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Abstract

Most of the existing salient object detection (SOD) mod-
els focus on improving the overall model performance, with-
out explicitly explaining the discrepancy between the train-
ing and testing distributions. In this paper, we investigate
a particular type of epistemic uncertainty, namely distribu-
tional uncertainty, for salient object detection. Specifically,
for the first time, we explore the existing class-aware dis-
tribution gap exploration techniques, i.e. long-tail learning,
single-model uncertainty modeling and test-time strategies,
and adapt them to model the distributional uncertainty for
our class-agnostic task. We define test sample that is dissim-
ilar to the training dataset as being “out-of-distribution”
(OOD) samples. Different from the conventional OOD def-
inition, where OOD samples are those not belonging to the
closed-world training categories, OOD samples for SOD
are those break the basic priors of saliency, i.e. center prior,
color contrast prior, compactness prior and etc., indicat-
ing OOD as being “continuous” instead of being discrete
for our task. We’ve carried out extensive experimental re-
sults to verify effectiveness of existing distribution gap mod-
eling techniques for SOD, and conclude that both train-time
single-model uncertainty estimation techniques and weight-
regularization solutions that preventing model activation
from drifting too much are promising directions for mod-
eling distributional uncertainty for SOD.

1. Introduction
Saliency detection (or salient object detection, SOD) [6,

11, 14, 40, 44, 64, 65, 67–69, 74–76, 78] aims to localize
object(s) that attract human attention. Most of the exist-
ing techniques focus on improving model performance on
benchmark testing dataset without explicitly explaining the
distribution gap issue within this task. In this paper, we
aim to explore the distributional uncertainty for better un-
derstanding of the trained saliency detection models.

Jing Zhang (zjnwpu@gmail.com) and Yuchao Dai
(daiyuchao@nwpu.edu.cn) are the corresponding authors.
Our code is publicly available at: https://npucvr.github.io/
Distributional_uncer/.

Figure 1. Visualization of different types of uncertainty, where
aleatoric uncertainty (p(y|x∗, θ)) is caused by the inherent ran-
domness of the data, model uncertainty (p(θ|D)) happens when
there exists low-density region, leading to multiple solutions
within this region, and distributional uncertainty (p(x∗|D)) oc-
curs when the test sample x∗ fails to fit in the model based on the
training dataset D.

Background: Suppose the training dataset is D =
{xi, yi}Ni=1 of size N is sampled from a joint data distri-
bution p(x, y), where i indexes the samples and is omit-
ted when it’s clear. The conventional classifier is trained to
maximize the conditional log-likelihood log pθ(y|x), where
θ represents model parameters. When deploying the trained
model in real-world, its performance depends on whether
the test sample x∗ is from the same joint data distribution
p(x, y). For x∗ from p(x, y) (indicating x∗ is in-distribution
sample), its performance is impressive. However, when
it’s from a different distribution other than p(x, y) (i.e. x∗

is out-of-distribution sample), the resulting p(y|x∗) often
yield incorrect predictions with high confidence. The main
reason is that p(y|x∗) does not fit a probability distribu-
tion over the whole joint data space. To fix the above is-
sue, deep hybrid models (DHMs) [5,18,46,73] can be used
to model the joint distribution: p(x, y) = p(y|x)p(x). Al-
though the trained model may still inaccurately assign high
confidence p(y|x∗) for out-of-distribution sample x∗, effec-
tive marginal density modeling of p(x∗) can produce low
density for it, leading to reliable p(x∗, y).

Given a testing sample x∗, with a deep hybrid model,
[5] proposes to factorize the posterior joint distribution
p(x∗, y|θ,D) via:

p(x∗, y|θ,D) = p(y|x∗, θ)︸ ︷︷ ︸
data

p(x∗|D)︸ ︷︷ ︸
distributional

p(θ|D)︸ ︷︷ ︸
model

, (1)
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Figure 2. “OOD” samples for salient object detection. Different
from the class-aware tasks, OOD for saliency detection is continu-
ous, which can be defined as attributes that break the basic saliency
priors, i.e. center prior, contrast prior, compactness prior, etc.

where the basic assumption is that p(x∗|θ,D) = p(x∗|D),
which is true as θ is obtained based on D. p(y|x∗, θ) in
Eq. 1 is used to model data uncertainty or aleatoric uncer-
tainty [31], which is inherent in the data generation process.
p(x∗|D) represents distributional uncertainty, explaining
the distribution gap between the test sample and the train-
ing dataset. p(θ|D) is model uncertainty, representing the
uncertainty of model parameters given the current training
dataset (see Fig. 1). The latter two can be combined and
termed as “epistemic uncertainty” [31].

