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Abstract

The appearance of an object can be fleeting when it
transforms. As eggs are broken or paper is torn, their color,
shape and texture can change dramatically, preserving vir-
tually nothing of the original except for the identity itself.
Yet, this important phenomenon is largely absent from ex-
isting video object segmentation (VOS) benchmarks. In this
work, we close the gap by collecting a new dataset for
Video Object Segmentation under Transformations (VOST).
It consists of more than 700 high-resolution videos, cap-
tured in diverse environments, which are 20 seconds long on
average and densely labeled with instance masks. We adopt
a careful, multi-step approach to ensure that these videos
focus on complex object transformations, capturing their
full temporal extent. We then extensively evaluate state-
of-the-art VOS methods and make a number of important
discoveries. In particular, we show that existing methods
struggle when applied to this novel task and that their main
limitation lies in over-reliance on static appearance cues.
This motivates us to propose a few modifications for the top-
performing baseline that improve its capabilities by better
modeling spatio-temporal information. More broadly, our
work highlights the need for further research on learning
more robust video object representations.

Nothing is lost or created, all things are merely transformed.

Antoine Lavoisier

1. Introduction
Spatio-temporal cues are central in segmenting and

tracking objects in humans, with static appearance play-
ing only a supporting role [23, 27, 43]. In the most ex-
treme scenarios, we can even localize and track objects de-
fined by coherent motion alone, with no unique appearance
whatsoever [20]. Among other benefits, this appearance-
last approach increases robustness to sensory noise and
enables object permanence reasoning [41]. By contrast,
modern computer vision models for video object segmenta-
tion [3, 11, 44, 64] operate in an appearance-first paradigm.

Figure 1. Video frames from the DAVIS’17 dataset [42] (above),
and our proposed VOST (below). While existing VOS datasets
feature many challenges, such as deformations and pose change,
the overall appearance of objects varies little. Our work focuses on
object transformations, where appearance is no longer a reliable
cue and more advanced spatio-temporal modeling is required.

Indeed, the most successful approaches effectively store
patches with associated instance labels and retrieve the clos-
est patches to segment the target frame [11, 38, 44, 64].

What are the reasons for this stark disparity? While some
are algorithmic (e.g., object recognition models being first
developed for static images), a key reason lies in the datasets
we use. See for instance the “Breakdance” sequence from
the validation set of DAVIS’17 [42] in Figure 1: while
the dancer’s body experiences significant deformations and
pose changes, the overall appearance of the person remains
constant, making it an extremely strong cue.

However, this example – representative of many VOS
datasets – covers only a narrow slice of the life of an object.
In addition to translations, rotations, and minor deforma-
tions, objects can transform. Bananas can be peeled, paper
can be cut, clay can be molded into bricks, etc. These trans-
formations can dramatically change the color, texture, and
shape of an object, preserving virtually nothing of the orig-
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Figure 2. Representative samples from VOST with annotations at three different time steps (see video for full results). Colours indicate
instance ids, with grey representing ignored regions. VOST captures a wide variety of transformations in diverse environments and provides
pixel-perfect labels even for the most challenging sequences.

inal except for the identity itself (see Figure 1, bottom and
Figure 2). As we show in this paper, tracking object identity
through these changes is relatively easy for humans (e.g. la-
belers), but very challenging for VOS models. In this work,
we set out to fill this gap and study the problem of segment-
ing objects as they undergo complex transformations.

We begin by collecting a dataset that focuses on these
scenarios in Section 3. We capitalize on the recent large-
scale, ego-centric video collections [13, 21], which contain
thousands of examples of human-object interactions with
activity labels. We carefully filter these clips to only in-
clude major object transformations using a combination of
linguistic cues (change of state verbs [19, 29]) and man-
ual inspection. The resulting dataset, which we call VOST
(Video Object Segmentation under Transformations), con-
tains 713 clips, covering 51 transformations over 155 object
categories with an average video length of 21.2 seconds.
We then densely label these videos with more than 175,000
masks, using an unambiguous principle inspired by spatio-
temporal continuity: if a region is marked as an object in
the first frame of a video, all the parts that originate from it
maintain the same identity (see Figure 2).

Equipped with this unique dataset, we analyze state-
of-the-art VOS algorithms in Section 4. We strive to in-
clude a representative set of baselines that illustrates the
majority of the types of approaches to the problem in the
literature, including classical, first frame matching meth-
ods [61], local mask-propagation objectives [26], alter-
native, object-level architectures [3], and the mainstream
memory-based models [11,63–65]. Firstly, we observe that
existing methods are indeed ill-equipped for segmenting ob-
jects through complex transformations, as illustrated by the
large (2.3-12.5 times) gap in performance between VOST
and DAVIS’17 (see Table 2). A closer analysis of the results
reveals the following discoveries: (1) performance of the
methods is inversely proportional to their reliance on static
appearance cues; (2) progress on VOST can be achieved by

improving the spatio-temporal modeling capacity of exist-
ing architectures; (3) the problem is not easily solvable by
training existing methods on more data.

