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Abstract

Anomaly detection is an important application in large-
scale industrial manufacturing. Recent methods for this
task have demonstrated excellent accuracy but come with
a latency trade-off. Memory based approaches with domi-
nant performances like PatchCore or Coupled-hypersphere-
based Feature Adaptation (CFA) require an external mem-
ory bank, which significantly lengthens the execution time.
Another approach that employs Reversed Distillation (RD)
can perform well while maintaining low latency. In this
paper, we revisit this idea to improve its performance, es-
tablishing a new state-of-the-art benchmark on the chal-
lenging MVTec dataset for both anomaly detection and
localization. The proposed method, called RD++, runs
six times faster than PatchCore, and two times faster
than CFA but introduces a negligible latency compared
to RD. We also experiment on the BTAD and Retinal
OCT datasets to demonstrate our method’s generalizabil-
ity and conduct important ablation experiments to provide
insights into its configurations. Source code will be avail-
able at https://github.com/tientrandinh/
Revisiting-Reverse-Distillation.

1. Introduction
Detecting anomalies is a crucial aspect of computer vi-

sion with numerous applications, such as product quality
control [4], and healthcare monitor system [21]. Unsuper-
vised anomaly detection can help to reduce the cost of col-
lecting abnormal samples. This task identifies and local-
izes anomalous regions in images without defect annota-
tions during training. Instead, a set of abnormal-free sam-
ples is utilized. Early approaches rely on generative adver-
sarial models to extract meaningful latent representations
on normal samples [25, 29, 31]. However, these approaches
are computationally expensive, resulting in higher latency
and potential performance limitations on unseen data. Other
approaches leverage the pre-trained Convolutional Neural
Networks (CNNs) [19] backbones to extract comprehensive
visual features for anomaly detection systems [3, 23].

Figure 1. Comparisons of different anomaly detection methods in
terms of AUROC sample (vertical axis), inference time (horizontal
axis), and memory footprint (circle radius). Our RD++ achieves
the highest AUROC sample metric for anomaly detection while
being 6× faster than PatchCore, 4× faster than CSFlow, and 2×
faster than CFA. Additionally, RD++ requires only 4GB of mem-
ory for inference, making it one of the least memory-use methods.
The test environment was conducted on a computer with Intel(R)
Xeon(R) 2.00GHz (4 cores) and Tesla T4 GPU (15GB VRAM).

Alternative approach employs knowledge distillation
(KD) [14] based frameworks. For example, Salehi et al.
[30] set up a teacher-student network pair, and knowledge
is transferred from teacher to student. During training, the
student is learned from only normal samples. Thus, it is
expected to learn the distribution of normal samples, sub-
sequently generating the out-of-distribution representations
when inference with anomalous query [30]. However, Deng
and Li [8] point out that the statement is not always accu-
rate due to limitations in the similarity of network architec-
tures and the same data flows in the teacher-student model.
To overcome these limitations, they propose a reverse flow,
called Reverse Distillation (RD), in which the teacher out-
put is fed to the student through a One-class Bottleneck
module (OCBE). The reverse distillation approach achieves
competitive performance and also maintains low latency.

Recent research in anomaly detection, such as Patch-
Core [27], and CFA [20], have achieved state-of-the-art per-
formance in detecting and localizing anomalies. However,
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these methods are based on the memory bank framework,
which leads to significant latency and makes them challeng-
ing to apply in practical scenarios. Our key question: How
can we develop a method that achieves high accuracy and
fast inference for real-world applications?

This paper answers the question from the perspective of
reverse distillation. We identify the limitations of the RD
approach by examining feature compactness and anoma-
lous signal suppression. We argue that relying solely on
the distillation task and an OCBE module is insufficient for
providing a compact representation to the student. Further-
more, we do not observe an explicit mechanism to discard
anomalous patterns using the OCBE block as the authors
claim. To address these concerns, we incorporate RD with
multi-task learning to propose RD++, which demonstrates
a favorable gain in performance.

