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Abstract

In this work, we tackle the problem of online camera-to-
robot pose estimation from single-view successive frames
of an image sequence, a crucial task for robots to inter-
act with the world. The primary obstacles of this task are
the robot’s self-occlusions and the ambiguity of single-view
images. This work demonstrates, for the first time, the ef-
fectiveness of temporal information and the robot structure
prior in addressing these challenges. Given the succes-
sive frames and the robot joint configuration, our method
learns to accurately regress the 2D coordinates of the pre-
defined robot’s keypoints (e.g. joints). With the camera in-
trinsic and robotic joints status known, we get the camera-
to-robot pose using a Perspective-n-point (PnP) solver. We
further improve the camera-to-robot pose iteratively using
the robot structure prior. To train the whole pipeline, we
build a large-scale synthetic dataset generated with do-
main randomisation to bridge the sim-to-real gap. The ex-
tensive experiments on synthetic and real-world datasets
and the downstream robotic grasping task demonstrate that
our method achieves new state-of-the-art performances and
outperforms traditional hand-eye calibration algorithms in
real-time (36 FPS). Code and data are available at the
project page: https://sites.google.com/view/sgtapose.

1. Introduction

Camera-to-robot pose estimation is a crucial task in
determining the rigid transformation between the camera
space and robot base space in terms of rotation and trans-
lation. Accurate estimation of this transformation enables
robots to perform downstream tasks autonomously, such as
grasping, manipulation, and interaction. Classic camera-
to-robot estimation approaches, e.g. [11, 14, 33], typically
involve attaching augmented reality (AR) tags as mark-
ers to the end-effector and directly solving a homogeneous
matrix equation to calculate the transformation. However,
these approaches have critical drawbacks. Capturing mul-
tiple joint configurations and corresponding images is al-
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Figure 1. Overview of the proposed SGTAPose. Given a tem-
poral sequence of RGB frames and known robot structure priors,
our method estimates the 2D keypoints (e.g., joints) of the robot
and performs real-time estimation of the camera-to-robot pose by
combining a Perspective-n-point (PnP) solver(left). This real-time
camera-to-robot pose estimation approach can be utilised for vari-
ous downstream tasks, such as robotic grasping(right).

ways troublesome, and these methods cannot be used on-
line. These flaws become greatly amplified when down-
stream tasks require frequent camera position adjustment.

To mitigate this limitation of classic offline hand-eye cal-
ibration, some recent works [19, 20] introduce vision-based
methods to estimate the camera-to-robot pose from a single
image, opening the possibility of online hand-eye calibra-
tion. Such approaches significantly grant mobile and itin-
erant autonomous systems the ability to interact with other
robots using only visual information in unstructured envi-
ronments, especially in collaborative robotics [21].

Most existing learning-based camera-to-robot pose esti-
mation works [19, 21, 26, 30] focus on single-frame estima-
tion. However, due to the ambiguity of the single-view im-
age, these methods do not perform well when the robotic
arm is self-occluded. Since the camera-to-robot pose is
likely invariant during a video sequence and the keypoints
are moving continually, one way to tackle this problem is
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to introduce temporal information. However, a crucial tech-
nical challenge of estimating camera-to-robot pose tempo-
rally is how to fuse temporal information efficiently. To
this end, as shown in Fig. 1, we propose Structure Prior
Guided Temporal Attention for Camera-to-Robot Pose es-
timation (SGTAPose) from successive frames of an image
sequence. First, we proposed robot structure priors guided
feature alignment approach to align the temporal features in
two successive frames. Moreover, we apply a multi-head-
cross-attention module to enhance the fusion of features in
sequential images. Then, after a decoder layer, we solve
an initial camera-to-robot pose from the 2D projections of
detected keypoints and their 3D positions via a PnP solver.
We lastly reuse the structure priors as an explicit constraint
to acquire a refined camera-to-robot pose.