As the aleatoric uncertainty captures the inherent
stochastic, it usually cannot be explained away with more
data. On the contrary, more training data can reduce
the model uncertainty. We claim that “distributional un-
certainty”, indicating the degree of “out-of-distribution”
(OOD), is harder to reduce than “model uncertainty”. Al-
though more diverse data can reduce the “distributional un-
certainty” to some extend, as we cannot estimate an un-
biased testing distribution, distributional uncertainty can-
not be completely explained away. In this paper, we focus
on modeling the distributional uncertainty for saliency de-
tection, and define OOD samples for saliency detection as
those break the basic saliency priors, i.e. center prior, color
contrast prior, compactness prior and etc. (see Fig. 2). In
this case, saliency OOD is “continuous” instead of discrete.

For the first time, we aim to explore distributional un-
certainty estimation for saliency detection. Specifically, we
investigate the existing class-aware distribution gap explo-
ration techniques and adapt them to model the distributional
uncertainty for our class-agnostic task (sec. 2). We also per-
form extensive experiments in sec. 3 to explain both the
advantages and limitations of each technique for our task.
Based on the extensive experiments, we conclude: 1) With
the ensemble structure, Deep ensemble [34] produces more
accurate predictions with high calibration degree [19] com-
pared with Monte Carlo (MC) dropout [15] for salient ob-
ject detection; 2) The categorical distribution based long-
tail solutions [10, 13, 29, 37, 56, 57, 59, 62, 63] fail to gener-

alize well to the continuous saliency detection task; 3) The
single-model uncertainty methods [9, 22, 25] are effective
in exploring distributional uncertainty for SOD, especially
the training-time based techniques [9,54]; 4) For pixel-level
prediction tasks, the test-time training methods [3, 4, 7, 12,
16, 20, 51, 55, 61] are prone to generate too confidence pre-
dictions in the uncertain area. Based on data augmentation,
the test-time testing solutions [8,32,33,38,42,43,49,52,53]
show potential in producing reliable distributional uncer-
tainty for salient object detection.

2. Distributional Uncertainty Modeling
As shown in Eq. 1, distributional uncertainty indicates

the gap between the test sample x∗ and the training dataset
D. We mainly explore three types of distribution gap
modeling techniques [13, 22, 45, 49, 66], including long-tail
learning techniques (sec. 2.1), single model uncertainty es-
timation (sec. 2.2) and test-time strategies (sec. 2.3). We
will introduce the state-of-the-art solutions of each direc-
tion, and apply them to our class-agnostic binary segmenta-
tion task for distributional uncertainty estimation.
Setup: For easier presentation, we explain the experiments
setup first. We take ResNet50 [21] as our backbone model
fθ = {sk}4k=1, where channel sizes of the backbone fea-
tures are 256, 512, 1024 and 2048 respectively. To relief the
huge memory requirement and also obtain larger receptive
field, we feed the backbone features to four different multi-
scale dilated convolutional blocks [72] with Batch Renor-
malization layers [27] and obtain new backbone features
f b
θ = {s′k}4k=1 of the same channel size as 32, and we define
f b as the encoder of our framework. We then feed {s′k}4k=1

to decoder fd from [50] to generate the saliency prediction
fd
θ (f

b
θ (x)) for input RGB image x.

2.1. Long-tail learning to overcome distribution bias

Long-tail learning based methods [47] are designed to
address the problem of class imbalance in the training data.
In this case, the “distribution gap” can be explained as the
gap between long-tailed training and uniform testing. Ex-
isting long-tail solutions can be roughly divided into data
resampling based methods [10,13,29,62] and loss reweight-
ing strategies [37, 56, 57, 59, 63]. The former over-samples
the training data from tail classes and under-samples those
from the head classes to achieve data re-balance. The latter
regularizes model parameters to pay more attention to the
tail classes via class-balanced loss function.
Model-rebalance techniques: As long-tailed training leads
to biased model, model-rebalance techniques [77] aim to
debiase the model directly. Among them, [77] designs a
diverse expert learning network to model different distri-
butions, and employs a test-time self-supervised learning
method to learn the weights for aggregation of diverse ex-
perts. Specifically, the network has a shared feature ex-
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tractor and three category prediction heads that simulate
long-tailed distribution, uniform distribution, and inverse
long-tailed distribution, respectively. The final loss func-
tion is then defined based on outputs from the three predic-
tion heads. Further, [77] performs test-time self-supervised
learning to achieve prediction consistency, and learn the ag-
gregation weights {αl}3l=1 to generate the final prediction.
Loss reweighting techniques: Model-rebalance tech-
niques [77] achieve debiased models by assuming vari-
ous test distributions. Alternatively, loss-reweighting meth-
ods intend to balance the contributions of the head classes
and tail classes. Among them, [2] introduces a two-
stage learning method, which first learns feature represen-
tation via weight decay, and then uses the combination
of class-balanced loss function LCB , weight decay and
MaxNorm [23] to learn the weights of the classification
layer, where the class-balanced loss function can be writ-
ten as:

