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Figure 1. Objects as radiance-field cameras. We convert everyday objects with unknown geometry (a) into radiance-field cameras by
modeling multi-view reflections (b) as projections of the 5D radiance field of the environment. We convert the object surface into a virtual
sensor to capture this radiance field (c), which enables depth and radiance estimation of the surrounding environment. We can then query
this radiance field to perform beyond field-of-view novel view synthesis of the environment (d).

Abstract

Reflections on glossy objects contain valuable and hidden
information about the surrounding environment. By con-
verting these objects into cameras, we can unlock exciting
applications, including imaging beyond the camera’s field-
of-view and from seemingly impossible vantage points, e.g.
from reflections on the human eye. However, this task is
challenging because reflections depend jointly on object ge-
ometry, material properties, the 3D environment, and the
observer’s viewing direction. Our approach converts glossy
objects with unknown geometry into radiance-field cameras
to image the world from the object’s perspective. Our key
insight is to convert the object surface into a virtual sensor
that captures cast reflections as a 2D projection of the 5D
environment radiance field visible to and surrounding the
object. We show that recovering the environment radiance
fields enables depth and radiance estimation from the ob-
ject to its surroundings in addition to beyond field-of-view

*Equal contribution

novel-view synthesis, i.e. rendering of novel views that are
only directly visible to the glossy object present in the scene,
but not the observer. Moreover, using the radiance field we
can image around occluders caused by close-by objects in
the scene. Our method is trained end-to-end on multi-view
images of the object and jointly estimates object geometry,
diffuse radiance, and the 5D environment radiance field.
For more information, visit our website.

1. Introduction
Imagine that you’re driving down a city street that is

packed with lines of parked cars on both sides. Inspection
of the cars’ glass windshields, glossy paint, and plastic re-
veal sharp, but faint and distorted views of the surroundings
that might be otherwise hidden from you. Humans can infer
depth and semantic cues about the occluded areas in the en-
vironment by processing reflections visible on reflective ob-
jects, internally decomposing the object geometry and radi-
ance from the specular radiance being reflected onto it. Our
aim is to decompose the object from its reflections to “see”
the world from the object’s perspective, effectively turning
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Figure 2. ORCa Overview. We jointly estimate the object’s geometry and diffuse along with the environment radiance field estimation
through a three-step approach. First, we model the object as a neural implicit surface (a). We model the reflections as probing the
environment on virtual viewpoints (b) estimated analytically from surface properties. We model the environment as a radiance field
queried on these viewpoints (c). Both neural implicit surface and environment radiance field are trained jointly on multi-view images of
the object using a photometric loss.

the object into a camera that images its environment. How-
ever, reflections pose a long-standing challenge in computer
vision as the reflections are a 2D projection of an unknown
3D environment that is distorted based on the shape of the
reflector.

To capture the 3D world from the object’s perspective,
we model the object’s surface as a virtual sensor that cap-
tures the 2D projection of a 5D environment radiance field
surrounding the object. This environment radiance field
consists largely of areas only visible to the observer through
the object’s reflections. Our use of environment radiance
fields not only enables depth and radiance estimation from
the object to its surroundings but also enables beyond field-
of-view novel-view synthesis, i.e. rendering of novel views
that are only directly visible to the glossy object present
in the scene but not the observer. Unlike conventional ap-
proaches that model the environment as a 2D map, our ap-
proach models it as a 5D field without assuming the scene is
infinitely far away. Moreover, by sampling the 5D radiance
field, instead of a 2D map, we can capture depth and images
around occluders, such as close-by objects in the scene, as
shown in Fig. 3. These applications cannot be done from a
2D environment map.

We aim to decompose reflections on the object’s surface,
from its surface and exploit those reflections to construct
a radiance field surrounding the object, therefore captur-
ing the 3D world in the process. This is a challenging task
because the reflections are extremely sensitive to local ob-
ject geometry, viewing direction and inter-reflections due
to the object’s surface. To capture this radiance field, we
convert glossy objects with unknown geometry and texture
into radiance-field cameras. Specifically, we exploit neural
rendering to estimate the local surface of the object viewed

Figure 3. Advantages of 5D environment radiance field. Mod-
eling reflections on object surfaces (a) as a 5D env. radiance field
enables beyond field-of-view novel-view synthesis, including ren-
dering of the environment from translated virtual camera views
(b). Depth (c) and environment radiance of translated and parallax
views can further enable imaging behind occluders, for example
revealing the tails behind the primary Pokemon occluders (d).