By harnessing the temporal information and the robot
structure priors, our proposed method gains significant per-
formance improvement in the accuracy of camera-to-robot
pose estimation and is more robust to robot self-occlusion.
We have surpassed previous online camera calibration ap-
proaches in synthetic and real-world datasets and show a
strong dominance in minimising calibration error compared
with traditional hand-eye calibration, where our method
could reach the level of 5mm calibration errors via multi-
frame PnP solving. Finally, to test our method’s capability
in real-world experiments, we directly apply our predicted
pose to help implement grasping tasks. We have achieved a
fast prediction speed (36FPS) and a high grasping success
rate. Our contributions are summarised as follows:

• For the first time, we demonstrate the remarkable
performance of camera-to-robot pose estimation from
successive frames of a single-view image sequence.

• We propose a temporal cross-attention strategy absorb-
ing robot structure priors to efficiently fuse successive
frames’ features to estimate camera-to-robot pose.

• We demonstrate our method’s capability of imple-
menting downstream online grasping tasks in the real
world with high accuracy and stability, even beyond
the performance of classical hand-eye calibration.

2. Related Works
Instance-level 6D Object Pose Estimation. Given RGB
images and the robot’s CAD model, the camera-to-robot
pose is solely determined by the 6D pose of the robot
base. Therefore, our objective is highly correlated with the
instance-level 6D rigid object pose estimation [17, 45]. Its
goal is to infer an object’s 6D pose given a reference frame
by assuming the exact 3D CAD model is available. Tradi-
tional methods, including iterative closest point (ICP) [2],
perform template matching by aligning CAD models with
the observed pointclouds. Some recent works [15,25,29,32]
regard the pose estimation as a regression or a classification

task. 2D parameter representation or geometry-guided fea-
tures will be predicted [8, 24, 31], and then improved PnP
solvers [7, 36] are used to estimate poses. Although these
works are closely related to ours, the manipulator is an artic-
ulated object with several degrees of freedom and potential
entangling parts, whose pose is tougher to estimate.
2D Center-based Object Detection and Tracking. Our
approach predicts camera-to-robot pose via keypoint es-
timation, which shares similar goals in 2D center-based
object detection and tracking. The center-based method
[9, 44] has been an emerging anchor-free object detection
method in recent years, which models an object as a sin-
gle point via keypoint estimation and regresses other ob-
ject properties such as bounding boxes, 3D locations, or
poses [37, 38, 42]. Some works [6, 27, 39, 43] also extend
these center-based models to tracking tasks such as multi-
category tracking and pose tracking, applying a detection
model to a pair of images and detections from the previ-
ous frame. These center-based methods [16, 22, 46] have
succeeded in simplicity and speed. However, the meth-
ods mentioned [40, 43, 44] mainly adopt simple concatena-
tions to fuse temporal information and thus overlook accu-
rate pixel-wise correspondence, where we propose a robot
structure guided feature alignment module and a temporal
cross-attention module to produce better feature fusion.
Robot Arm Pose Estimation. Recently, many learning-
based camera-to-robot pose estimation methods have been
proposed, which can be divided into three types. The first
type falls into keypoint-based methods via a single RGB
image. For example, DREAM [21] designs a CNN-based
pipeline to regress 2D keypoints, construct 2D-3D corre-
spondence and recover the camera-to-robot pose via a PnP-
solver. Lately, [26] seeks to find the optimal 2D keypoint
candidates for better acquiring pose estimations. The sec-
ond type falls into rendering-based methods given robots’
3D CAD models [19, 47]. Robopose [19] optimises the
camera-to-robot pose by iteratively rendering images and
comparing them with ground truth. This method requires a
long time (1s) to predict an excellent initial pose and fails
in dynamic scenarios. The last type falls into depth-based
methods [3, 30], which rely highly on depth sensors’ preci-
sion and lack high accuracy in real-world experiments.

3. Method
We will first introduce the problem statement in Sec-

tion 3.1. Then we will explain three modules, Structure
Prior Guided Feature Alignment, Temporal Cross At-
tention Enhanced Fusion, and Pose Refiner in our ap-
proach. Structure Prior Guided Feature Alignment aims
to align corresponding features between frames and is dis-
cussed in Section 3.2. Temporal Cross Attention En-
hanced Fusion targets fusing temporal information and is
discussed in Section 3.3. Finally, we describe Pose Refiner
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Figure 2. Pipeline of the proposed SGTAPose. (a) Structure Prior Guided Feature Alignment We use a Belief Map Generator to
acquire belief maps as the structure prior. Given 2D/3D keypoints’ locations {p̂it−1} and {P i

