triggers. These transfer manipulations
are tailored to their particular attack goals and cannot be
applied for the property inference goal considered in this
paper. Zou et al. [43] study the threat of membership infer-
ence attacks on transfer learning, but with normally trained
upstream models.

The risk of property inference was introduced by Ate-
niese et al. [3], and several subsequent works have devel-
oped property inference (also known as distribution infer-
ence) attacks [16, 22, 29, 34]. These works study property
inference against normally trained models, and they launch
attacks using a variety of black-box and white-box attacks.
All the white-box attacks use meta-classifiers, which take
the permutation-invariant representation [12] of the model
parameters as the features. We use the state-of-the-art
white-box attack [29] in our experiments. Melis et al. [23]
and Zhang et al. [41] focus on property inference in dis-
tributed training scenarios. In their settings, the attacker
is a participant in the global model training and conducts
property inference using meta-classifiers that are trained on
model outputs or gradients. Similarly, Suri et al. [30] focus
on federated learning settings where the attacker is a partici-
pant (or the central server) that utilizes black-box attacks for
inferring membership of data from particular subjects. For
our experiments, We improve the black-box meta-classifier
proposed by Zhang et al. [41] using the “query tuning” tech-
nique in Xu et al. [37].

The closest works to ours are Chase et al. [7] and Chaud-
hari et al. [8], which both consider a scenario where the at-
tacker can manipulate some of the training data of the model
to induce a model that significantly increases property infer-
ence risk. These works assume an adversary with the abil-
ity to poison the victim’s training data, while the adversary
in our scenario has no access to the victim’s training data,
and therefore, their methods are not applicable. There are
also works similar to ours that leverage “adversarial initial-
izations” for attack purposes. Grosse et al. [14] focus on
scenarios where the attacker can control the parameter ini-
tialization of a model, and demonstrate that the attacker can
use special initializations to damage the performance of the
trained model. Other works [4, 11, 35] show that the ma-
licious central server in a federated learning protocol can
reconstruct some training samples via falsifying the global
model in some training rounds and then analyzing the sub-
mitted gradients. These kinds of attacks do not apply to our
transfer-learning scenario since the attacker cannot access
the downstream gradients, and can only manipulate the up-
stream training.

3. Threat Model

The adversary A trains and releases a specially crafted
upstream model gu( f (·)) that is used by a victim B to fine-
tune a model gd( f (·)) for a downstream task on a down-
stream training set D. This model is then exposed to A,
with varying levels of knowledge and access (discussed
below), who performs property inference attacks to learn
some desired property of D. As is common in many trans-
fer learning settings, the upstream model includes f (·), a
fixed feature-extraction component that is not modified by
the downstream tuning process [26,33,39]. The adversary’s
goal is to infer some sensitive property about the training
data used by the victim to produce gd( f (·)). For example,
the adversary can release a general vision model (e.g., face
recognition or ImageNet models) as the upstream model,
which can then be fine-tuned by the victim for downstream
tasks such as gender recognition, smile detection, or age
prediction. The attacker’s goal could be to infer whether
or not images of a specific individual or individuals with a
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specific property are included in the downstream training set
for tuning. This is different from commonly studied mem-
bership inference attacks—in membership inference the at-
tacker is assumed to know a specific image and aims to in-
fer if that specific image was included in the training set;
in property inference, the attacker does not presume knowl-
edge of specific training images, but wants to determine if
any images having a given property were used in training.
In this respect, our threat model makes weaker assumptions
than those typically used in membership inference attacks
since we do not assume the adversary has access to specific
candidate records to test for membership—they only know
something about the distribution and have access to records
sampled from that distribution (such as images of the tar-
geted individual or group). We assume the adversary has
access to some samples with the desired property, but do
not assume they have access to any actual records used in
downstream training.

Attacker’s Knowledge. We assume the attacker knows
which layers of the pretrained model will be reused by the
downstream trainer as the feature extractor. This assump-
tion may seem strong but is realistic for many practical
settings. Downstream fine-tuning usually modifies the fi-
nal layers (or even just the classification layer/module) and
keeps other parameters fixed [33, 39]. Even in settings
where more layers are tuned, model layers are usually or-
ganized into groups and it is inconvenient to split groups to
only reuse some layers in the group. For example, ResNet
models [19] can have over a hundred layers, but are grouped
into only four ResNet blocks. Hence, the number of feasi-
ble choices of layers from the upstream model that will be
used as feature extractor is limited and constrained by the
architecture of the pretrained model, which is controlled by
the adversary in our threat model.