from each pixel of the real camera. We then convert this
local surface into a virtual pixel that captures radiance from
the environment. This virtual pixel captures the environ-
ment radiance as shown in Fig 5. We estimate the outgo-
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ing frustum from the virtual pixel as a cone that samples
the scene. By sampling the scene from many virtual pix-
els on the object surface, we construct an environment ra-
diance field that can be queried independently of the object
surface, enabling beyond field-of-view novel-view synthesis
from previously unsampled viewpoints.

Our approach jointly estimates object geometry, diffuse
radiance, and the environment radiance field from multi-
view images of glossy objects with unknown geometry and
diffuse texture in three steps. First, we use neural signed
distance functions (SDF) and an MLP to model the glossy
object’s geometry as a neural implicit surface and diffuse
radiance, respectively, similar to PANDORA [10]. Then,
for every pixel on the observer’s camera, we estimate the
virtual pixels on the object’s surface based on the estimated
local geometry from the neural SDF. We analytically com-
pute the parameters of the virtual cone through the virtual
pixel. Lastly, we use the cone formulation in MipNeRF [5]
to cast virtual cones from the virtual camera to recover the
environment radiance .

To summarize, we make the following contributions:

• We present a method to convert implicit surfaces into
virtual sensors that can image their surroundings using
virtual cones. (Sec. 3.3)

• We jointly estimate object geometry, diffuse radiance,
and estimate the 5D environment radiance field sur-
rounding the object. (Fig. 7 & 9)

• We show that the environment radiance field can be
queried to perform beyond-field-of-view novel view-
point synthesis, i.e render views only visible to the ob-
ject in the scene (Section 3.4)

Scope. We only model glossy objects with low rough-
ness as such specular reflections tend to have a high signal-
to-noise ratio, therefore, are a sharper estimate of the en-
vironment radiance field. However, we note that the vir-
tual cone computation can be extended to model the cone
radius as a function of surface roughness. Deblurring ap-
proaches can further improve the resolution of estimated
environment. In addition, we approximate the local curva-
ture using mean curvature, which fails for objects with vary-
ing radius of curvature along the tangent space. We explain
how our virtual cone curvature estimation can be extended
to handle general shape operators in the supplementary ma-
terial. Lastly, similar to other multi-view approaches, our
approach relies on a sufficient virtual baseline between vir-
tual viewpoints to recover the environment radiance field.

2. Related Work
2.1. Modeling reflections

Catadioptric imaging systems incorporate reflections on
curved reflective mirrors to expand the field of view of con-

ventional cameras [2, 26], to increase the baseline of light
field cameras [11, 40] and to perform novel view synthesis
from a single capture [44]. These works assume the geome-
try of the reflecting surface is known or calibrated while we
create a catadioptric imaging system from everyday glossy
objects of unknown geometry. Grossberg et al. [15] propose
a generalized model for light transport through imaging sys-
tems, including catadioptric systems. Our work focuses on
light transport reflecting off a general object in the scene.

Light field imaging is shown to be effective for reflection
removal [21, 27], reconstructing specular surfaces [18], in-
trinsic decomposition [1], and neural rendering [35]. These
works typically consider planar reflections or require train-
ing on synthetic datasets, while our approach models re-
flections on complex geometry and is unsupervised. Prior
works have also utilized additional light properties such as
polarization [9,10,20] and time-of-flight [17,33] for the sep-
aration of the reflected component and specular surface re-
construction. While the input of our approach is RGB im-
ages, there is scope for improving reconstruction quality by
supplementing the algorithm with these additional cues.

Recent progress in neural radiance fields has enabled im-
pressive novel view rendering and geometry reconstruction
from multi-view images [24]. MipNeRF [5] demonstrates
better novel view synthesis by modeling outgoing rays as
cones to enable anti-aliasing. RefNeRF [41] proposes In-
tegrated Directional Embeddings for improved novel view
synthesis of reflections. NeRFReN [16] separates diffuse
and specular radiance by using separate neural networks.
Neural Catacaustics [19] propose a neural warping method
to model reflections by learning the caustics of the surface.
While these works focus on novel-view synthesis of the
scene from the primary camera, we perform view synthesis
that is beyond the line-of-sight of the primary camera, i.e.,
rendering views only visible to the objects present in the
scene, while jointly estimating object geometry and sepa-
rating diffuse and specular radiance.