LCB(x) =
1− β

1− βNy
log(ŷ), (2)

where {Nc}Cc=1 is the number of class c in training dataset,
y is the ground truth class label, ŷ is the predicted class
probability, and β is a hyperparameter.
Post-hoc techniques: Instead of training the model with
model/loss rebalance strategies, long-tail learning can also
be achieved via post-hoc techniques, i.e. [48] (NorCal) opti-
mizes the general Softmax process by counting the number
of each class {Nc}Cc=1 and calculating the class weights.
The probability that the image x is predicted to be class c is
then defined as:

p(c|x) = exp(ϕc(x))/αc∑C
c′=1 exp(ϕ

′
c(x))/α

′
c + exp(ϕc+1(x))

, (3)

where αc is monotonically increasing with respect to Nc, ϕc

is the predicted logit of class c and c+ 1 is the background
class for object detection task. In this way, the scores for
head classes will be suppressed.
Long-tail techniques for saliency detection: The main
challenge of applying existing long-tail learning methods
to saliency detection is that tail “categories” of class-aware
tasks, e.g. object detection, semantic segmentation, image
classification, are easy to define, while it’s hard to identify
tail classes for our class-agnostic task, as saliency is “at-
tribute” based, which is continuous. Following the conven-
tional long-tail learning techniques, we introduce “continu-
ous version” long-tail learning for saliency detection.

1) Model-rebalance based saliency distributional un-
certainty modeling: To adapt [77] for saliency detection,
we construct a multi-head dense prediction network with a
shared encoder f b

θ and three decoders {fd
θl
}3l=1 that sim-

ulate the three different distributions, i.e. long-tailed dis-
tribution, uniform distribution, and inverse long-tailed dis-
tribution with different loss function. We first learn this

multi-head model where the loss function is defined as sum
of these three distribution-head losses. As a binary dense
prediction task, the outputs ŷl ∈ RC×H×W of these three
heads are pixel-wise predictions after Softmax with C = 2.

After the first stage training of the multi-head model,
the test-time training is performed to learn the aggregation
weights {αl}3l=1 for each test sample xt with loss function
defined as:

Lα(xt) = −sim(ŷ(xt), ŷ
′(x′

t)), (4)

where ŷ(xt) =
∑3

l=1 αl · ŷl(xt) is the final prediction of xt,
sim(, ) is the cosine similarity, x′

t represents the augmented
image, where we use the horizontal flip and ŷ′ represents
the inverse augmentation operation on the output.

2) Loss-reweighting based saliency detection: As a
two-stage training framework, we perform loss-reweighting
based saliency detection following [2], where within the
first stage training, we use conventional models with weight
decay to learn feature representation. Then for the second
stage training, class weighted loss function is used to bal-
ance the class distribution via:

LCB(xu) = αu(yulog(ŷu) + (1− yu)log(1− ŷu)), (5)

where αu = (1 − β)/(1 − βNyu ) is a pixel-wise class-
balanced wight, and yu is the ground truth class label of
pixel u. In practice, for the second stage training, we
freeze all parameters from the first stage training except the
last prediction convolutional layer and use weight decay,
MaxNorm [23] and pixel-wise class-balanced loss functions
simultaneously to optimize the predictions.

3) Post-hoc long-tail learning for saliency detection:
Based on our trained base model, we can use the class
weighting function to recalibrate the output logit as a post-
hoc technique to get the predicted probability. The proba-
bility that pixel xu is predicted to be foreground is:

pf (xu) =
exp(ϕf (xu))/αf

exp(ϕf (xu))/αf + exp(ϕb(xu))/αb
, (6)

where αf and αb monotonically increase with respect to the
number of foreground pixels Nf and background pixels Nb

respectively. ϕf , ϕb are foreground and background logits
respectively.