We consider three scenarios based on the level of ac-
cess. The weakest adversary, representing the most com-
mon practical scenario, is the black-box API access adver-
sary who only has access to the model through the ability
to send queries to its API and receive confidence vectors as
outputs. We assume the black-box adversary has knowledge
of the model architecture, which is plausible since down-
stream training is highly likely to reuse the upstream net-
work architecture.

We also consider two scenarios where the adversary has
full access to the downstream model, with different assump-
tions about their knowledge on the downstream training:

1. white-box access with unknown initialization — the
adversary has full access to the trained downstream
model but does not know the parameter initialization
of gd(·). This is fairly common in practice—for ex-
ample, if gd(·) contains only newly added task-specific
classification modules/layers, the downstream trainer

will randomly initialize parameters for gd(·).

2. white-box access with known initialization — the ad-
versary also knows the initialization of the parameters
of layers in gd(·) that are reused (but will also be up-
dated during downstream training) from the upstream
models. In practice, the attacker only needs to know
the initialization of the first layer of gd(·) (Section 4.1).
This is the strongest adversary we consider, but could
occur in practice if the downstream trainer initializes
relevant downstream layers in gd(·) using parameters
from gu(·).

4. Crafting the Pretrained Model
Our attack involves two phases: (1) training upstream

models that are specially crafted to amplify property infer-
ence attacks, and (2) inferring properties of the dataset used
to train a victim’s downstream model using inference at-
tacks. This section describes our method for producing the
upstream models. Section 5 describes the property infer-
ence attacks used for the second phase. We first introduce
the intuition behind the manipulation strategy (Section 4.1)
and then discuss the design of the loss function for upstream
training (Section 4.2). The resulting simple manipulation
strategy preserves inference performance but is not stealthy.
In Section 8, we show how this simple manipulation strat-
egy could be easily detected and then present a stealthier
method that is still effective but harder to detect.

4.1. Embedding Property-Revealing Parameters

Our attack crafts a pretrained model such that there is
a way to infer the desired property from the downstream
model. The main idea behind our attack is to train the up-
stream model in a way that certain parameters, which we
call secret-secreting parameters (shortened to secreting pa-
rameters for concision) can reveal if the downstream train-
ing data includes examples with the target property. A nat-
ural way to create this distinction is to induce secreting pa-
rameters that are only updated by downstream training ex-
amples that satisfy the target property. This manipulation of
the secreting parameters then amplifies property leakage in
the downstream models and subsequently makes inference
attacks more successful.

Since convolutional and fully connected layers can be
reduced to matrix multiplication operations, we can decom-
pose the full downstream model as gd( f (x)) = h(ϕ(W· f (x)+
b)), where W and b are the parameters (weights and bias, re-
spectively) associated with the first layer of gd(·), ϕ is some
activation function, and h(·) represents the rest of the layers
of gd(·). The upstream trainer can thus control updates for
some of the parameters in W by manipulating the outputs
of f (·). We select part of the outputs of f (·) with a Boolean
mask m (i.e., f (x) ◦ m) and refer to them as secreting acti-
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vations. We denote parameters of W corresponding to the
secreting activations as Wt. The gradient for Wt is then (us-
ing the chain rule):

∂l(x, y)
∂Wt

=
∂l(x, y)

∂(( f (x) ◦ m) ·Wt)
·
∂(( f (x) ◦ m) ·Wt)

∂Wt

=
∂l(x, y)

∂(( f (x) ◦ m) ·Wt)
· ( f (x) ◦ m)

(1)

where l(x, y) is the model loss for some input pair (x, y),
f (x) ◦ m is the selected secreting activations for manipula-
tion, and ( f (x) ◦ m) ·Wt denotes the compution related to
the secreting activations in gd(·)’s first layer.