2.2. Environment Estimation

Recovering underlying scene properties from multiple
images is inherently ill-posed [32], but can be regularized
using the natural statistics of scene properties as a prior
[4, 34]. Recent works exploit this prior through deep neu-
ral networks and demonstrate inverse rendering of indoor
scenes from a single image [12, 22, 43, 48]. However, these
techniques typically recover only coarse representations of
lighting and cannot reconstruct fine details of the environ-
ment. Lombardi et al. [23] recover environment and re-
flectance, assuming the scene is composed of known ge-
ometry and uniform material. Georgolis et al. [13] re-
cover the environment map behind the camera from a sin-
gle image of a glossy object, assuming the object is com-
posed of textureless materials and using ground truth seg-
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Figure 4. Comparison of environment estimation approaches.
Approaches such Neural Illum [36], Lighthouse [37], NeRFFac-
tor [47] train on datasets of natural illumination maps to regular-
ize ill-posedness of environment estimation. PANDORA [10] and
RefNeRF [41] exploit multi-view reflections on objects but assume
the surrounding environment is infinitely far away and is modeled
with a flat 2D map. From multi-view reflections, ORCa converts
the object surface into a virtual sensor and extracts the 5D radiance
field of the environment.

mentation masks. Song et al. [36] estimate plausible en-
vironment maps by mapping reflections in the image and
inpainting unmapped regions. Srinivasan et al. [37] cap-
ture stereo image pairs and estimate plausible spatially-
coherent environment maps. NeRD [7], NeRFactor [47]
and NeuralPIL [8] employ data-driven priors for lighting
and BRDF in a NeRF-based approach for radiance decom-
position. Park et al. [31] use RGB-D videos to estimate en-
vironment map. Swedish et al. [39] recover high-frequency
illumination map from the shadows of an object with known
geometry. PhySG [46] and Munkberg et al. [25] perform
inverse rendering from multi-view images by modeling the
surface as signed distance functions. PANDORA [10] per-
forms radiance decomposition from polarized RGB images.

3. Learning environment radiance fields from
multi-view reflections

3.1. Overview

Reflections on glossy objects offer a glimpse into the sur-
rounding environment beyond the camera’s field of view.
From multi-view images of a glossy object with unknown
geometry and albedo, we aim to recover the 5D radiance
field of the surrounding environment. The mapping from
images captured by the observer to the surrounding envi-
ronment depends on the glossy object’s surface properties,
in particular, the surface normals and curvature. We first
cast a cone from the observer camera’s center-of-projection
through each pixel viewing the scene. When the cone in-
tersects the object’s surface, it reflects, causing the cone to
be transformed (Fig. 5). The transformed cone, referred
to as a virtual cone, samples the environment and is primar-

Figure 5. Virtual Sensor. We image the world through the object
by modeling each pixel’s specular radiance as a projection of the
5D radiance field of the environment onto the object’s surface. We
capture the radiance field by treating the surface area on the object
that the pixel views, dSt, as a single-pixel virtual camera with
its center-of-projection at vo. We cast virtual cones through the
virtual sensor to capture the 5D radiance field of the environment.

ily responsible for the specular radiance observed on the
glossy object. Our key insight is that the reflections cap-
tured by the observer’s camera can be modeled as a pro-
jection of the environment radiance field onto the object’s
surface. By modeling the reflected rays as a cone and com-
puting the parameters of the cone, we can more accurately
estimate the projected environment radiance field onto the
object surface, as shown in Fig. 10.

ORCa is composed of three steps: modeling the object’s
geometry as a neural implicit surface (Sec. 3.2), converting
the object’s surface into a virtual sensor (Sec. 3.3), and mod-
eling the environment radiance field as a projection along
these virtual cones (Sec. 3.4). The learned environment
radiance field can then be queried on novel viewpoints to
show occluded areas in the scene. Fig. 2 depicts our output
for each component on a scene rendered with a complex
glossy object and 3D environment. Fig. 6 shows our system
architecture. Next, we describe each step in detail.