The contributions of the proposed RD++ are highlighted
as follows:

• We propose RD++ to tackle two tasks. First, fea-
ture compactness task: by presenting a self-supervised
optimal transport method. Second, anomalous sig-
nal suppression task: by simulating pseudo-abnormal
samples with simplex noise and minimizing the recon-
struction loss.

• We conduct extensive experiments on several pub-
lic datasets in different domains, including MVTec,
BTAD, and Retinal OCT. Results show that our ap-
proach achieves state-of-the-art performance on detec-
tion and localization, demonstrating strong general-
ization capabilities across domains. Furthermore, our
method’s real-time capability is at least twice as fast as
its latest counterparts (see Fig. 1), making it a promis-
ing method for practical applications.

2. Related works
This section provides an overview of prior approaches

to unsupervised anomaly detection. In early literature, gen-
erative models such as autoencoders (AE) [18], generative
adversarial networks (GAN) [12], and their variants are
used to reconstruct normal images from anomalous ones
[1, 2, 6, 31]. However, these methods struggle with com-
plex texture reconstruction. Later methods use deep models
to improve the quality of reconstructed images [41, 42].

Recently, with the hypothesis that fine-grained visual
features deliver revolutionary results in anomaly detection,
proposed approaches attempt to learn the representations
from nominal samples. A trend in anomaly detection is
to use a pre-trained model on an external image dataset to
understand the distribution of nominal features. Extracting
features from pre-trained networks, i.e., trained on large-
scale datasets such as ImageNet [9], is better than process-
ing the image directly in terms of anomaly detection accu-

racy. Such extracted features are discriminative for normal
images, which can be used to approximate distributions of
normal features and highlight the difference in defect areas.

With the memory bank usage, PatchCore [27] proposes
an algorithm to exploit the association between patches of
an image for anomaly detection and presents a way to store
the sub-sampled core set of the image. Features extracted
from the pre-trained backbone are stored in the memory
bank to obtain a patch-level distance between the core set
and the sample to detect anomalies. Similarly, CFA [20]
detects the adverse effects of biased features from the pre-
trained network on anomalous localization and proposes an
adaptive solution to the target dataset. They present an ap-
proach to obtain discriminant features through metric learn-
ing and experimentally verify that the features enable highly
complex anomalous localization. CFA’s memory bank is
compressed independently of the target dataset size, achiev-
ing promising performance. However, these methods have
disadvantages when training on large datasets due to the
need to create memory banks, which require high-cost com-
putational and complex architecture.

Other methods focus on estimating the distribution of
normal patterns through a parametric paradigm, i.e., nor-
malizing flow and performing outstanding results. They in-
tegrate flow-based sub-networks into their pipelines for bet-
ter approximate normal feature distributions. By minimiz-
ing the loss, i.e., the negative log-likelihood, over normal
images during training, flow-based models can map normal
image features into the standard target distribution. They
use the probability scores to identify and localize anomalies
in the image outside the learned distribution. CSFlow [28]
proposes a cross-scale normalizing flow to process multi-
scale feature maps jointly. It performs density estimation on
multiple feature tensors in parallel. The likelihood of these
transformed features follows the multivariate standard dis-
tribution. Despite high performance, passing multiple ten-
sors into normalizing flow modules significantly increases
computational complexity. FastFlow [39] introduces the
single-column structure to overcome this limitation. It de-
signs 2D normalizing flow modules with fully convolutional
networks followed by the feature extractor for accurate and
real-time out-of-distribution feature detection.