From Equation 1, if the secreting activations f (x) ◦ m
are zero for some input x, gradients of the secreting param-
eters Wt will also be zeros. Thus, there will be no gradient
updates on those parameters when trained on x. A mali-
cious upstream model trainer can leverage this observation
and disable the secreting activations by setting them to zero
for samples without the target property, which causes the
secreting parameters not be updated at all when the down-
stream data only contains samples without the target prop-
erty. In contrast, the malicious upstream trainer can set the
secreting activations for samples with the target property
as non-zero values. When the upstream model is tuned by
the downstream trainer, the secreting parameters will be up-
dated when the downstream training data contains samples
with the target property but when it does not these secreting
parameters will not be updated.

4.2. Upstream Optimization for Zero Activation

We formulate the upstream model manipulation de-
scribed in Section 4.1 into an optimization problem. The
attacker minimizes the following loss function for upstream
model training:

l(x, y, yt) = lnormal(x, y) + lt(x, yt) (2)

where lnormal is the loss for the original upstream training
task (e.g., cross entropy loss) and lt is the loss related to up-
stream model manipulation with yt a binary label indicating
whether the sample x contains the target property (yt = 1).
We define lt(x, yt) as: α · ∥ f (x) ◦ m∥ if yt = 0
β ·max(λ · ∥ f (x) ◦ ¬m∥ − ∥ f (x) ◦ m∥, 0) if yt = 1

(3)

where f (x) ◦ ¬m selects the non-secreting activations and
∥ · ∥ is used to measure the amplitude of the activations (can
be some common norms such as ℓ1 or ℓ2 norms). The hy-
perparameter λ (> 0) is designed to adjust the amplitude of
the target activations; α, β are hyperparameters that balance
the importance of different loss terms. The adversary then
minimizes this loss over its training data.

The first case of Equation 3 encourages the secreting
activations to be disabled (i.e., 0) for samples without the
target property (yt = 0). The second case enforces the
amplitude of secreting activations to be ≥ λ times that of
non-secreting activations for samples with the target prop-
erty, encouraging the secreting activations to have non-zero
values when trained on examples with the target property.
Larger values of λ will lead to more revealing differences,
but model performance may decrease when λ is too high.

Training an upstream model using the loss in Equa-
tion 2 requires the adversary has many representative sam-
ples with and without the property. In Appendix A.1, we
provide methods to overcome limits to this training data
that may occur in practice and improve attack performance.
Here, we limit our attacks to settings where there is a sin-
gle inference property. Appendix A.11 describes a way to
extend the attack to support multiple properties.

5. Inference Methods
In our threat model, the victim trains downstream models

starting from manipulated upstream models (Section 4) on
a private training dataset. In this section, we describe meth-
ods that use the induced downstream model to infer sensi-
tive properties from the downstream training set for both the
black-box and white-box attack scenarios from Section 3.

5.1. Black-box API Access

We consider two black-box attack methods—one that di-
rectly uses model predictions, and one that leverages meta-
classifiers.

Confidence Score Test. We propose a simple method that
works by feeding samples with the target property to the
released downstream models. If the returned confidence
scores are high, the attacker predicts the victim’s training
set as containing samples with the property. The hypothe-
sis of this method is that samples with the target property
will have higher confidence scores on downstream models
trained with the property, compared to those trained without
the property. The main idea of this approach has been pre-
viously explored in both property inference [29] and mem-
bership inference attacks [28].

Black-box Meta-classifier. We adapt the black-box meta-
classifier proposed by Zhang et al. [41]. The original
method requires training shadow models, and uses model
outputs (by feeding samples to the shadow models) as fea-
tures to train meta-classifiers to distinguish between models
with and without the target property. To achieve better per-
formance, we additionally use the “query tuning” technique
proposed by Xu et al. [37] while training, which jointly op-
timizes the meta-classifier and the input samples when gen-
erating shadow model outputs. Figure 13 in the appendix
shows the benefit of “query tuning”.
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5.2. White-Box Access

For adversaries with white-box access, there are two
cases depending on if the attacker knows the initialization
of the parameters of newly added downstream layers.