t−1} from the previous frame It−1, an initial
camera-to-robot pose is calculated and used to project current keypoints’ 3D locations {P i

t } to a reprojected belief map B̃t. The paired
inputs are sent to a shared encoder and yield multi-scale features f j

t−1 and f j
t , j ∈ [6]. (b) Temporal Cross Attention Enhanced Fusion

For j ∈ {1, 2, 3}, we implement temporal cross attention in the regions around the detected keypoints in Bt−1 and B̃t to efficiently fuse
features from successive frames. (c) Pose Refiner. We acquire the detected keypoints’ 2D locations and solve an initial camera-to-robot
pose T̂ init

t . Then we gain a refined camera-to-robot pose T̂t with structure priors via a weighted Levenberg-Marquardt (LM) solver.

in Section 3.4 to refine the predicted pose better.

3.1. Problem Statement

Our problem is defined as follows: Given a live stream of
RGB images {It}t≥0 containing a manipulator along with
its instant camera-to-robot pose {Tt}t≥0 = {(Rt, Tt)}t≥0

∈ SE(3), the transformation from the camera space to the
robot base space, our objective is to track the camera-to-
robot pose in an online manner. In other words, at timestep
t, provided images It−1 and It, predefined keypoints’ 3D
positions {P i

t } in robot space (i denotes the index of each
keypoint), camera intrinsics and the estimated pose T̂t−1,
we predict the rotation matrix Rt and translation Tt in T̂t.

3.2. Structure Prior Guided Feature Alignment

Inspired by the fact that the joints’ states and pose of the
robot change slightly between successive two frames, we
believe the estimated previous pose T̂t−1 will work as solid
structure priors for guiding network learning. In this way,
our first step is to design a Belief Map Generator to pro-
duce a reprojection belief map. Suppose we have acquired
the previous estimated pose T̂t−1, we reproject the instant
keypoints’ 3D positions {P i

t } into {p̃it}, and visualise them
into a single-channel belief map B̃t ∈ [0, 1]H×W×1 (See
in the left column of Figure 2) . Based on B̃t, the network

cares more about the residuals of B̃t to its ground truth.
Similarly, we also prepare the previous belief map Bt−1

for guiding the network to align the previous frame’s fea-
tures. To be more specific, during the training process,
Bt−1 is produced by augmenting ground truth 2D key-
points. While during inference, we utilise 2D keypoints
{p̂it−1} estimated from previous network output belief map
Ŷt−1 ∈ RH

R ×W
R ×c and Ôt−1 ∈ RH

R ×W
R ×2 where R and c

denotes the downsampling ratio and amounts of keypoints.
Then, we send the pairs (It−1, Bt−1) and (It, B̃t) to a

shared backbone and obtain two lists composed of 6 multi-
scale features Lt−1 and Lt. We denote L (for simplicity, we
omit the subscript t) as [f1, . . . , f6] where f j ∈ Rcj×hj×wj

and cj+1

cj
=

hj

hj+1
=

wj

wj+1
= 2. {p̂it−1} and {p̃it} are

rescaled to match the f ’s size accordingly and treated as
center proposals. Features extracted from the neighbour-
hoods of center proposals in ft−1 and ft are regarded as
aligned since they roughly entail the same keypoint’s con-
textual information. The aligned features should be fused
carefully, illustrated in the next section.

3.3. Temporal Cross Attention Enhanced Fusion

To carefully integrate the multi-scale aligned features in
Lt−1 and Lt, we adopt different strategies considering the
size of f j For fm,m ∈ {1, 2, 3}, they have much higher
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resolutions and fine-grained features, which are crucial for
detecting small-sized keypoints. Therefore, we propose
a temporal cross-attention module to fuse the features at
the neighbourhood of center proposals. In comparison, for
fn, n ∈ {4, 5, 6}, they have lower resolutions and a broader
receptive field, so each pixel-level feature contains more
contextual and temporal information. We thus directly con-
catenate the features at the center proposals of fn

t−1 and fn
t

and process them into original sizes Rc×cn via a shallow
Multilayer Perceptron (MLP). The newly processed fea-
tures will instantly replace the counterpart in fn