Knowledge distillation [14] is utilized as a practical ap-
proach for unsupervised anomaly detection. Many teacher-
student frameworks are proposed to obtain exact anomaly
pixels from the test image. Multiresolution knowledge
distillation [30] tries to distinguish unusual features on
multi-level features. STFPM [36] adapts a feature pyra-
mid matching mechanism between the teacher network and
the student counterpart. The teacher-student model is ex-
pected to yield discrepant features on anomalies in infer-
ence. RD [8] proposes an interesting reverse distillation ap-
proach for anomaly detection, achieving competitive results
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Figure 2. Overview of our RD++ during training. First, we integrate a projection layer directly after each intermediate teacher block to
provide the student network with a compact, abnormal-free representation. Distillation loss (LKD) introduced in [8] is combined with other
multiple loss functions for optimization. For the feature compactness task: two loss functions are proposed: Self-supervised optimal
transport loss (LSSOT) for projecting the normal feature space to compact representation. Contrast loss (LCon) supports projection layers
learning compact embedding by setting projected normal features apart from abnormal features. For the anomalous signal suppression
task: first, we design a pseudo anomalies mechanism to simulate pseudo-abnormal samples during training, then reconstruction loss (LRecon)
is proposed to guide the projection layer to know how to reconstruct the normal feature space from the pseudo-abnormal feature.

in detecting and localizing anomalies. Unlike conventional
knowledge distillation, the framework follows the encoder-
decoder architecture. The knowledge from the pre-trained
teacher model is distilled to the student model in a reverse
direction, i.e., have the layers processed back to front.

3. Reverse distillation for abnormal detection
This section summarizes the original reverse distillation

(RD) for anomaly detection as proposed in [8]. The RD
contains three modules: a fixed pre-trained teacher as the
encoder, a trainable one-class embedding (OCBE) module,
and a student as the decoder. The heterogeneous encoders’
and decoders’ reverse direction strategy contributes to the
discrepant representations of anomalies. The OCBE mod-
ule adapts the last block of the Resnet [13] for feature ex-
traction. It is proposed to strengthen the discrepancy for ab-
normality by condensing the patterns into low-dimensional
space and eliminating anomalous signals.

Let ϕ denote the output of the OCBE block. The paired
activation correspondence in the T - S model is denoted by{
fk
E = Ek(I), fk

D = Dk(ϕ)
}

, where I is the raw image,
Ek and Dk respectively define the kth encoder and kth

decoder block in the teacher and student model. The T-S
model takes the cosine similarity loss as the distillation loss

for knowledge transfer. The loss function for optimizing the
network (OCBE module + student model) is obtained by the
following equation:

LKD = 1−
K∑

k=1

{ (fk
E(h,w))

⊤ · (fk
D(h,w))∥∥fk

E(h,w)
∥∥∥∥fk

D(h,w)
∥∥ }

, (1)

where K is the number of feature layers used in training, h,
and w denote the height and width of kth feature map.

After training with normal samples, during testing, the
vector-wise cosine similarity loss of representations along
the channel axis in the teacher-student setting displays a
high abnormality score, which indicates abnormal images.

4. Proposed method
The proposed framework RD++ for anomaly detection,

inspired by the idea of reverse distillation [8], consists of
several modifications for the architecture and the loss func-
tion. The overall architecture RD++ is visualized in Fig. 2.

4.1. Pseudo anomalies mechanism

One of our method’s primary assumptions is that reverse
distillation is effective during inference if the student is re-
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Figure 3. Comparison between Simplex noise [37] and Gaussian
noise in simulating the pseudo anomalous regions in the image.
Simplex noise generates a more natural pseudo-anomaly.

stricted from receiving abnormal information. One of the
limitations of the training design in RD is that the OCBE
module does not have an objective function to prevent ab-
normal information from being transmitted to the student. It
leads to no substantial insurance that the abnormal patterns
do not heavily flow to the student when making inferences
on anomalous samples. We investigate how to strictly pre-
vent the OCBE module from receiving abnormal patterns.
As a result, we integrate the projection layers behind respec-
tive blocks in the teacher network and allow all projection
layers to take responsibility for restricting the anomalous
information flow to OCBE module.

The pseudo-anomalies are simulated during training. A
perturbation term is randomly added to the normal images
via employing the simplex noise [37]. According to the au-
thor, simplex noises are better than gaussian noises at sim-
ulating anomalous distributions based on power laws. As
shown in Fig. 3, the simplex noises generate more naturally
abnormal patterns than gaussian noises.