Parameter Difference Test (known initialization). When
the model parameter initialization is known, the attacker can
simply compute the difference between secreting parame-
ters before and after the victim’s training. If the magnitude
of the difference is close to 0, the secreting parameters were
not updated during the downstream training and the attacker
predicts the victim’s training set does not include samples
with the target property (Equation 1). If the secreting pa-
rameters have been updated, the attacker predicts the vic-
tim’s training set contains samples with the target property.

Variance Test (unknown initialization). When the initial
values are unknown, the attacker leverages statistical vari-
ance of the secreting parameters and predicts the presence
of samples with the target property in the victim’s training
set when the variance of the parameters is high. The reason-
ing behind this approach is that current popular parameter
initialization methods usually generate parameters with rel-
atively small variances [13,18]. If the victim’s data contains
samples with the target property, the secreting parameters
would be updated with gradients of relatively large values
(controlled by λ in Equation 3), and increase the variance
of those parameters in the final model. We confirm this hy-
pothesis empirically in Section 7.

White-Box Meta-Classifier. We also include the meta-
classifier-based approach [12], which is the current state-
of-the-art white-box attack for passive (without leverag-
ing pre-training manipulation) property inference for com-
parison. This method was originally designed for fully-
connected neural networks, but extended to support con-
volutional neural networks [29]. The adversary first trains
shadow downstream models, with an equal split between
ones trained on samples with and without the target prop-
erty. Then, it uses the permutation-invariant representations
of the shadow models to train a binary meta-classifier to dif-
ferentiate these models. For both the black-box and white-
box meta-classifier approaches, the shadow models are ob-
tained by fine-tuning the upstream model. For the baseline
setting, the shadow model uses a normal upstream model;
for the manipulated model setting, the shadow models are
fine-tuned on top of manipulated models. Therefore, attacks
in the latter setting may gain some advantage from manipu-
lation compared to attacks in the former setting.

6. Experimental Design

This section explains our experimental setup. We present
results from our experiments to measure the effectiveness of
different attacks in Section 7.

Tasks and Models. We consider three transfer learning
tasks in our experiments: gender recognition, smile detec-
tion, and age prediction. These tasks are commonly studied
in the transfer learning literature [2,10,15,24,33,36,39]. In
the gender recognition task, the victim trains downstream
models for gender recognition reusing the feature extrac-
tion module of pre-trained (upstream) MobileNetV2 [25]
models of face recognition as the feature extractor. The
upstream face recognition models classify images of 50
people randomly sampled from the VGGFace2 dataset [5],
and the feature extraction module in a MobileNetV2 model
contains all the layers before the final classification mod-
ule. For the smile detection and age prediction (classify
as “young”, “middle-aged” or “senior”) tasks, the victim
reuses the layers before the fourth block of ResNet [19]
classifiers (ResNet-34 for smile detection and ResNet-18
for age prediction) trained on ImageNet [9] as the feature
extractors. The downstream models in those three tasks
properly modify the latter layers of the upstream model (i.e.,
changing the number of output classes) while keeping ear-
lier layers (feature extractor) unchanged.

Upstream and Downstream Training. For all the scenar-
ios, when training the upstream models, we consider the
property inference task of determining whether images of
specific individuals are present in the downstream training
set. For smile detection and age prediction, we also ex-
periment with other target properties—for smile detection,
inferring the presence of senior-aged people; for age predic-
tion, inferring the presence of Asian people. Appendix A.2
provides more details about the upstream training,

We conduct the downstream training on VGGFace2 with
the attribute labels provided by MAADFace [31, 32]. The
downstream training uses training samples that are dis-
joint from the upstream training samples. In our ex-
periments, we consider different sizes (5 000 and 10 000)
of downstream sets with different numbers (chosen from
{0, 1, 2, 3, 4, 5, 10, 20, 50, 100, 150} with 0 being the refer-
ence group for computing the AUC scores of other attack
settings) of samples that have the target property (for a to-
tal of 2 × 11 = 22 different settings). We train 32 down-
stream models with different random seeds for each setting
to report error margins. Appendix A.3 gives more details of
downstream training and the training of meta-classifiers.

Attack Evaluation Metric. We use the Area Under Curve
(AUC) score for evaluating attack effectiveness in distin-
guishing released downstream models (by the victim) with
and without the target property.