2.2. Single-model uncertainty

Uncertainty estimation aims to estimate uncertainty of
the data or the model. As explained in Fig. 1, aleatoric
uncertainty is inherent, which can not be explained away
with more data. We focus on epistemic uncertainty, espe-
cially uncertainty to model the out-of-distribution samples,
which shares the same idea as distributional uncertainty es-
timation. The typical solution to achieve out-of-distribution
(OOD) detection is designing a OOD detector g(x) based
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on a score function confidence h(x) to decide the input sam-
ple as in-distribution (ID) or out-of-distribution (OOD) via:

g(x) =

{
ID, if h(x) ≥ τ,

OOD, if h(x) < τ,
(7)

where τ the OOD threshold, which is usually chosen so that
a high fraction of ID data is correctly classified. The main
focus of OOD detection is then to define reliable score h(x),
which can be achieved via post-hoc techniques, i.e. gradient
based method [25], energy-score based method [41], train-
ing techniques, i.e. loss function regularization [9], data re-
processing [58], or feature regularization [54].

1) Post-hoc techniques: The post-hoc techniques ei-
ther compute confidence directly from model output (max-
imum class probability(MCP) [22]) or re-interpret model
output [17] from Softmax via an energy-based model for-
mulation [35]. There also exists solutions that renormal-
ize the logit space based on statistics from the training
dataset [28] or compute directly the Kullback–Leibler di-
vergence of output distribution from the uniform distribu-
tion [36], where the basic assumption is the OOD samples
should have uniform predictive distribution across the cate-
gories.

The basic assumption of MCP [22] is that correctly clas-
sified samples tend to have higher maximum softmax prob-
abilities than the erroneously classified ones or the out-
of-distribution ones. In this case, [22] defines the max-
imum softmax probability as confidence score. Specifi-
cally, for pixel u, it’s MCP (confidence) is obtained via
hu = max{pf , pb}, where pf and pb are the probability
of pixel u is predicted to foreground/background for our bi-
nary segmentation task.

Based on the inherent connection between energy-based
model [35] and the Softmax function within the modern
machine learning framework, [41] introduces energy score.
Eθ(x) is the free energy, which is defined as: Eθ(x) =
− log

∫
y′ exp−Eθ(x,y

′)dy′. Similarly, given the classifica-
tion setting with Eθ(x, y = c) = −fθ(x)c, we have
Eθ(x) = − log

∑C
c=1 exp(fθ(x)c). [41] defines confidence

score as negative free energy, leading to h = −Eθ(x).
SML [28] calculates the mean and variance of the fore-

ground (mf , vf ) and background logits (mb, vb) on the
training set, which are used to standardize the max logits.
The max logit of pixel u is ϕm = max(ϕu,f , ϕu,b), and
the standardized max logit is ϕs = (ϕm − mf )/vf if the
label of pixel u is foreground. Boundary suppression and
smoothing operations are then used to eliminate some false
positives and get the confidence map.

Gradient based Confidence (GC) [1, 24, 25, 36, 39] as-
sumes uniform predictive distribution for the OOD samples.
As an extension, ExGrad [26] calculates the confidence of
pixel u as h(u) = 1−

∑C
c=1 pc · (1− pc) = 1− 2 · pf · pb.

2) Training techniques: Training a single-model uncer-
tainty estimation network can be achieved via loss function
regularization [9], data re-processing [58], or weight reg-
ularization [54]. [9] uses an additional CondifNet to learn
the true class probability (TCP), which directly reflects the
confidence of predictions. Higher TCP values response net-
work predictions are of higher quality. To adapt it for our
saliency detection task, we add an additional decoder on the
base model to predict the confidence map h ∈ RH×W , and
its output is constrained by the MSE loss with the true class
probability value of the prediction decoder:

Ltcp(xu) = (hu − p⋆u)
2, (8)

where the p⋆u is the probability of pixel u is predicted as the
ground truth class. The uncertainty is defined as u = 1−h.

Alternatively, data-renormalization [58] can be used to
achieve single model uncertainty estimation. [58] adopts
prediction variation as model uncertainty by training on a
dataset shifted by random constant biases. Specifically, the
conventional model is to map the input x to label y di-
rectly, but [58] makes the model to learn the mapping from
(z, x − z) to y by setting a random anchor z. By chang-
ing the random anchor z, the model can generate multiple
predictions about x, resulting in the model uncertainty.