Algorithm 1 Pseudo-anomaly mechanism for images

Let U[a,b] ∼ Discrete Random Distribution (a,b)
for epoch = 1,2,...n do

for χi in normal training-set χ do
Get hnoise, wnoise ⊂ U[a,b]
Get xstart, ystart ⊂ U[a-hnoise,b-wnoise]
Randomly generate simplex noise:
ϵ ∼ Simplex((hnoise, wnoise), N=6, γ=0.6)
ξ = np.zeros(χi.shape)
xend = xstart + hnoise

yend = ystart + wnoise

ξ[xstart: xend, ystart: yend] = ϵ
χi = χi + λ ∗ ξ (λ: the degree of adding noises)
Training process

end for
end for

4.2. Multiscale projection layers

Projection layers receive the features of their respective
teacher’s blocks as input and project them into the com-
pact feature representation before feeding into the OCBE

module. We design the projection layer by sequentially
stacked L Convblocks (Convolution, InstanceNorm [35],
LeakyReLU [38]). In experimental settings, we set L = 4.

4.3. Training objectives

We propose a combined loss for training RD++. The
loss includes three components: (i) self-supervised opti-
mal transport loss, LSSOT for learning the compact feature
representation between normal samples; ii) reconstruction
loss, LRecon, for recovering normal features from pseudo-
abnormal features; and iii) contrast loss LCon for further
learning the feature compactness. The overall loss is de-
fined as:

L = LKD + αLSSOT + βLRecon + γLCon, (2)

where α, β, and γ are the positive regularization parameters.
Self-supervised Optimal Transport Loss. Projection

layers receive normal features from their respective teacher
encoder’s blocks and purposely project them into compact
feature spaces. We aim to ensure that projected feature rep-
resentations from normal samples are close to each other.
As inspired by Nguyen et al. [24], we consider minimiz-
ing the distance between feature embeddings as equivalent
to minimizing their probability measures. To achieve this
goal, we propose using the de-biased Sinkhorn divergence,
a variant of the Optimal Transport distance [7,10,11,26,32].
This distance measure allows us to calculate the spatial dis-
crepancy between two distributions of feature spaces. We
train projection layers in a self-supervised manner, ensuring
pair-wise feature spaces in a mini-batch of normal images
are close by minimizing the de-biased Sinkhorn divergence
between their probability measures.

Let fi,k (i=[1,. . . ,m], k=[1,. . . ,K]) be feature output of
training sample χi at block kth of teacher’s encoder, Φk be
the projection layer at block kth of teacher’s encoder, σ be
softmax function, π be the transportation plan, and C de-
notes some ground cost to transport a unit of mass between
probability distributions α and β. The optimal transport dis-
tance between α and β is:

OTε,ρ(α, β) = min
π⩾0

⟨π , C ⟩ + εKL(π, α⊗ β)

+ ρKL(π 1, α) + ρKL(π⊺ 1, β)

= max
f,g

−ρ⟨α , e−f/ρ − 1 ⟩ − ρ⟨β , e−g/ρ − 1 ⟩

− ϵ⟨α⊗ β , e(f⊕g−C)/ϵ − 1 ⟩,
(3)

where ε and ρ are the regularization parameter and the ex-
ponent term, respectively. KL is a Kullback-Leibler diver-
gence [15], defined as:

KL(α, β) = ⟨α , log dα
dβ ⟩ − ⟨α , 1 ⟩+ ⟨β , 1 ⟩ ⩾ 0. (4)
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Figure 4. RD++ inference procedure for detecting and localizing anomalies on images. The process is almost similar to RD [8]. The only
difference is that before being forwarded into the OCBE module, the teacher’s output embeddings in blocks are passed to their counterpart
projection layer. Since the projection layer is lightweight, the inference time is almost the same as the baseline RD.

The de-biased Sinkhorn divergence between two empirical
measures is defined as:

Sε,ρ(α, β) =OTε,ρ(α, β)− 1
2OTε,ρ(α, α)

− 1
2OTε,ρ(β, β) +

ε
2∥⟨α, 1⟩ − ⟨β, 1⟩∥2.