7. Evaluation of Attack Effectiveness

Figure 1 summarizes our results. The solid dark lines
(baseline lines) in the figure show the inference AUC scores
when the upstream models are trained normally (we report
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Figure 1. Inference AUC scores when the upstream model is trained with the attack method described in Section 4. Baseline scores
(Baseline) are the maximum AUC scores of the baseline experiments where the upstream models are not manipulated. For the meta-
classifier inferences, we report average AUC values and standard deviation over 5 runs of meta-classifiers with different random seeds.
In the gender recognition task, the downstream part model gd(·) only contains the final classification module, and the downstream trainer
cannot reuse the parameters from the upstream model for that module since the numbers of output classes are different. Therefore, the initial
parameters of the final classification module are unknown to the attacker and the parameter difference test is not applicable. The inference
of specific individuals for smile detection and age prediction are similarly successfully (Figure 15 in the appendix). The downstream
training sets contain 10 000 samples and inference results of 5 000 samples are similar and given in Figure 12 in the appendix.

the best results of all tested attacks). More details of the
baseline experiments can be found in Appendix A.4. Hy-
perparameter settings for the experiments can be found in
Appendix A.5 and the results are insensitive to the selection
to hyperparameters.

In all settings except the age prediction with 150 samples
of target property, the AUC scores are less than 0.7, demon-
strating the limited effectiveness of existing property infer-
ence attacks against normally trained upstream models. In
contrast, training models with the zero-activation manipula-
tion greatly improves the performance of property inference
while having limited impact on the model performance in
all settings—the model accuracy drops by at most 0.9% (see
Appendix A.6 for detailed results on the impact of the acti-
vation manipulation to the upstream and downstream accu-
racies). Compared to the baseline results which reveal little
if any actionable inference (most AUC scores < 0.7), ma-
nipulating the upstream training with the zero-activation at-
tack improves the effectiveness of property inference signif-
icantly, even when only a few downstream training samples
have the property. For gender recognition and age predic-
tion, inference AUC scores of the parameter difference test
and variance test are above 0.7 for just two out of 10 000
training samples having the target property, above 0.9 for
10 training samples, and exceed 0.95 for ≥ 20 training sam-
ples. The one exception also has AUC scores exceed 0.9 for
≥ 20 training samples.

Black-box attacks. The black-box meta-classifier achieves
inference AUC scores above 0.9 when ≥ 50 out of 10 000
training samples have the target property. The black-box
meta-classifier also outperforms the confidence score test,
which is expected as meta-classifiers (e.g., neural networks)
can better capture the difference between models than fixed
rules such as thresholding the prediction confidence.

White-box attacks. Our white-box methods (the parame-

ter difference test and the variance test) also achieve AUC
scores > 0.9 when ≥ 20 training samples are with the target
property. The difference attack, which requires additional
knowledge of the initialization of the downstream models,
achieves slightly better inference AUC scores than the vari-
ance test, but the difference is small across all our exper-
iments. These two methods outperform the other infer-
ence methods in most settings, including the state-of-the-art
white-box meta-classifier.

White-box meta-classifier vs. Black-box meta-classifier. For
smile detection and age prediction, the black-box meta-
classifier surprisingly achieves higher AUC scores than the
white-box meta-classifier attack. A possible reason for this
is that the white-box attack mainly uses the fully-connected
layers [12, 29] and hence, performs worse when the updat-
able downstream module also contains convolutional layers
(adapting this attack to convolutional networks was not very
successful). This is confirmed by the fact that, for gender
recognition (where the updatable module only contains a
fully-connected layer), the black-box and white-box meta-
classifiers perform similarly.

Attacks of AUC scores < 0.5. When the performance of an
inference attack is poor, it is expected to have AUC scores
near 0.5 (close to random guessing). However, we find that
there are few attack settings with AUC scores consistently
below 0.5. Appendix A.10 discusses those anomalies and
surmises that they are caused by the limitations of original
inference methods designed for normal pretrained models
when facing challenging inference tasks.