3.2. Learning Neural implicit Surfaces

Neural Signed Distance Function We model the object
geometry as a neural signed distance function (SDF). f :
R3 → R. SDFs provide a helpful inductive bias for learn-
ing smooth surface geometry [30, 42, 45] that assists down-
stream tasks in our pipeline. Moreover, the surface proper-
ties crucial for our framework, surface normals and curva-
ture, can be conveniently computed from SDFs in a differ-
entiable manner. Consider the 3D spatial coordinates, x, in
the scene. The glossy object surface, S is then represented
by the zero-level set of the SDF

S = {fS(x) = 0|x ∈ R3} (1)
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Figure 6. Overview of our proposed architecture.

Similar to Yariv et al. [45], we model the SDF fS as a
coordinate-based MLP.
Surface Normals Gradients of the SDF at the zero level set
point S towards the surface normals S,

n(x) =
∇xfS(x)

∥∇xfS(x)∥
x ∈ S (2)

Surface Curvature We employ differential geometry tech-
niques developed by Novello et al. [29] to estimate curva-
ture for neural implicit surfaces. In particular, we estimate
the mean curvature K(x) for the implicit surface from the
divergence, ∇ of the surface normals

K(x) =
∇ · n(x)

2
(3)

Mean curvature approximates the surface with an osculat-
ing sphere. Our approach also works for more generalized
notions of curvature through the shape operator, at the cost
of higher computational complexity. We refer our readers
to the supplement for the general case.
Diffuse Radiance We separate the captured radiance at the
observer camera with diffuse radiance, which depends on
the glossy object’s albedo, and specular radiance which de-
pends on the environment radiance. The diffuse radiance
does not have any view dependence and only depends on
surface point x. We denote the diffuse radiance as fd and
model it using a coordinate-based MLP (Fig. 6).
Volume Rendering As proposed in [45], we perform vol-
umetric rendering on the SDF. We define the volume den-
sity σ(x) as the cumulative distribution function (CDF), de-
noted as Ψ(s), applied to fS :

σ(x) = αΨβ(fS) (4)

In contrast to [45], however, we only aim to recover the
diffuse radiance of the object along a particular ray. We
define a function fd that estimates the diffuse radiance at
each point, x, along the ray. To get the final diffuse radiance
along a given primary ray, rp(t), we perform volumetric
rendering:

ĉd(r) =

∫ ∞

0

fd(r(t), f
k
S(r(t))τ(t)dt (5)

Note that there is no view dependence in Eq. 5 and interme-
diate features, fk

S , are used as input. τ(t) is the accumulated
transmittance along the ray.

Figure 7. Qualitative comparisons of diffuse-specular separa-
tion and geometry estimation on rendered dataset. The envi-
ronment contains nearby objects with complex occlusions when
seen through reflections on the glossy object. RefNeRF fails
to perform accurate diffuse-specular separation and PANDORA
blurs the nearby objects in the specular map. ORCA can model the
complex specular reflections through environment radiance field.

3.3. Objects Surface as Virtual Sensor

Each pixel, p, with a finite surface area, dAp, on the
real-camera sensor views the surface of the object through
a frustum originating at that pixel. The object then sam-
ples the environment radiance field through this finite sur-
face converting the finite surface into a virtual pixel with
surface area, dS. Through this model, we can interpret the
object surface as a virtual sensor consisting of many vir-
tual pixels that sample radiance from the environment field
based on the geometry of the object and observer viewing
direction. We now formulate a virtual pixel based on real
camera pose and implicit surface geometry. Please refer to
Fig. 5 for a visualization of the virtual sensor.

Consider a real camera origin as o and a pixel on the
real sensor pi,j that corresponds to ray direction d. The
primary ray for pixel pi,j is parameterized with ray length
t as rp(t) = o+ td
Casting Real Cones We can approximate the outgoing con-
ical frustum from pixel pi,j as a cone originating at o with
axis-of-direction d and radius ṙ, equivalent to half the dis-
tance of the pixel in the x and y directions. We represent the
real cone as a parametric volume,

rcone(ṙ, s, θ) = ṙs cos(θ)êu + ṙs sin(θ)êv + ṙsd, (6)

where êu and êv are basis vectors in the plane perpendicular
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to d, θ ∈ [0, π] and s ∈ [0, tmax]
Virtual Pixel. Virtual pixels are characterized by the in-
tersection of the real cone with the object surface. In Sec.
3.2, we model local surface properties using mean curva-
ture which enables efficient analytical computations for the
virtual pixel parameters even though our approach works
with general shape operators. For a sampled point ti along
the ray, we have the surface normals n(ti) from Eq. 2 and
estimated mean curvature K(ti) from Eq. 3. The local ob-
ject surface at ti, can be approximated with an osculating
sphere, O(ti), centered at ôS(ti) with radius, R(ti) as