(5)

We then propose the self-supervised optimal transport loss:

LSSOT = 1
m

1
k

m∑
i,j=1

K∑
k=1

Sε,ρ(σ(Φk(fi,k)), σ(Φk(fj,k))).

(6)
Reconstruction Loss. We denote fi,k, f̃i,k are the fea-

ture output of encoder block kth of normal image xi and
pseudo-abnormal image ξ(xi) respectively:

fi,k = Ek(xi), f̃i,k = Ek(ξ(xi)). (7)

The reconstruction loss is defined as:

LRecon = 1
k

K∑
k=1

(1− cos(Φk(fi,k),Φk(f̃i,k))). (8)

During training, we inject anomalous signals through
pseudo-anomaly input images to feature space and encour-
age the projection layers to learn how to reconstruct normal
features from pseudo-abnormal regions. By optimizing this
learning objective, we accelerate the projection layer’s abil-
ity to suppress anomalous information during inference.

Contrast Loss. To strengthen the compact learning of
projection layers on normal images, we force the projec-
tion layer to concentrate on exploring deeper representa-
tions of normal features by pushing away abnormal infor-
mation from projected normal space. We employ the cosine

embedding loss with margin f , and the contrast loss is de-
fined as:

LCon = 1
k

K∑
k=1

max(0, cos(Φk(fi,k), f̃i,k)− f). (9)

Algorithm 2 Pseudo-code of RD++ in one epoch training

1: E, P , O, D: Teacher, projection layer, OCBE, student
2: fi, f̃i: Normal/pseudo-abnormal features at block i
3: Pi: Projection layer for block i (i is in [1, 2, 3])
4: Optimizer = Adam((P1,2,3, O,D).parameters())
5: Load a mini-batch of normal/pseudo-abnormal samples
6: for χ, ξ(χ) in train-dataloader do
7: Get encoder outputs for normal/pseudo-abnormal

images at 3 blocks
8: f1, f2, f3 = E(χ)
9: f̃1, f̃2, f̃3 = E(ξ(χ))

10: Get projected output of normal features
11: ϕ1, ϕ2, ϕ3 = P1(f1), P2(f2), P3(f3)
12: Get projected output of pseudo-abnormal features
13: ϕ̃1, ϕ̃2, ϕ̃3 = P1(f̃1), P2(f̃2), P3(f̃3)
14: Get feature output of decoder D
15: g1, g2, g3 = D(O(ϕ1, ϕ2, ϕ3))
16: Compute the overall loss
17: L = LKD(fi, gi) + αLSSOT(ϕi, ϕi)
18: +βLRecon(ϕi, ϕ̃i) + γLCon(ϕi, f̃i)
19: L.backward()
20: Optimizer.step()
21: end for

Inference process. Given an image, the inference pro-
cedure is described in Fig. 4.
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Table 1. Anomaly detection results in terms of AUROC at image-level on the MVTec dataset [4].

Method Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal nut Pill Screw Toothbrush Transistor Zipper Avg.

CSFlow [28] 100 99.00 100 100 100 99.80 99.10 97.10 99.60 99.10 98.60 97.60 91.90 99.30 99.70 98.72
FastFlow [39] 99.40 100 99.90 100 99.20 100 96.20 96.30 99.40 99.50 94.20 83.90 83.60 97.90 95.10 96.31
CFA [20] 97.30 99.20 100 99.40 99.70 100 99.80 97.30 100 100 97.90 97.30 100 100 99.60 99.17
PatchCore [27] 98.70 98.20 100 98.70 99.20 100 99.50 98.10 100 100 96.60 98.10 100 100 99.40 99.10
RD [8] 98.90 100 100 99.30 99.20 100 95.00 96.30 99.90 100 96.60 97.00 99.50 96.70 98.50 98.46
RD++ 100 100 100 99.70 99.30 100 99.20 99.00 100 100 98.40 98.90 100 98.50 98.60 99.44

Table 2. Anomaly localization results in terms of AUROC at pixel-level on the MVTec dataset [4].