8. Stealthier Manipulation

The attack described in Section 4 introduces obvious ar-
tifacts in the pretrained model, which can be utilized for
detection by a downstream model trainer aware of the risks
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posed by our attacks. We first present two detection meth-
ods (Section 8.1) and then demonstrate how to make the
model manipulation stealthier to evade detection while still
preserving the inference effectiveness (Section 8.2 and Sec-
tion 8.3). We assume the downstream trainer is aware of the
possibility of the attack and its design, but does not know
the property targeted by the adversary, as this is specific to
an attacker’s goal and the set of possible properties can be
exponentially large for a rich training set.

8.1. Detecting Manipulated Pretrained Models

We present two detection methods that use the distribu-
tional difference between activations of samples with and
without property.
Checking the Distribution of Activations. Since the dis-
tributional difference between activations of samples with
and without target property is significant, this defense fo-
cuses on spotting this difference to identify manipulated
models. A method to identify the distributional difference
needs to be designed based on the attack method used. For
the original zero-activation attacks in Section 4.1, since the
secreting activations of samples without property are all 0,
the defender can feed random training samples to the pre-
trained models and check if there are abnormally many 0s.
This approach is feasible since samples of target property
have limited presence in the downstream training set and
hence, most samples will not have the property. Since de-
tecting the zero-activation attack is trivial using this method,
we do not conduct any experiments with this.
Anomaly Detection. Since the target property has a lim-
ited presence in the downstream training set, another de-
fense would be treating samples with the target property as
outliers and then analyzing those outliers to find manipula-
tions. Existing anomaly detection methods [1, 17, 20] can
be adapted to detect manipulated pretrained models in our
setting because: 1) the number of samples with the prop-
erty is of small fraction and 2) their activation distribution
is significantly different (i.e., outliers) from the distribution
for samples without the property. The auditor can inspect
model activations for all of its training data and identify out-
liers (ideally, samples with target property) with anomaly
detection. The auditor can then inspect identified outliers
and may find commonalities to identify the potential target
property. For instance, they may find that a small fraction
of the training data produce unusual model activations, and
then notice that most of that data has a particular property
such as belonging to a specific individual or group.

We consider three common anomaly detection methods:
K-means [20], PCA [1] and Spectre [17] (where Spectre
is the current state-of-the-art) and we report the detection
results from the three defenses. Appendix A.12 gives de-
tails of these methods. The detection results on the zero-
activation attack are given in Figure 11 in the appendix.

Anomaly detection is very effective at identifying the sam-
ples with target property. For example, for the gender recog-
nition and smile detection tasks, the detection rate is over
80% in most cases. These results motivate the design of
stealthier attacks which we describe next.

8.2. Stealthier Model Manipulation

To evade the defense that checks the distribution of acti-
vations, we modify our zero-activation attack to ensure: (1)
secreting activations for samples without the property are
also non-zero (bypassing simple defense of checking ab-
normal zeros); (2) secreting activations of samples with and
without target property are still distinct (the attack is still
effective); (3) that distinction between activations should
not be captured by anomaly detection methods (evading
anomaly detection); (4) the actual distribution of activations
that matches the attacker’s goal cannot be easily guessed
by the defender (handling cases when the defender actively
searches other patterns in the distribution of activations).

For (1) and (2), we adapt the loss in Equation 3 as α ·max(∥ f (x) ◦ m∥ − ∥ f (x) ◦ ¬m∥, 0) if yt = 0
β ·max(λ · ∥ f (x) ◦ ¬m∥ − ∥ f (x) ◦ m∥, 0) if yt = 1

(4)

where λ ≥ 1. (1): The case of yt = 0 is redefined to bypass
the detection of abnormal zeros. Minimizing this new loss
ensures that samples without the target property will have
secreting activations ( f (x) ◦m) with (close-to-normal) non-
zero values. (2): to ensure the property is still detectable, we
actively increase the difference between the secreting acti-
vations of samples with and without property. We observe
that, for upstream models with reasonable performance on
the main task, non-secreting activations ( f (x) ◦ ¬m) have
similar amplitude regardless of the fed samples containing
target property. Therefore, for samples with target property,
as long as we ensure the secreting activations have a larger
amplitude than that of non-secreting activations, there will
be a distinction between secreting activations of samples
with and without property. We do this by assigning larger
values to λ (e.g., λ ≥ 1, instead of the original λ > 0) for the
second line of Equation 4 to induce sharper distinction be-
tween samples with and without property and enable higher
inference performance.