t .
For the first three feature maps {fm,m ∈ {1, 2, 3}},

we treat {p̂it−1} and {p̃it} as center proposals respectively,
and rescale them to match the size of fm. Having mea-
sured the motion amplitude of the manipulator in finishing
downstream tasks (e.g., Grasping), we confine the center
proposals to a square area with window size dm. We take
fm
t−1 at the dm × dm window area around scaled {p̂it−1} as

query embeddings and fm
t at the same size of area around

{p̃it} as keys and values. After 3 vanilla Tranformer multi-
head cross-attention layers [35], we concatenate the output
features Qm

t,d2
mc ∈ Rd2

mc×cm with fm
t,d2

mc at the same d2mc

locations along the cm-dimension, and send them through a
shallow MLP to get f̂m

t,d2
mc. We directly replace fm

t,d2
mc with

f̂m
t,d2

mc and pass all the six processed multi-scale features to
the decoder layer and receive the output head.

3.4. Pose Refiner

We design a pose refiner to mitigate the influence of
outlier keypoints with significant reprojection errors when
computing the camera-to-robot pose. Since the initial
pose solved by Perspective-n-Point (PnP) algorithms might
be inaccurate sometimes due to outliers [12], we correct
such bias by solving reweighted PnP problems. Util-
ising predicted projections {p̂it} and known {P i

t }, we
obtain an initial camera-to-robot pose T̂ init

t via a PnP-
RANSAC solver [23]. Next, we project {P i

t } via T̂ init
t

to 2D coordinates {prep,it }. We set the weights ωi
t =

exp (−5× ∥p̂it − prep,it ∥2) based on practical experience
and optimise the following equation via an LM solver [28].

arg min
Rt,Tt

1

2

c∑
i=1

∥ωi
t(π(RtP

i
t + Tt)− p̂it)∥2 (1)

where π(·) is the projection function, Rt and Tt is the ro-
tation and translation in the camera-to-robot pose T̂t .The
reweighted optimisation objective focuses more on the ”in-
fluence” of comparatively precise predictions, thus mitigat-
ing the impact of keypoints with large reprojection errors.

3.5. Implementation details

Loss function. Our network output involves a predicted
pixel-level belief map {Ŷt} ∈ [0, 1]

H
R ×W

R ×c and subpixel-

level local offsets {Ôt} ∈ [0, 1]
H
R ×W

R ×2. We design
two loss functions LB and Loff for {Ŷt} and {Ôt} re-
spectively. For keypoints’ ground truth 2D locations
{pit}, we scale them into a low-resolution equivalence
pilow,t = ⌊P i

t

R ⌋. We draw each keypoint in a single-
channel feature map with a Gaussian Kernel K(x, y) =

exp (− (x−pi
low,t,x)

2+(y−pi
low,t,y)

2

8 ) and shape the ground
truth belief map Yt ∈ [0, 1]

W
R ×H

R ×c. The LB becomes:

LB = ∥Yt − Ŷt∥2L2
(2)

where R = 4 in our network. We further follow [43] to cor-
rect the error induced by the output stride. The offsets{Ôt}
are trained via smooth L1 loss and only supervised in loca-
tions pilow:

Loff = ∥Ôtpi
low,t

− (
pit
R

− pilow,t)∥ (3)

The overall training objective is designed as follows:

L = λBLB + λoffLoff (4)

where λB = 1.0 and λoff = 0.01 in implementation.

Training details. During the training time, we pre-
process the input image It−1, It into the size of R480×480×3

via affine transformation and normalisation with mean
[0.5, 0.5, 0.5] and standard deviation [0.5, 0.5, 0.5]. To fur-
ther improve our model’s robustness, we apply N (0, 1.5I)
noises as well as randomly drop with probability 0.2 to the
ground truth keypoints in Bt−1. Our backbone is based
on Deep Layer Aggregation [41] and trained for 20 epochs
with batch size 16, Adam optimiser [18] with momentum
0.9 and 180k synthetic training images. The learning rate
warms up to 1.25e-4 from 0 during the first 3,000 iterations
and drops to 0 during the rest of the iterations linearly.