Method Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal nut Pill Screw Toothbrush Transistor Zipper Avg.

FastFlow [39] 99.10 99.20 99.6 96.60 94.10 98.60 97.20 99.00 98.00 98.80 97.60 96.60 98.00 97.10 98.50 97.87
CFA [20] 99.28 98.12 99.37 95.21 91.53 98.84 98.97 99.11 98.85 99.15 98.93 98.91 98.96 98.06 99.02 98.15
PatchCore [27] 99.00 98.70 99.30 95.40 95.00 98.60 98.40 98.80 98.70 98.40 97.40 99.40 98.70 96.30 98.80 98.06
RD [8] 98.90 99.30 99.40 95.60 95.30 98.70 97.40 98.70 98.90 97.30 98.20 99.60 99.10 92.50 98.20 97.81
RD++ 99.20 99.30 99.40 96.60 95.80 98.80 98.40 98.80 99.20 98.10 98.30 99.70 99.10 94.30 98.80 98.25

Table 3. Anomaly localization results in terms of PRO on the MVTec dataset [4].

Method Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal nut Pill Screw Toothbrush Transistor Zipper Avg.

CFA [20] 96.54 94.04 97.43 89.26 90.54 95.76 94.17 93.66 95.75 94.54 97.19 95.23 91.14 95.35 95.95 94.44
PatchCore [27] 96.60 96.00 98.90 87.30 89.40 96.20 92.50 95.50 93.80 91.40 93.20 97.90 91.50 83.70 97.10 93.40
RD [8] 97.00 97.60 99.10 90.60 90.90 96.60 91.00 95.80 95.50 92.30 96.4 98.20 94.50 78.00 95.40 93.93
RD++ 97.70 97.70 99.20 92.40 93.30 97.00 93.90 96.40 96.30 93.00 97.00 98.60 94.20 81.80 96.30 94.99

5. Experimental results and analysis

5.1. Implementation detail

Experimental settings. We used the WideResNet50
[40] as the backbone in the T-S model, and the image is
resized to 256 × 256. No data augmentation is applied.
These settings are widely adopted as the standard configu-
ration for methods comparison on anomaly detection. For
methods that used heavy backbones as main configurations,
such as FastFlow [39] adapted vision transformer models
(DeiT [33], CaiT [34]), we tried our best to reproduce the
result on WideResNet50 to ensure a fair and consistent com-
parison. We used Adam Optimizer [17], with the learning
rate set to 0.005 for the student, OCBE module, and 0.001
for projection layers. The weight for distillation loss, SSOT
loss, contrast loss, and reconstruction loss is set at 1, 0.2,
0.02, and 0.002, respectively.

Evaluation Metrics. We used the area under the receiver
operator curve (AUROC) based on produced anomaly
scores to calculate anomaly detection at image-level per-
formance (AUROC sample). Localization performance was
evaluated using the AUROC at pixel-level and PRO [5].

5.2. Anomaly detection on MVTec

MVTec [4] includes 15 real-world datasets for anomaly
detection, with ten object classes and five textures. MVTec
is widely used as the standard dataset for anomaly detection

benchmarks. The training data contains 3,629 normal im-
ages. The test set contains 1,725 samples with both normal
and abnormal images. Per class contains multiple defects
for evaluation. The test data also have pixel-level annota-
tions for calculating anomaly localization metrics.

Results. Tables 1-3 show the RD++ outperforms the re-
cent state-of-the-art approaches in all three metrics: AU-
ROC image-level for detection, AUROC pixel-level and
PRO metric for localization. Compared to the baseline
(RD), across 15 categories, our approach improves the av-
erage AUROC image-level by up to 0.98% (Table 1), im-
proves AUROC pixel-level up to 0.44% (Table 2), and PRO
metric up to 1.06% (Table 3).

5.3. Anomaly detection on other datasets

To test the generalizability of RD++ method, we con-
ducted experiments comparing it to four other existing
methods: FastFlow [39], CFA [20], PatchCore [27], and
baseline RD [8] on two datasets, namely BTAD [22] and
Retinal OCT [16].