We conclude in Section 5 by summarizing the main chal-
lenges associated with modeling object transformations.
We hope that this work will motivate further exploration
into more robust video object representations. Our dataset,
source code, and models are available at vostdataset.org.

2. Related Work
In this work, we study the problem of video object seg-

mentation under transformations and analyze existing VOS
methods under this novel task. Our efforts are motivated by
observations about object perception in humans. Below, we
review the most relevant works on each of these topics.
Video object segmentation is defined as the problem of
pixel-accurate separation of foreground objects from the
background in videos [30, 40, 51]. What constitutes fore-
ground is either defined by independent motion [7, 40]
or using a mask manually provided in the first frame of
a video [30, 40, 51], the latter setting known as semi-
supervised VOS. The earliest datasets lacked in scale and
consistency [7, 30, 51]. The release of the DAVIS bench-
mark [40] was a significant step for the community as it
provided 50 high-resolution sequences featuring a variety
of challenges. While DAVIS caused a flurry of novel VOS
methods [8, 39, 50, 54], it treated VOS as a binary fore-
ground/background separation problem.

In contrast DAVIS’17 [42] not only extended the dataset
to 150 videos, but, most importantly, introduced instance
labels. In this, now de-facto standard, setting, an algorithm
is provided with several object masks in the first frame and
has to output pixel-perfect masks for these objects for the
remainder of the video, together with their identity. While
DAVIS focused on the data quality, it lacked in quantity,
forcing most methods to resort to pre-training on static im-
ages [28, 39], or synthetic videos [50]. This issue was ad-
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Dataset Videos Frames Avg len. (s) Masks/frame Ann fps. Granularity Focus

DAVIS’16 [40] 50 3,455 3.0s 1.0 24 Binary Data quality
DAVIS’17 [42] 150 10,700 3.0s 3.0 24 Instance Instance labels
YTVOS [59] 3,500 120,400 4.6s 1.6 6 Instance Dataset size
UVO∗ [55] 10,337 30,500 3.0s 8.8 1 Instance Object vocabulary
VISOR [14] 7836 50,700 12.0s 5.3 0.5 Semantic Object manipulation†

VOST (Ours) 713 75,547 21.2s 2.3 5 Instance Object transformation

Table 1. Statistics of major video object segmentation datasets (*: train/val public annotations; †: including a small fraction of object
transformation annotations). Unlike all existing VOS benchmarks, VOST focuses on the specific challenge of modeling complex object
transformations. This motivates our design decisions to densely label relatively long videos with instance masks.

dressed by the large-scale YouTube-VOS benchmark [59],
which features 3,252 videos over 78 categories.

Very recently, to further scale the datasets while keeping
the annotation costs manageable, several works proposed to
label videos at a very low fps (1 in [55] and ∼0.5 in [14])
and interpolate ground truth labels to obtain dense annota-
tions. The estimated labels are then automatically filtered to
keep only the confident interpolations. While this approach
was shown to work well in many cases, in the appendix we
demonstrate that it fails precisely in the most challenging
scenarios which we are interested in.

Notably, none of these datasets features a significant
amount of object transformations. Thus, our effort is com-
plementary to existing work. We compare VOST to ma-
jor VOS benchmarks in Table 1, illustrating our key design
decisions. In particular, we label relatively long videos to
capture the full extent of each transformation, and provide
temporally dense instance-level labels, as interpolation fails
when objects transform.

VOS methods can be categorized in many possible ways.
Here we focus on the semi-supervised setting and trace the
history of the field to identify main trends. Early, pre-
deep learning methods propagate the first frame labels over
a spatio-temporal graph structure by optimizing an energy
function [4, 18, 22], but struggle with generalization due to
their heuristic-based nature.

First deep-learning solutions had to deal with the lack of
video data for training and hence modeled video segmen-
tation as an image-level problem [8, 28, 57]. In particular,
these works proposed to pre-train a CNN for binary ob-
ject segmentation on COCO [34] and then fine-tuned the
model for a few iterations on the first frame of a test video.
While this approach outperformed heuristic-based meth-
ods, it is computationally expensive and not robust to ap-
pearance change. These issues were separately addressed
in [10, 25, 61], which replace expensive fine-tuning with
cheap patch-level matching, and in [31, 35, 39, 54] which
introduce online adaptation mechanisms.

More recently, memory-based models have become the
mainstream approach for semi-supervised video object seg-
mentation [11, 37, 38, 44, 53, 63–65]. The earliest methods

in this category [37, 53, 63] extend the first-frame matching
mechanism of [10,25,61] by additionally matching with the
previous frame. This architecture can be seen as a mem-
ory module with capacity 2, providing an efficient mecha-
nism for adapting to appearance changes. More advanced
versions of the architecture include increasing the memory
capacity by storing several previous frames [38, 44], using
transformers [15,52] for retrieving object labels from mem-
ory [16, 64], introducing memory compression to support
longer sequences [11, 33], and improving the efficiency of
the memory read operation [12, 45, 58].