Inference details. During inference, we are given a long-
horizon video split into consecutive frames. We use the
first frame as I0 and I1, and blank images as the initial
belief maps B0 and B1 to perform inference. For each
timestep t > 1, we select the keypoints’ 2D locations pilow
with the largest confidence score for each belief map in
Ŷt−1 ∈ RH

R ×W
R ×c. We then determine the accurate loca-

tions by adding Ôtpi
low,t

to pilow,t. Finally, we rescale these
low-resolution keypoints’ locations to match the raw im-
age’s size via inverse affine transformation and obtain {p̂it}.

4. Experiments
4.1. Datasets

Our datasets involve one self-generated synthetic train-
ing set (Panda Syn Training), one self-generated synthetic
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Figure 3. Sample images from Panda Syn Training (first column)
and annotations (second column). We set every part a random
colourful tint to improve the diversity of our datasets and apply
several domain randomisations to shorten the sim-to-real gap.

testing set (Panda Syn Testing), and three real-world test-
ing sets (Panda 3CAM-RS, Panda 3CAM-AK, and Panda
Orb) provided by [21]. Since the training set proposed
in [21] doesn’t support temporal images, we thus generate
Panda Syn Training/Testing. The three public real-world
sets are generated by an externally mounted camera film-
ing a Franka Emika Panda manipulator according to [21].
Panda 3CAM-AK is collected by a Microsoft Azure Kinect
camera, and Panda 3CAM-RS/Orb are collected by Intel
RealSense D415. Panda 3CAM-AK and Panda 3CAM-RS
are captured from a single fixed view and involve about 6k
images respectively, while Panda Orb is captured from 27
different views and involves approximately 32k images.

Utilising the open source tool Blender [1], we construct
large-scale synthetic sets Panda Syn Training/Testing (Fig-
ure 3). We generate frames in a video at FPS 30 with a
fixed scene and a moving manipulator. Several domain
randomisations have been used to shorten the sim-to-real
gap and will be detailedly explained in supplementary ma-
terials. The synthetic dataset consists of temporal RGB
images, 2D/3D predefined keypoints’ locations, and part
poses. Overall, Panda Syn Training involves approximately
60k videos which contain 3 successive frames per video
(180k images), and Panda Syn Testing involves 347 videos
which contain 30 successive frames per video (10k images).

4.2. Baselines and Evaluations

Baselines. We compare our framework with previous on-
line keypoint-based camera-to-robot pose estimation ap-
proaches and center-based object detection methods via sin-
gle or multi frames. Besides, we also compare our frame-
work with traditional offline hand-eye calibration. Dream
[21]: A pioneering approach for estimating the camera-to-
robot pose from a single frame by direct 2D keypoints re-
gression and PnP-RANSAC solving. CenterNet [44]: A
single-frame object detection approach that models an ob-
ject as a single point. We adapt CenterNet to estimate 2D
keypoints and reserve the heatmap loss and offset loss [44]
during training. CenterTrack [43]: A multi-frame object
detection and tracking approach. We adapt CenterTrack us-
ing similar strategies in CenterNet to detect keypoints.
Metrics. During the inference, we evaluate both 2D and 3D
metrics across all datasets. PCK: The L2 errors between
the 2D projections of predicted keypoints and ground truth.
Only keypoints that exist within the frame will be consid-
ered. ADD: The average Euclidean norm between 3D loca-
tions of keypoints and corresponding transformed versions,
which directly measures the pose estimation accuracy. For
PCK and ADD, we compute the area under the curve (AUC)
lower than a fixed threshold (12 pixels and 6cm, respec-
tively) and their median values.

4.3. Results and Analysis

As can be seen in Table 1, our method has outperformed
all other baselines in PCK and ADD metrics across datasets.
Specifically, our median PCK, an important measure that re-
flects the 2D accuracy, is superior to others, indicating that
we have achieved better overall precision in predicting the
2D projections. We also surpass all other baselines in the
AUC of ADD, and so is the median. ADD is a more di-
rect indicator of whether the estimated pose is accurate, and
we have outperformed the best of others in Panda 3CAM-
AK and Panda Orb at 4.9% and 7.8%. Further, our method
can reach 9.77mm and 18.12mm in median ADD in Panda
3CAM-RS and Panda Orb, comparable to the accuracy of
the traditional hand-eye calibration empirically.