BTAD [22] contains 3 categories of industrial classes
with 2,540 samples. The training dataset includes only nor-
mal samples. The test data contains both abnormal samples
and normal samples.

Retinal OCT [16] contains 84,495 X-Ray images orga-
nized into 3 folders (train, validation, test) for 4 categories
(NORMAL, CNV, DME, DRUSEN). We trained the model
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Table 4. Anomaly detection and localization results in terms of AUROC at image-level/pixel-level/PRO on the BTAD dataset [22].

Method Class 01 Class 02 Class 03 Avg.

FastFlow [39] 99.40 / 97.10 / 71.70 82.40 / 93.60 / 63.10 91.10 / 98.30 / 79.50 90.97 / 96.33 / 71.43
CFA [20] 98.10 / 95.90 / 72.00 85.50 / 96.00 / 53.20 99.00 / 98.60 / 94.10 94.20 / 96.83 / 73.10
PatchCore [27] 96.70 / 97.03 / 64.92 81.38 / 95.83 / 47.27 99.95 / 99.19 / 67.72 92.68 / 97.35 / 59.97
RD [8] 96.30 / 96.60 / 75.30 86.60 / 96.70 / 68.20 100.00 / 99.70 / 87.80 94.30 / 97.67 / 77.10
RD++ 96.80 / 96.20 / 73.20 90.10 / 96.40 / 71.30 100.00 / 99.70 / 87.40 95.63 / 97.43 / 77.30

Table 5. Anomaly detection results with AUROC at image-level
on Retinal OCT dataset [16].

Method AUROC sample

FastFlow [39] 80.40
CFA [20] 98.25
PatchCore [27] 99.70
RD [8] 99.36
RD++ 99.73

Figure 5. Anomalies in MVTec [4] from top to bottom: ”crack”
on ”hazelnut”, ”flip” on ”metal nut”, ”defective” on ”toothbrush”,
”bent lead” on ”transistor”, and ”color” on ”wood”. Normal im-
ages are included as reference.

on NORMAL categories of the training set and reported the
evaluation metrics on the test set.

Results. In the BTAD dataset, RD++ surpasses most
state-of-the-art approaches regarding detection and local-
ization results. Table 4 shows that RD++ obtains an im-
provement of 1.33% and 0.2% for the average AUROC at

image-level and PRO metric [5], respectively, compared to
the second counterpart RD [8]. For the remainder, i.e., Reti-
nal OCT (Table 5), RD++ achieves 99.73% in AUROC at
the image-level, higher than all recent state-of-the-arts.

6. Ablation study
6.1. Training objectives

We investigate the effectiveness of training components
and compare results with the baseline.

Table 6. Performance of the proposed RD++ with the config-
uration of different component sets in the loss on MVTec [4].
RD+(SSOT) denotes training RD [8] baseline with LSSOT.

AUROC AUROC PRO
image-level pixel-level

RD 98.46 97.81 93.93
RD + (SSOT) 99.33 98.22 94.95
RD + (SSOT + Con) 99.33 98.24 95.00
RD++ (SSOT + Con + Recon) 99.44 98.25 94.99

Table 6 shows the performances of objective training
combinations. While RD [8] reports the effectiveness of
condensing features to low dimensional embedding through
OCBE module, the analysis proves that the proposed train-
ing objective components could significantly improve the
model performance. When projection layers are simultane-
ously trained on self-supervised optimal transport loss, fea-
ture representations are much more condensed. We see an
improvement in all three metrics. The LCon plays as an ad-
ditional term for condensing normal features. Lastly, the
LRecon guides the projection layer to alleviate anomalous
information throughout reconstructing normal space from
pseudo-abnormal information. The more anomalous sig-
nal prohibited before forwarding to the student, the stronger
discrepancy between Teacher-Student can establish.