In our experiment, we select a random image from the
mini-batch as a random anchor z, concatenate the random
anchor z with the residual between the input image and the
anchor x − z as the input to the model fθ, and add an ad-
ditional convolution layer at the beginning of the model
to reduce the dimension to 3 in order to fit the pretrained
weights. The output of the model is supervised by the
saliency map corresponding to the input image x. The loss
function of the model is:

Ldc(x) = L(fθ(z, x− z), y). (9)

Instead of loss or data regularization, [54] (ReAct) per-
forms rectified activation on the features r(x) of the model
through a set threshold α, and then feeds it to the later layer
fl to get the prediction. The process can be described as

r′(x) = min(r(x), α),

ŷ = fl(r
′(x)),

(10)

where the threshold α is set based on the p-th percentile
of activations estimated on the in-distribution data, which
can sufficiently preserve the activations for in-distribution
data and truncate high activation to limit the effect of noise.
We perform ReAct on the features of the trained base
model penultimate layer, from which we statistically obtain
a threshold α such that 90% of the activation values are less
than α. After several counts, the threshold is set to 5. The
features after ReAct are then fed into the last layer to obtain
the predictions.
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2.3. Test-time Strategies

Test-time strategies [8, 32, 33, 38, 42, 43, 49, 52, 53], in-
cluding both test-time training and test-time augmentation.
The motivation of test-time training(TTT) [3, 4, 7, 12, 16,
20, 51, 55, 61] is to adapt each testing sample to the trained
model by optimizing its specific part of parameters, which
is also defined as a one-sample learning problem. The loss
function is mostly defined as the consistency of the predic-
tion results of the data before and after the augmentation t:

LTTT (x) = L(fθ(x), fθ(t(x))),
θ ← θ − r∇θLTTT (x),

(11)

where r is the learning rate.
Test-time augmentation (TTA) aims to improve net-

work performance through data augmentation at test time
without adding additional network parameters for training.
Most test-time augmentation methods select multiple suit-
able augmentations T for test data from a large transfor-
mation candidates using some strategies, and integrate the
augmented predictions to obtain the final prediction result,
which can be written as:

yTTA(x) =
∑
t∈T

αt · fθ(t(x)), (12)

where αt is the integration weight corresponding to the
transformation t.
Test-time strategies for saliency detection: [61] makes the
trained model gradually adapt to the test data by adopting a
self-supervised learning method. Specifically, [61] adopts
a teacher-student network in test dataset, and we initialize
both teacher and student network by our trained base model.
The student network fθs takes the original image as the in-
put, and the teacher network fθt takes the augmented im-
age as the input. Here we use an image enhancement strat-
egy t that adds random Gaussian noise, since inappropriate
color/brightness changes may lead to saliency changes. The
student network updates the parameters through the consis-
tency loss of the teacher-student network outputs, and the
teacher network uses the exponential moving average of the
student network to update its parameters:

L(x) = L(fθs(x), fθt(t(x))),
θs ← θs − r∇θsL(x),
θt ← αθt + (1− α)θs.

(13)

To prevent the catastrophic forgetting of the student net-
work, the parameters of the student network are randomly
restored to the initial weights. However, due to the influence
of the performance of the trained model, self-supervised
learning on the teacher-student network may make the net-
work focus on the results of mis-classified regions, resulting
in performance degradation.

To avoid drifting the trained model too much, [8] selects
the most suitable augmentations for the image by cycling.
Firstly, the model is trained with a Spearman-aware ranking
loss with a loss prediction network fl that takes images as
input to predict the relative magnitude of loss values, which
is supervised by the actual loss between the outputs of pre-
diction head and the ground-truth maps:

Lloss(x) = Lrank(fl(x),L(fθ(x), y)). (14)

During testing, the loss values of a series of augmented im-
ages are first calculated by the loss prediction network, from
which the augmentation t with the smallest loss is selected
to transform the image, and then the augmented image is
used as input to repeat the above process, which finally
stops at a set number of times.

t = min
t∈T

fl(t(x)), x← t(x), (15)

such that the augmented image can be obtained after a se-
ries of selected augmentations, and is fed to the trained base
model to obtain the prediction. Alternatively, the above
cycle can be repeated several times to obtain multiple pre-
dictions, and the entropy values of the predictions are used
to weight the multiple predictions and obtain the final pre-
diction, making it possible to focus more on the prediction
with low uncertainty. Since dense saliency prediction tasks
require network prediction to correspond pixel-by-pixel to
the ground-truth saliency map, it is difficult to apply some
transformations such as clipping in TTA that will lose some
pixels, and we adopt transformations by adding random
Gaussian noise, horizontal flipping and size scaling to com-
pose the transformation candidates.