Compared with single-frame methods (CenterNet [44],
Dream [21]), our method absorbs temporal information and
shows greater robustness to self-occlusion. The analysis
of robustness to self-occlusion is discussed in Section 4.6.
Meanwhile, compared with the tracking-based method Cen-
terTrack [43], our method owns the robot structure prior
guiding feature alignment and temporal cross attention,
which we believe facilitates our model’s superiority.

4.4. Compare with Classic Hand-Eye Calibration

We further design an experiment to compare our ap-
proach with traditional hand-eye calibration (HEC) meth-
ods, implemented via the easy handeye ROS package [34].
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Dataset Real Data # Images # 6D Poses Method PCK ADD
AUC↑ Median@pix↓ AUC↑ Median@mm↓

Panda 3CAM-RS [21] ✓ 5944 1

CenterNet [44] 67.38 3.51 59.26 21.25
CenterTrack [43] 68.85 3.59 58.24 23.77

Dream [21] 64.82 3.90 58.60 24.57
Ours 75.68 2.68 79.89 9.77

Panda 3CAM-AK [21] ✓ 6394 1

CenterNet [44] 52.38 4.90 34.07 37.56
CenterTrack [43] 58.26 4.45 43.10 32.83

Dream [21] 52.28 4.83 44.55 33.68
Ours 62.75 3.19 49.42 29.61

Panda Orb [21] ✓ 32315 27

CenterNet [44] 60.11 3.47 50.59 24.22
CenterTrack [43] 61.03 3.73 47.67 25.13

Dream [21] 57.44 3.73 52.56 22.53
Ours 63.28 3.46 60.30 18.12

Panda Syn Testing × 10410 347

CenterNet [44] 92.60 0.89 85.97 5.79
CenterTrack [43] 91.86 0.63 85.01 6.18

Dream [21] 80.79 0.85 79.05 7.13
Ours 94.36 0.44 89.62 4.11

Table 1. Quantitative comparison with keypoint-based methods. ↑ means higher is better, ↓ means lower is better. The ✓ and × in Real
Data denote whether the dataset is real-world. # Images and # 6D Poses denote the total amounts of images and 6D poses in the dataset
respectively. For a fair comparison, we train all the methods listed in the above table on Panda Syn Training dataset and report the results
regarding PCK and ADD across four testing datasets. Obviously, our method is taking the lead in all metrics upon all datasets.

We attach an Aruco Fiducial Marker [13] to the Franka
Emika Panda’s gripper and place an external RealSense
D415 to take photos. The manipulator is commanded to
move to L = 20 positions along a predefined trajectory and
stays at each position for 1 second. To assess the accuracy,
we consider choosing l positions from the set of L posi-
tions and feed all the detection results from the l positions
to a single PnP solver. Specifically, we choose Cl

L combi-
nations of l images and if Cl

L > 2500, we randomly sample
2500 combinations. As shown in Fig 4, our approach and
traditional HEC solve a more accurate pose with increasing
frames. However, our approach outperforms HEC in both
median and mean ADD, where we can reach the level of
5 mm while HEC reaches 15 mm at last. Moreover, our
approach is more stable than HEC with frames increasing,
which can be inferred from the region surrounded by the
minimum and maximum ADD.

4.5. Ablation Study

We conduct the ablation studies to investigate : 1) The
function of the robot structure prior for guiding feature
alignment. 2) The necessity of using a cross attention mod-
ule for enhancing the fusion of temporal aligned features
between successive frames. 3) The effectiveness of intro-
ducing the pose refiner module for updating a more accurate
pose. 4) The influence of different window sizes adopted
during temporal cross attention. To this end, we construct
four ablated versions of our model and test their perfor-
mances on the most diverse real dataset Panda Orb [21].