6.2. Effectiveness on noise’s level

Table 7 shows that more than low noise (λnoise equal
0.1) is needed for solid model performance on MVTec [4].
When the amount of noise increases, the PRO metric [5]
generally improves with the gradual decrease in anomaly
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detection performance. The results show that λnoise equal
0.2 is suitable for generalization in both anomaly detection
and localization. We choose λnoise equal 0.5 if we are only
interested in per-region-based localization.

Table 7. Importance of noise levels added during training.

λnoise AUROC image-level AUROC pixel-level PRO

0.1 98.98 98.15 94.91
0.2 99.44 98.25 94.99
0.3 99.25 98.23 94.97
0.4 99.26 98.21 95.02
0.5 99.19 98.08 95.20

6.3. What can the student see?

We analyze two essential factors in student input features
that play a vital role in the anomaly detection ability of the
T/S architecture: (i) feature compactness and (ii) anomalous
signal suppression. To elaborate, we analyze the output of
OCBE module as this is the input feature for the student.

Feature compactness. We evaluate the compactness of
the feature space projected by RD++ versus RD by calculat-
ing the pair-wise mean-squared error (MSE) among features
of the normal samples. As shown in Fig. 6, RD++ enjoys a
much denser feature space while RD has a wider spread of
pair-wise distance distribution between the normal samples.

Figure 6. Comparing the normal intra-class and inter-class dis-
tance distribution of student’s input between the proposed RD++
method and RD [8] baseline on MVTec [4] test set.

Anomalous signals suppression. To justify the im-
provement of our methods over RD on suppressing anoma-
lous signals from the teacher, we calculate the MSE between
each of the abnormal samples with every normal sample.
The inter-class MSE distribution of RD++ is also narrower
than RD. Quantitatively, the variance of the inter-class MSE
of RD is 2.235, while RD++ only has a variance of 0.239.
The feature distance between a normal and an abnormal
sample should be close because the anomalous signals from
the abnormal sample are suppressed, making it looks like

a normal sample. Accordingly, the wider spread inter-class
MSE distribution of RD implies a sub-optimal capability of
anomalous signal suppression. Our method, on the other
hand, produces a narrower distribution hence showing a bet-
ter capability.

6.4. Method generalization on different backbones

Table 8 shows that RD++ performs better than RD [8]
on different Resnet [13] backbones and also indicates that
the deeper and wider network provides stronger detecting
anomalies.

Table 8. Quantitative comparison on different backbones on
MVTec [4].

AUROC sample AUROC pixel PRO

Backbone RD RD++ RD RD++ RD RD++

Resnet18 97.90 98.63 97.10 97.64 91.20 93.65
Resnet50 98.40 99.05 97.70 98.17 93.10 94.78
WideResnet50 98.46 99.44 97.81 98.25 93.93 94.99

7. Discussion and conclusion
Limitation. While RD++ shows effectiveness, simulat-

ing anomalies by adding noises to random locations in med-
ical images may be suboptimal because specific abnormali-
ties occur in certain areas, such as pneumothorax lesions are
mostly concentrated in the inner border of the lungs. The
method will be more effective if we incorporate medical
knowledge into possible predefining locations where noise
should be added.

Conclusion. This paper proposes RD++, inspired by re-
verse distillation architecture, for anomaly detection. With
the proposal for pseudo anomalies mechanism, multiple
projection layers integration, and multi-task learning for
compact features and abnormal alleviation. Our model ob-
tains competitive accuracy for anomaly detection and real-
time inference. Extensive experiments on several datasets
demonstrate the effectiveness and generalizability of our
proposed RD++ compared to several existing methods for
anomaly detection while being simple to implement. We
hope the method will be helpful in real applications and
pave the way for further advances in this field.

Future work. We aim to apply the method to other
tasks besides anomaly detection, such as domain adapta-
tion, where invariant representation is an essential factor.
The method can benefit feature invariants through projec-
tion layers via compact learning and the ability to recover
standard information when domains change. Since projec-
tion layers are flexibly integrated into various architectures,
we are motivated by the ease of testing the method’s effec-
tiveness.
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struction by inpainting for visual anomaly detection. Pattern
Recognition, 112:107706, 2021. 2

24520