R(ti) =
2

Kti

ôS(ti) = rp(ti) +R(ti) · n̂(ti)

For concave surfaces Kti < 0. So, ôS will lie outside the
object. For Kti > 0, ôS will lie inside the object.

The edges of the virtual pixel for rp(ti) would lie at
the intersection of the osculating sphere O(ti) and the pri-
mary cone given by rcone. Computing exact cone-sphere
intersections are computationally expensive so we approx-
imate the cone-sphere intersection using rays bound cone-
sphere intersectional surface dS. We consider four rays that
bound the cone and sample them at θj ∈ {0, π/2, π, 3π/2}
with Eq. 6. We perform intersections of the corresponding
bounding rays with the osculating sphere O(ti) to get cor-
ners of the virtual pixel dsj . These ray sphere intersections
can be computed analytically in an efficient manner.
Virtual Cone Origin. From the virtual pixel surface area,
we can now compute the virtual cone that samples the en-
vironment. We first compute normal vectors at virtual pixel
corners dsj from the center of osculating sphere ôS

n̂j =
dsj − ôS

||dsj − ôS||
(7)

At each virtual pixel corner, we compute the reflected ray
directions, ωr

j , by computing the dot product between the
incoming ray directions, ωi

k, and the normals, n̂k, where ωr
0

is the primary ray’s reflected vector.

ωr
0 = d−

(
d · n̂(ti)

)
n̂(ti) (8)

ωr
j = dj −

(
dj · n̂j(k)

)
n̂j(k) (9)

dj are the incident directions to the virtual pixel corners
dsj . The virtual cone origin is the intersection of these re-
flected rays at the pixel corners and pixel center. However,
these rays might not intersect at a single point so we ap-
proximate a virtual origin to be the point that minimizes the
sum of distances to the reflected rays ωj .

vo = argminv

∑
j

|(v − dsj)× ωr
j | (10)

We pose this as a linear least squares problem and estimate
the virtual cone origin efficiently through pseudo-inverse.
Virtual Cones Direction. The reflected ray at the center of
the virtual pixel reflects the object surface along the direc-
tion ωr

0 from Eq. 8. We consider this as the direction-of-axis
of the virtual cone.

v̂d = ωr
0 (11)

Virtual Cone Radius. We compute the radius of the cone
by treating the reflection vectors of the bounding rays as
the neighboring “pixel” directions. Similar to [5], we can
compute the distance between {ωr

kθ
}2πθ=0 and the primary

reflected ray ωr
0 in the (x, y) components (omitted below

for clarity).

v̂ṙ = ∥{ωr
kθ
}2πθ=0 − ωr

0∥ (12)

Finally, for each sampled point ti, we can character-
ize our single-pixel virtual sensor located at the object sur-
face dS as a virtual cone with v̂o as its apex, v̂d as axis-
direction, v̂ṙ as the radius.
Connections to caustics. Our work takes inspiration from
catadioptric imaging systems. To convert objects into cam-
eras, we compute the surface and find a corresponding
center-of-projection for this surface-as-sensor. However,
unlike conventional perspective cameras, objects don’t have
a fixed center-of-projection, other than in a few special con-
figurations [3], but a locus of viewpoints that vary with ob-
ject geometry and viewing direction. These viewpoints lie
on the “caustic surface” of the object. While typical works
in catadioptric imaging analytically compute the caustic
surface by assuming known geometry [14, 38], or making
assumptions about placement of the observer [40], our for-
mulation approximates the caustic surface of unknown ge-
ometry through the intersection of reflected rays on virtual
pixels. We empirically show in the supplement that as the
surface area of the virtual pixel goes to 0, dS → 0, our
method estimates the true caustic of the object without as-
suming geometry. Our method also has applications in esti-
mating the caustic surface of the unknown geometry.