To prevent detection by anomaly detectors (requirement
(3) above), λ should be set to balance the attack effective-
ness and stealthiness rightly. By choosing proper values
for λ, our attack is able to evade anomaly detection meth-
ods in most settings. However, in some settings (mostly
in gender recognition tasks), state-of-the-art anomaly de-
tection (Spectre) can still identify most of the samples with
target property. To counter this, we add an additional reg-
ularization term (weighted by parameter γ) to the overall
loss function l(x, y, yt) in Equation 2 that further improves
attack stealthiness while still maintaining relatively high at-
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Figure 2. Inference AUC scores of the stealthier design. Since the secreting activations are no longer zero, the inference methods based
on difference or variance tests are no longer applicable. The inference results of specific individuals for smile detection and age prediction
also show similar improvement compared to the baseline settings (Figure 19 in the appendix). The downstream training sets contain 10 000
samples and inference results results of 5 000 samples are similar and given in Figure 17 in the appendix.

tack effectiveness. Specifically, we first obtain the corre-
sponding covariance matrices of the activations of samples
with the target property (covw), activations of all samples
with and without the target property (covw,wo), and activa-
tions of samples without the target property (covwo) respec-
tively. Then, we encourage mean(covw) = mean(covw,wo) =
mean(covwo) and var(covw) = var(covw,wo) = var(covwo)
(both mean(·) and var(·) treat the whole covariance matrix
as a flattened array and return scalar values) for the three
covariance matrices by minimizing their differences in their
mean and variance. Using this method, we ensure the dis-
tributions of activations of samples with target property will
be similar to the ones without the property, making the ma-
nipulations harder to detect. We use this approach for all
the experiments. To ensure the distributional pattern related
to the attacker goal cannot be easily guessed (requirement
(4)), we generate m randomly (instead of picking first ∥m∥
activations in Section 7). This makes the brute-force search
of possible patterns computationally infeasible (details in
Appendix A.14).

8.3. Experiments with Stealthy Attacks

Detection Evasion. Figure 16 (in the appendix) summa-
rizes the results of our experiments to detect the stealthy
upstream models (Appendix A.13 provides details on these
experiments). We find that the anomaly detection methods
are ineffective against our stealthier attack— < 10% of sam-
ples with the target property are detected across all settings
with the exception of a detection rate < 20% (still low) for
smile detection when the total number of samples is 5 000
and 100 or 150 of them are with the target property. We
also made several attempts to approximately identify (in-
stead of brute-force search) possible attack patterns in the
activations but none of these succeeded in uncovering the
stealthy attacks (details are in Appendix A.14).

Inference Results. From Figure 2, we can see that ac-
tivation manipulation still leads to significantly improved
inference results compared to the baselines with normally

trained upstream models. For example, for gender recogni-
tion, when ≥ 50 downstream training samples have the tar-
get property, inference AUC scores exceed 0.95, which is
a huge improvement compared to the baseline attack where
all AUC scores are less than 0.6, and similar trends follow
for smile detection (with over 100 samples with property,
AUC improves from < 0.6 to > 0.78) and age prediction
(with over 100 samples with property, AUC improves from
< 0.77 to > 0.9). Comparing the results for the stealthier
attacks to the results that do not consider defenses in Fig-
ure 1, we observe that the attack effectiveness declines as
expected since we are now trading-off attack effectiveness
for stealthiness. Training models with the attack goal poses
negligible impact on the model performance (accuracy drop
< 0.9%, see Appendix A.6).