3. Experiments
Training/testing dataset: Following the conventional
training and testing settings, we train our models with the
DUTS training dataset [60] of size N = 10, 553. We then
test on three benchmark testing datasets, including DUTS
testing dataset [60], ECSSD [70] and DUT [71] dataset.
Evaluation metrics: We report model performance us-
ing three standard metrics, including maximum F-measure,
IoU and Accuracy. F-measure is defined as: Fβ =
(1+β2)Precision×Recall

β2Precision+Recall , where both Precision and Recall are
based on binarized saliency prediction (with 256 uni-
formly distributed binarazation thresholds in the range of
[0,255]) and the ground truth map. “maxFβ” (maximum
F-measure) is reported as the maximum Fβ . IoU (Inter-
section over Union) score is computed based on the binary
predicted mask with adaptive thresholds and the ground-
truth. Accuracy measures the proportion of pixels after bi-
narization that have been correctly assigned to the salient
foreground or background, where the binarization is also
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Table 1. Performance of classic distribution bias modeling strategies.

DUTS [60] ECSSD [70] DUT [71]
Method maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑ maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑ maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑
Base 0.849 0.774 0.965 0.151 0.952 0.924 0.869 0.968 0.127 0.959 0.753 0.682 0.946 0.211 0.925

MCDropout [15] 0.846 0.772 0.964 0.150 0.952 0.924 0.871 0.968 0.126 0.959 0.750 0.680 0.945 0.211 0.924
DeepEnsemble [34] 0.851 0.781 0.965 0.141 0.954 0.925 0.873 0.968 0.113 0.962 0.758 0.690 0.945 0.196 0.928

Table 2. Performance of long-tail learning based distribution bias modeling strategies.

DUTS [60] ECSSD [70] DUT [71]
Method maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑ maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑ maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑
Base 0.849 0.774 0.965 0.151 0.952 0.924 0.869 0.968 0.127 0.959 0.753 0.682 0.946 0.211 0.925
TALT [77] 0.828 0.768 0.962 0.284 0.918 0.913 0.868 0.967 0.199 0.940 0.741 0.682 0.942 0.376 0.873
NorCal [48] 0.839 0.771 0.964 0.187 0.942 0.918 0.868 0.967 0.149 0.954 0.747 0.681 0.944 0.262 0.910
WB [2] 0.843 0.773 0.964 0.165 0.948 0.918 0.866 0.967 0.136 0.956 0.748 0.681 0.945 0.232 0.919

GT/Image Base MCDropout [15] DeepEnsemble [34]

Figure 3. Visual comparison of [15] with [34]. The first col-
umn shows the input image and segmentation GT, and the other
columns show the generated segmentation predictions and un-
certainty maps. Compared to other models, the DeepEnsemble
method integrates the information of multiple decoders, making it
more accurate in distributional uncertainty modeling.

achieved via adaptive thresholding. To evaluate the distri-
butional uncertainty modeling degree of the trained model,
following metrics for out-of-distribution, we also report per-
formance with area under receiver operating characteristics
(AUROC) and false positive rate at a true positive rate of
95% (FPR95) since the rate of false positives in high- recall
areas is crucial for safety-critical applications.

3.1. Evaluate Sample Difficulty

Due to the inherent “continuous” nature of saliency, we
cannot directly prepare OOD samples based solely on the
categories or distribution of categories. Alternatively, we
adopt sample-difficulty indicator from [1] to roughly decide
the difficulty of each test sample.

[1] measures sample difficulty by the gradient variance
in the training phase. Specifically, we set multiple (K)
checkpoints {fk}Kk=1 during training to obtain the gradient
at the input gk ∈ R3×H×W for each sample. After training,
we can obtain K gradient maps {gk}Kk=1 for each sample,
and by calculating the variance, we can get the variance of
gradient (VoG) score SV oG via:

SV oG =
1

HW

∑
u

(∑K
k=1(gk(u)− µ(u))2√

K

)
,

µ =
1

K

K∑
k=1

gk,

(16)

where
∑

u calculates pixel-wise sum across pixel u. Images
with large VoG scores represent large gradient changes dur-
ing the training phase and are identified as difficult samples.
We define them as OOD samples in this paper (see Fig. 2).
Unless stated otherwise, samples for the the visual compar-
isons are from the hard sample pool based on the VoG score.