3.4. Environment Radiance Fields

Our goal is to capture a 5D environment radiance field of
the scene by imaging the world through these single-pixel
virtual sensors located at the object’s surface. We use our
formulation of virtual cones to recover 5D environment ra-
diance fields. We define an environment radiance field as
fE : (v̂o, v̂d) → (σEnv, cs),

where fE outputs opacity and radiance along sampled
virtual cones. We note that this view-dependent radiance
is equivalent to the specular radiance at point ti sampled
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Figure 8. Evaluation of environment depth from reflections.
For the scene in Fig. 3, ORCa can faithfully estimate the depth of
the environment, especially for nearby surroundings.

Diffuse Radiance Specular Radiance Mixed Radiance Normals
Approach PSNR SSIM PSNR SSIM PSNR SSIM MAE

↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (°)
Ref-NeRF 18.80 0.7304 16.99 0.6633 20.19 0.7890 43.690
PANDORA 18.25 0.7260 16.25 0.6483 18.90 0.7284 7.606
ORCA 19.84 0.7893 20.74 0.7535 22.00 0.7947 2.339

Table 1. Average evaluation metrics on rendered scenes. We
compare ORCa to other neural rendering techniques that model
reflections, including Ref-NeRF and PANDORA, on six simu-
lated scenes. ORCa provides consistent improvements in geom-
etry estimation, diffuse-specular separation and novel view syn-
thesis. Please refer to the supplement for additional metrics.

along the primary-camera ray rp(t). We can render the final
specular radiance at pixel pi,j as follows:

ĉs(r) =

∫ ∞

0

fE(v̂o, v̂d)τ(t)dt

ĉ = ĉd + ĉs

Intuitively, fE learns the 5D radiance field by sampling
single-pixel virtual sensors from the object surface and must
learn geometry and environment radiance that is consistent
with the multi-view reflections. Moreover, we can query fE
to render novel viewpoints and associated depths that are
beyond the field-of-view of the real camera. We volume
render each virtual cone by dividing them into conical frus-
tums using Integrated-Positional Encoding as proposed in
MipNeRF [5]. Our formulation of virtual cones works well
with Mip-Nerf’s rays-as-cones method.

4. Experiments

4.1. Implementation Details

As in PANDORA, we parameterize fS with an 8-layer
MLP to estimate the surface, and, as in MipNeRF, fd with
4-layer MLP with input geometric features of size 512 from
fS . We follow the SDF-to-opacity conversion and the it-
erative sampling of the ray proposed in [45]. To aid the
network to learn geometry quickly, we also train fS with
a mask-net as proposed in [10]. We use five losses in our
architecture: photometric loss, mask loss [10], normal loss
[41], eikonal loss [45], and distortion loss [6]. Additional
training details are discussed in the supplement.

Scene: Ball-cup in hallway
Mixed Radiance

Approach PSNR SSIM
↑ (dB) ↑

Ref-NeRF 32.75 0.9617
PANDORA 28.83 0.9758
ORCA 30.86 0.9799

Scene: Owl in hallway
Mixed Radiance

Approach PSNR SSIM
↑ (dB) ↑

Ref-NeRF 26.65 0.8890
PANDORA 27.24 0.9343
ORCA 26.84 0.9299

Table 2. Quantitative metrics for real-world, captured scenes.
ORCa demonstrates comparable performance in novel view syn-
thesis on scenes from the PANDORA real dataset.

4.2. Datasets

We conduct experiments on both simulated and real-
world datasets. Simulated datasets are rendered in Mit-
suba2 [28]. Simulated datasets contain a range of increas-
ingly complex object geometries (elephant, Pokeball, and
orca) and scenes (living room and Pokemon). We train with
200 views for simulated datasets. We also show results for a
real-world dataset [10] capturing a glossy cup with a black
vase sitting atop it using 35 views. All datasets will be pub-
lically released upon publication.

4.3. Advantages of Environment Radiance Fields

Other neural rendering techniques that handle reflec-
tions, Ref-NeRF and PANDORA, estimate the environment
as a 2D map, while ORCa recovers a 5D environment radi-
ance field. Fig. 3 shows the advantages of recovering a 5D
environment radiance field. Close-by surrounding objects
often cause occlusions that cannot be modeled by 2D en-
vironment maps. By estimating the radiance field, we can
image behind occluders through sampling novel viewpoints
such as the translated viewpoints shown in Fig. 3. More-
over, we can also show the depth to the surroundings from
these virtual viewpoints. In Fig. 8, we quantitatively eval-
uate the estimated depth of the surroundings for the syn-
thesized virtual views in Fig. 3 and show that ORCa pro-
vides reliable depth estimates especially for nearby objects.
We provide additional examples of depth estimation and be-
yond field-of-view novel-view synthesis in the supplement.