9. Conclusion

Our work demonstrates how a malicious upstream trainer
can manipulate its training process to amplify property in-
ference risks for downstream models when transfer learning
is done. Our empirical results show that such manipulations
can be exploited to enable very precise property inference,
even in black-box settings, across a variety of tasks. Al-
though there is potential for a new arms race between meth-
ods of hiding manipulations and methods of detecting them,
the larger lesson from this work, and other works exposing
similar risks, is that it is important that users of pretrained
models to only use models from trusted providers.
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[22] Marc Juárez, Samuel Yeom, and Matt Fredrikson. Black-
Box Audits for Group Distribution Shifts. arXiv preprint
arXiv:2209.03620, 2022. 1, 2

[23] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and
Vitaly Shmatikov. Exploiting Unintended Feature Leakage
in Collaborative Learning. In IEEE Symposium on Security
and Privacy, 2019. 2

[24] Cao Hong Nga, Khai-Thinh Nguyen, Nghi C Tran, and Jia-
Ching Wang. Transfer Learning for Gender and Age Pre-
diction. In IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-Taiwan), 2020. 5

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018. 5

[26] Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly
Shmatikov. Humpty Dumpty: Controlling Word Meanings
via Corpus Poisoning. In IEEE Symposium on Security and
Privacy, 2020. 2

[27] Ozan Sener and Vladlen Koltun. Multi-Task Learning as
Multi-Objective Optimization. In Advances in Neural Infor-
mation Processing Systems, 2018. 13

[28] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership Inference Attacks Against Machine
Learning Models. In IEEE Symposium on Security and Pri-
vacy, 2017. 4

15983



[29] Anshuman Suri and David Evans. Formalizing and Esti-
mating Distribution Inference Risks. In Privacy Enhancing
Technologies Symposium, 2022. 1, 2, 4, 5, 6

[30] Anshuman Suri, Pallika Kanani, Virendra J Marathe, and
Daniel W Peterson. Subject Membership Inference Attacks
in Federated Learning. arXiv preprint arXiv:2206.03317,
2022. 2

[31] Philipp Terhörst, Daniel Fährmann, Jan Niklas Kolf, Naser
Damer, Florian Kirchbuchner, and Arjan Kuijper. MAAD-
Face: A Massively Annotated Attribute Dataset for Face Im-
ages. IEEE Transactions on Information Forensics and Se-
curity, 16:3942–3957, 2021. 5, 11, 12

[32] Philipp Terhörst, Marco Huber, Jan Niklas Kolf, Ines Zelch,
Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Re-
liable Age and Gender Estimation from Face Images: Stating
the Confidence of Model Predictions. In IEEE International
Conference on Biometrics Theory, Applications and Systems
(BTAS), 2019. 5, 11

[33] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. With Great Training Comes Great
Vulnerability: Practical Attacks against Transfer Learning.
In USENIX Security Symposium, 2018. 1, 2, 3, 5

[34] Xiuling Wang and Wendy Hui Wang. Group Property In-
ference Attacks Against Graph Neural Networks. arXiv
preprint arXiv:2209.01100, 2022. 2

[35] Yuxin Wen, Jonas A Geiping, Liam Fowl, Micah Goldblum,
and Tom Goldstein. Fishing for user data in large-batch fed-
erated learning via gradient magnification. In International
Conference on Machine Learning, 2022. 2

[36] Yu Xia, Di Huang, and Yunhong Wang. Detecting Smiles of
Young Children via Deep Transfer Learning. In IEEE Inter-
national Conference on Computer Vision Workshops, 2017.
5

[37] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A
Gunter, and Bo Li. Detecting AI Trojans Using Meta Neu-
ral Analysis. In IEEE Symposium on Security and Privacy,
2021. 2, 4

[38] Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng, and Olga
Russakovsky. A Study of Face Obfuscation in ImageNet. In
International Conference on Machine Learning, 2022. 12

[39] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Latent Backdoor Attacks on Deep Neural Networks. In ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2019. 1, 2, 3, 5

[40] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond Empirical Risk Mini-
mization. In International Conference on Learning Repre-
sentations, 2018. 11

[41] Wanrong Zhang, Shruti Tople, and Olga Ohrimenko. Leak-
age of Dataset Properties in Multi-Party Machine Learning.
In USENIX Security Symposium, 2021. 1, 2, 4

[42] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
Comprehensive Survey on Transfer Learning. Proceedings
of the IEEE, 109, 2020. 1

[43] Yang Zou, Zhikun Zhang, Michael Backes, and Yang Zhang.
Privacy Analysis of Deep Learning in the Wild: Membership

Inference Attacks against Transfer Learning. arXiv preprint
arXiv:2009.04872, 2020. 2

15984