3.2. Uncertainty Computation

Except for the methods that can directly predict the con-
fidence/uncertainty, we compute the degree of uncertainty
by calculating the entropy of the predicted probability. Al-
though variance is wildly used in generating uncertainty for
the prediction ensemble based regression models, for our bi-
nary segmentation task, we use entropy of mean prediction
as confidence measure, which is more suitable. Specifically,
entropy is a measure of disorder, or unpredictability. For in-
distribution (ID) samples, we aim to produce concentrated
predictions on one specific category, leading to low entropy.
On the contrary, for out-of-distribution (OOD) samples, the
model should produce uniform distribution across the cate-
gories, leading to high entropy. Accordingly, entropy score
can be used to identify in-distribution samples and out-of-
distribution samples.
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Table 3. Performance of single model uncertainty modeling meth-
ods.

DUTS [60] ECSSD [70] DUT [71]
Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
Base 0.151 0.952 0.127 0.959 0.211 0.925

Post-hoc Techniques

MCP [22] 0.151 0.952 0.127 0.959 0.211 0.925
Energy [41] 0.151 0.950 0.151 0.949 0.192 0.932
SML [28] 0.192 0.937 0.164 0.947 0.257 0.906
GradNorm [25] 0.177 0.936 0.174 0.936 0.216 0.914
ExGrad [26] 0.151 0.952 0.127 0.959 0.211 0.925

Training Regularization Techniques

TCP [9] 0.126 0.955 0.109 0.961 0.166 0.933
DC [58] 0.162 0.946 0.136 0.955 0.212 0.923
ReAct [54] 0.148 0.953 0.126 0.958 0.201 0.927

3.3. Performance of Distribution Gap Modeling
Techniques for Saliency Detection

Conventional Solutions Analysis: Two widely studied
conventional epistemic uncertainty modeling strategies are
Monte Carlo (MC) dropout [15] and Deep ensemble [34].
The former is achieved via approximating a Bayesian neu-
ral network by applying dropout after the convolutional
layer, which is further relaxed in [30], where they prove
that adding dropout in the decoder is sufficient to achieve
Bayesian approximation. Deep ensemble achieves multiple
mapping functions from the input space to the output space,
which is proven the most effective model uncertainty mod-
eling techniques, although it’s more computational expen-
sive compared with the free-lunch MC-dropout technique.

The quantitative evaluation results of traditional uncer-
tainty modeling methods (dropout and deep ensemble) are
shown in Tab. 1. Compared with base model and Dropout
strategy, the deep ensemble method integrates the informa-
tion of multiple decoders, making it more accurate in distri-
butional uncertainty modeling (see Fig. 3).
Long-tail Learning based Methods: We show perfor-
mance of long-tail methods for SOD in Tab. 2, and observe
consistent inferior performance of each solution compared
with the base model. The main reason is that long-tail learn-
ing models usually rely on the size of each category as class-
balance weight, where the basic assumption is that there ex-
ists no transition across categories. However, as saliency is
a continuous attribute, foreground and background can be
transferred flexibly. We believe the continuous adaptation
of discrete long-tail methods is less effective for our task.
Single-model Uncertainty Techniques: We use multiple
post-hoc and training regularization methods to implement
the single model uncertainty modeling, and the results are
shown in Tab. 3, where prediction accuracy is not shown as
its hardly affected. We find the post-hoc techniques fail to
improve the uncertainty quality. On the contrary, the train-
ing techniques, especially TCP [9] and ReAct [54] are ef-

GT/Image Base ReAct [54] TCP [9]

Figure 4. Qualitative comparison of single-model uncertainty
modeling strategies, i.e. ReAct [54] and TCP [9], which both indi-
cate more correct predictions and reliable uncertainty maps.

fective in generating reliable uncertainty. We then visual-
ize the generated uncertainty maps from TCP [9] and Re-
Act [54] in Fig. 4, which clearly shows the advantages for
both accurate prediction and reliable uncertainty genera-
tion. Although DC [58] is efficient to generate single-model
uncertainty. As it predicts uncertainty by adding random
image perturbations, for pixel-level prediction, the pertur-
bation will greatly affects the accuracy.
Test-time solutions Test-time strategies improve perfor-
mance through self-supervised adaptive learning on the test
set (CoTTA [61]) to make the network more adaptable to
the test data, or through aggregation of multiple augmenta-
tions of the test data (CTTA [8]). The experimental results
are shown in Tab. 4. We observe that the test-time training
method may lead to the model that focuses on mis-classified
pixels in self-supervised learning, resulting in performance
degradation. In this case, carefully designed strategy to pre-
vent model from drifting too much should be imposed. On
the other hand, the test-time testing method has the poten-
tial to generate reliable uncertainty if proper augmentation
policies are learned.