We report the results in Table 2. For the version with-
out any module, we send Bt−1, It−1, It as input with a
shared encoder, directly concatenating the multi-scale fea-

Figure 4. Comparison between classic hand-eye calibration and
our approach. Results regarding ADD are calculated with increas-
ing amounts of used frames. Mean ADD (dashed lines), median
ADD (solid lines), and values between minimum and maximum
(shaded areas) have been demonstrated.

tures. With the addition of Structure Prior Guided Fea-
ture Alignment, we add one more input B̃t, and the per-
formance in both PCK and ADD improves greatly. This
fact reveals that the reprojection belief map B̃t provides a
confined area rather than the whole image for the network
to focus on, which is easier to detect keypoints. Secondly,
with the addition of Temporal Cross Attention Enhanced
Fusion, we replace the direct concatenation with cross at-
tention. The performance in ADD improves higher than
that in PCK, which shows that the temporal cross attention
module facilitates the precision of 3D keypoint predictions.
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SGF TCA PRF PCK ADD
AUC↑ Median@pix↓ AUC↑ Median@mm↓
49.78 4.69 37.93 34.48

✓ 62.86 3.49 55.83 21.04
✓ ✓ 63.28 3.46 58.86 19.17
✓ ✓ ✓ 63.28 3.46 60.30 18.12

Table 2. Ablation studies with different modules. SGF, TCA,
and PRF denote the Structure Prior Guided Feature Alignment,
Temporal Cross Attention Enhanced Fusion, and Pose Refiner
modules, respectively. ✓ denotes the corresponding module that
has been used. Results show that all the proposed modules benefit
camera-to-robot pose estimation.

Thirdly, the final introduction of Pose Refiner witnesses an
improvement of 1.5% in the AUC of ADD and 1mm in me-
dian ADD. This proves that the reweighted optimisation ob-
jective (Equation 1) succeeds in filtering out the disturbance
of outliers and recomputing a better solution.

As can be shown in Table 3, we change the window size
during Temporal Cross Attention. We analyse the average
movement amplitude of a manipulator between two suc-
cessive frames at FPS 30 and determine the window sizes
of the first three multi-scale features. We ultimately select
the window size [13, 7, 3] to ensure most of the keypoints’
movement between two frames can be detected within the
window. Results show that the larger or smaller window
size will degrade the model’s performance in both AUC of
ADD and PCK. We believe the reason for the degradation
is that a larger window size will contain more redundant in-
formation, while a smaller window size might miss some
important information during fast movement tracking.

Window Size [d1, d2, d3]
PCK ADD

AUC↑ Median@pix↓ AUC↑ Median@mm↓
[7, 3, 1] 61.29 3.41 57.11 18.21
[13, 7, 3] 63.28 3.46 60.30 18.12
[17, 9, 5] 63.01 3.53 56.54 21.45

Table 3. Results of our ablation study with different window sizes
during Temporal Cross Attention. The [13, 7, 3] window size
performs best among all choices on Panda Orb [21].

4.6. Robustness to Self-Occlusion Scenarios

Method PCK ADD
AUC↑ Median@pix↓ AUC↑ Median@mm↓

Dream [21] 49.02/59.46 4.13/3.67 43.87/54.53 30.23/21.28
CenterNet [44] 52.86/61.77 4.00/3.39 39.05/53.21 33.73/22.62

CenterTrack [43] 54.43/62.54 4.31/3.62 30.37/51.58 42.96/22.52
Ours 60.02/64.03 3.95/3.37 59.37/60.51 20.18/17.69

Table 4. Quantitative results of the self-occlusion experiment.
The Left and right sides of ’/’ are the results of severe and no
self-occlusion respectively. Results show our method performs
robustly when encountering self-occlusion while baselines drop
greatly.

We perform an additional experiment to show our
model’s robustness to self-occlusion. We divide Panda Orb
[21] into 89 videos, including 31 videos with severe self-
occlusion (5971 images) and 58 videos with less or no self-

occlusion (26344 images). Results in Table 4 show base-
lines drop greatly when encountering occlusion, while ours
decreases slightly. Also, from Figure 5, we can see that
baselines detect occluded keypoints with significant devia-
tion or even fail. In comparison, our model shows more pre-
cise predictions. The main reason for our model’s robust-
ness is that we adopt temporal information fusion and utilise
structure priors efficiently rather than estimating pose from
a single frame or concatenating temporal features crudely.