4.4. Comparisons with Baselines

We compare ORCa with Ref-NeRF and PANDORA on
synthetic and real datasets. As shown in Fig. 7 and 9, ORCa
estimates more accurate surface normals than other meth-
ods. While the total radiance predicted by Ref-NeRF and
PANDORA are visually similar, the surface normals are less
smooth than ORCa. We also observe that ORCa is able to
achieve better diffuse and specular radiance separation than
PANDORA, which is evident in the Pokeball surface nor-
mals Fig. 7. In these examples, PANDORA recovers blurry
specular radiance. We see that ORCa’s predicted depth is
highly interpretable and matches the underlying geometry
of the environment, as shown in Fig. 3. Even on cylindri-
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Figure 9. Comparisons on real dataset. Using a real-world
dataset with only 35 views, ORCa can model the sharp speculari-
ties on the ball arriving from regions of the nearby scene, such as
the table, and far away scene regions, such as the hallway, to learn
an environment radiance field. We query the radiance field for the
depth of the far hallway (blue) and the nearby objects, such as the
table (red). We also render novel viewpoints that are beyond the
field of view of the observer camera and show that ORCa interpo-
lates well between those views.

cal real-world datasets, such as the black vase in Fig. 9, the
nearby hallway is visible in both the virtual view and depth,
despite never being in the field of view of the primary cam-
era. Unlike Ref-NeRF, our primary objective is not to per-
form novel-view synthesis, but instead to capture the envi-
ronment radiance field from the object surface. As shown
in Table 1, ORCa improves over Ref-NeRF and PANDORA
in estimating diffuse radiance, specular radiance, mixed ra-
diance, and normals. Here we report the image quality met-
rics, PSNR and SSIM, and surface normal metric, MAE, av-
eraged over six synthetic scenes with varying environments,
camera view distribution, and object complexity. Please re-
fer to the supplement for individual metrics on each scene.
ORCa also shows competitive performance for novel-view
synthesis metrics on real-world scenes from PANDORA
dataset, as shown in Table 2.

4.5. Impact of Virtual Cone Computation

We base our method on a physically accurate formula-
tion by modeling ray-cone intersections and using the sur-
face as a virtual sensor, as described in Sec. 3.3. We demon-
strate the importance of this step by setting up two ablation
experiments. In the first experiment, which we term Naive
Virtual Cone, we place the origin of the cone at the object
surface instead of computing the virtual cone origin based

Figure 10. Ablations on virtual cone computation Accurate es-
timation of the virtual cones (Sec. 3.3) is crucial for ORCa. If
the virtual cone origin is assumed to be at the object surface (left
column) or if the surface is assumed to locally have no curvature
(right column), the surface normal and specular radiance outputs
suffer from artifacts (red boxes).

on the curvature. In the second experiment, which we term
No Curvature, we assume that locally the surface is like a
flat mirror and has no curvature. In Fig. 10, we show that
for both of these ablation experiments, we see worse perfor-
mance as demonstrated by the artifacts in estimated surface
normals and specular components (shown as red boxes).

5. Conclusion

We present a method to convert glossy objects with un-
known geometry and texture into radiance-field cameras
that capture the environment’s radiance field around them.
Our method recovers object geometry and diffuse radiance,
in addition to capturing the depth and radiance of the ob-
ject’s surroundings from its perspective. Our modeling of
the environment as a radiance field is effective in recover-
ing close-by objects (Fig. 7) and is occlusion aware (Fig. 3).
From the recovered environment radiance field, we can per-
form beyond field-of-view novel-view synthesis. Our work
can unleash applications in virtual object insertion and 3D
perception, e.g. inferring information beyond the line-of-
sight of the camera using predicted virtual views and depth.
Our formulation goes beyond the conventional direct-line-
of-sight radiance fields and can enable further areas of re-
search to extract more information from multi-view images
directly from the environment and the objects present in it.
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