We also show some qualitative results in Fig. 5, and it
can be seen that the use of data augmentation methods can
help us explore low-density and calibrate mis-classified re-
gions to learn the correct distributional uncertainty. How-
ever, for dense prediction tasks, due to the requirement of
pixel-by-pixel correspondence, augmentations such as in-
terception on test image that will lose pixel information and
cannot be performed. Simultaneously, pixel values cannot
be greatly changed, as it may lead to significant model dif-
ference. Therefore, the augmentation degree is minor to im-
age classification task, which limits its flexibility for SOD.
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Table 4. Performance of test-time strategies. CoTTA [61] is a test-time training method and CTTA [8] is a test-time augmentation technique.

DUTS [60] ECSSD [70] DUT [71]
Method maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑ maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑ maxFβ ↑ IoU ↑ Accuracy ↑ FPR95 ↓ AUROC ↑
Base 0.849 0.774 0.965 0.151 0.952 0.924 0.869 0.968 0.127 0.959 0.753 0.682 0.946 0.211 0.925

CoTTA [61] 0.760 0.681 0.943 0.239 0.922 0.883 0.810 0.947 0.211 0.930 0.698 0.626 0.928 0.275 0.906
CTTA [8] 0.836 0.748 0.959 0.141 0.953 0.919 0.853 0.963 0.117 0.960 0.753 0.674 0.946 0.193 0.929

GT/Image Base CoTTA [61] CTTA [8]

Figure 5. Visual comparison of test-time strategies, i.e. test-time
training (CoTTA [61]) and test-time augmentation (CTTA [8]). It
shows that test-time augmentation strategy can help explore low-
density regions and calibrate incorrect predictions.

3.4. Analysis

MC dropout [15] is achieved by randomly dropping con-
nections between neurons during both training and test-
ing. Deep ensemble is designed to achieve multiple map-
ping functions. Our experiments show that without proper
control of the dropout mask, although it’s free lunch, MC
dropout [15] fails to generate reliable uncertainty. Although
the long-tail solutions [2, 48, 77] work nicely for class-
independent classification task, we find they are less ef-
fective in modeling distributional uncertainty for our class-
dependent continuous segmentation task. Single-model un-
certainty is promising as it directly target distribution gap.
However, the post-hoc methods rely too much [22,41] or are
based on biased assumption, i.e. gradient based confidence
estimation methods [25,26] assume uniform distribution for
out-of-distribution samples, which is usually biased in prac-
tice. Training regularization methods achieve uncertainty
modeling with either loss regularization [9], feature acti-
vation [54] or data regularization [58], which proved to be
quite suitable for our task, as there are no class-independent
assumption. The test-time strategies [8, 61] are straightfor-
ward and promising, especially test-time training. Although
our current experiments fail to generate reliable uncertainty
map with the current state-of-the-art test-time training tech-
niques, we believe using suitable regularization to control
the drift degree of test-time training can be promising in
generating reliable distributional uncertainty. We further
show the distribution of AUROC metric on DUTS testing
dataset [60] in Fig. 6, which clearly shows that deep en-
semble [34] and TCP [9] are effective in generating reliable
distributional uncertainty.
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Figure 6. The distribution of AUROC metric on DUTS testing
dateset [60], where x-axis is the AUROC measure, y-axis is the
number of samples. The white line with the black number on the
left indicates the mean AUROC of each method. The short blue
line on the left represents the value of the lower 5% percentile.

4. Conclusion
Although much progress has been made to improve

model performance of SOD on benchmark testing datasets,
no attention has been paid to the out-of-distribution prob-
lem in SOD. In this paper, we make the first effort in in-
vestigating the out-of-distribution discovery issue for SOD,
to explain the distribution gap. We perform extensive ex-
perimental results and verify the effectiveness of deep en-
semble [34] and the single-model uncertainty estimation
technique, i.e. TCP [9], in generating reliable distributional
uncertainty. We find that although long-tail learning solu-
tions are effective in class-independent classification tasks,
they fail to generalize well to our class-dependent task. We
also point out that although the current implementation of
test-time training fails to improve uncertainty quality, it’s
promising to further explore regularization terms to control
the drift degree of model for better uncertainty generation.
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