4.7. Robot Grasping Experiments

In this section, we construct real-world robotic grasping
experiments to demonstrate the performance of our method.
Experimental Protocol. We perform two experiments us-
ing the Franka Emika Panda robot. One of the experiments
focuses on robot grasping in a static environment, and an-
other on grasping in a dynamic environment. To ensure a
fair comparison, GraspNet [10] is used to estimate the robot
grasping pose in all experiments, while different methods
are employed for camera-to-robot pose estimation. In the
experiments, all learning-based camera-to-robot pose esti-
mation methods use 30 frames to estimate the camera-to-
robot pose, and all the objects are selected from YCB [4]
dataset. For hand-eye calibration, in the static experiment,
we use easy handeye [34] to acquire the pose. In the dy-
namic experiment, hand-eye calibration is incapable of on-
line calibration, so their results are none.

In the static experiment, we conduct six scenes, and each
scene includes 4-7 randomly chosen objects. During the
completion of a grasping task in one scene, the camera re-
mains stationary. After finishing grasping in a particular
scene, we move the camera to another position for the next
scene. In the dynamic experiment, we not only change the
camera pose when switching between different scenes but
also adjust the camera pose after completing the grasping
of each object during the execution of a grasping task in the
same scene, which is a tougher setting than the static one.
Metrics. To evaluate the performance accurately, we fol-
low the grasping metrics from SuctionNet [5]. We adopt
Rgrasp, the ratio of the number of successful grasps to the
number total grasps, and Robject, the ratio of the number of
successfully cleared objects to the number of totals. More-
over, if three consecutive grasping attempts fail in a scene,
we consider the experiment for that scene terminates.

Method Rgrasp ↑ Robject ↑
easy handeye [34] 28/52 = 53.8% 28/32 = 87.5%

DREAM [21] 26/52 = 50.0% 26/32 = 81.2%
CenterTrack [43] 26/60 = 43.3% 26/32 = 81.2%
CenterNet [44] 29/51 = 56.9% 29/32 = 90.6%

Ours 32/48 = 66.7% 32/32 = 100%

Table 5. Quantitative comparison of the performance of different
methods applied to robot grasping tasks in the static experiment.
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OursCenterTrackCenterNetDream

Figure 5. Comparison with keypoint-based methods in severe self-occlusion scenarios. For a fair comparison, we retrain all the baselines
on Panda Syn Training and show visualisations when encountering severe self-occlusion on the largest dataset Panda Orb [21]. The green
circles and red points denote the ground truth and estimated keypoints, respectively. Red boxes highlight occluded regions where our
method performs much better than all baselines. This vividly demonstrates that our method is more robust to self-occlusion.

Method Rgrasp ↑ Robject ↑
easy handeye [34] - -

DREAM [21] 15/38 = 39.5% 15/32 = 46.9%
CenterTrack [43] 24/51 = 47.1% 24/32 = 75.0%
CenterNet [44] 16/42 = 38.0% 16/32 = 50.0%

Ours 30/51 = 58.8% 30/32 = 93.8%

Table 6. Quantitative comparison of different methods’ perfor-
mance applied to robot grasping tasks in the dynamic experiment.
The blank in the ”easy handeye” column is because this traditional
calibration method cannot be performed online.

Results and Analysis. Table 5 and Table 6 show the results
of applying different camera-to-robot pose estimation meth-
ods to the grasping experiments in static and dynamic envi-
ronments, respectively. In the static experiment, our method
achieves a 100% object grasping success rate, outperform-
ing all other baselines, including traditional hand-eye cali-
bration. In the dynamic experiment, since the camera pose
changes after each grasping attempt in the same scene, this
places higher demands on the robustness and speed of the
camera-to-robot pose estimation. Other methods experi-
ence significant drops in grasping success rates, while our
method maintains a very high success rate with only a slight
decrease compared to the static experiment. These experi-
ments demonstrate the accuracy and stability of our method

for camera-to-robot pose estimation.

5. Conclusion and Future Work

In this paper, we study the camera-to-robot pose esti-
mation using single-view successive frames from an im-
age sequence. By leveraging the robot structure priors, we
use a temporal attention mechanism to efficiently fuse key-
point features from different frames. Our method demon-
strates significant improvements over synthetic and real-
world datasets, strong dominance compared with traditional
hand-eye calibration and high accuracy and stability in
downstream grasping tasks. One limitation of our method
is that although domain randomisation can narrow the sim-
to-real gap to some extent, generalising to arbitrary scenes
remains a significant challenge. To address this limitation,
future work could explore domain adaptation between real
and simulated scenes and fine-tuning in real-world settings.
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