Alternative approaches to VOS include supervised [9,24,
39] and, more recently, unsupervised [26, 56] mask propa-
gation methods that do not maintain an appearance model of
the target. These methods are very efficient, but cannot han-
dle occlusions and suffer from drift in longer sequences. A
few works [3,32,66] propose to perform appearance match-
ing on the object, not on the patch level, but their accuracy
remains low. Finally, coherent motion is a key signals for
object perception in humans, but it was mostly studied in
unsupervised VOS [50, 60, 62].

In this work, we evaluate a representative set of semi-
supervised VOS methods on the task of segmenting objects
as they undergo complex transformations. Our experiments
illustrate limitations of the appearance-first paradigm, mo-
tivating the exploration of spatio-temporal architectures.

Object perception in humans is driven by spatio-temporal
cohesion. At the early development stages, infants use the
notions of boundedness and cohesion in space-time, not
static, gestalt cues like shape or texture to group surfaces
into objects [47–49]. In adults, the object files theory [27]
postulates that our visual system individuates each object by
grouping visual primitives based on spatio-temporal factors.
Most importantly, object’s individuation precedes its ap-
pearance identification, as shown in [23,27,43]. That is, hu-
mans can perceive something as the same ‘thing’ while its
appearance remains in flux and might dramatically change
over time. In the most extreme cases, individuation can
function in the absence of any unique object appearance,
as shown by Gao and Sholl [20].

Very recently, Peters and Kriegeskorte [41] summarized
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Figure 3. Statistics of VOST: distribution of transformations on the left, and co-occurrence statistics between the most common transfor-
mations and object categories on the right. While there is some bias towards common activities, like cutting, the tail of the distribution is
sufficiently heavy. Moreover, cutting has a broad semantic meaning, resulting in diverse transformations. Best viewed with zoom.

the differences between object representations in the brain
and neural networks, including the dichotomy between
spatio-temporal and appearance cues. They then argue that
the best way to bridge the differences between these two
types of representations is by introducing novel machine
vision tasks that require more complex spatio-temporal rea-
soning. In this work, we make a step in this direction by
extending the setting of video object segmentation to sup-
port object transformations.

3. Dataset Design and Collection

In this section, we discuss our approach to collect-
ing VOST. The key steps include selecting representative
videos, annotating them with instance masks, and defining
an evaluation protocol.

3.1. Video selection

We choose to source our videos from the recent large-
scale, egocentric action recognition datasets, which provide
temporal annotations for a large vocabulary of activities. In
particular, we use EPIC-KITCHENS [13] and Ego4D [21],
where the former captures activities in kitchens, such as
cooking or cleaning, and the later provides a much larger
diversity of scenarios, including outdoor ones. It is worth
noting that the egocentric focus of VOST is merely an ar-
tifact of the datasets that were used to source the videos.
The nature of the problem itself is independent of the cam-
era viewpoint and we expect that approaches developed on
VOST will generalize to third-person videos.

While these datasets feature tens of thousands of clips,
the vast majority of the actions (e.g., ‘take’ or ‘look’) do not
result in object transformations. To automatically filter out
such irrelevant clips, we capitalize on the notion of change
of state verbs from the language theory [19, 29]. That is,
rather than manually filtering the videos themselves, we first

filter the action labels. This dramatically reduces the total
number of clips we have to consider to 10,706 (3,824 from
EPIC-KITCHENS and 6,882 from Ego4D).

Although all the clips selected above feature an ob-
ject state change, not all result in a significant appearance
change. For example, folding a towel in half, or shaking a
paintbrush does nearly nothing to their overall appearance.
To focus on the more challenging scenarios, we manually
review each video and label its complexity on a scale from
1 to 5, where 1 corresponds to no visible object transfor-
mation and 5 to a major change of appearance, shape and
texture (see appendix for details). In addition, at this stage
we merge clips representing several steps of the same trans-
formation (e.g. consecutive cuts of an onion). After collect-
ing these labels we find that the majority of videos in the
wild are not challenging, however, we are still left with 986
clips in the 4-5 range, capturing the entire temporal extent
of these complex transformations.

Finally, we further filter the clip based on two criteria.
Firstly, some videos are nearly impossible to label accu-
rately with dense instance masks (e.g., due to excessive mo-
tion blur), so we skip them. Secondly, there are a few large
clusters of near duplicates (e.g., there are 116 clips of mold-
ing clay into bricks that are performed by the same actor in
the same environment), so we sub-sample those to reduce
bias. The resulting dataset contains 713 videos covering 51
transformations over 155 object categories. Note that, in
accordance with the standard VOS protocols [42, 59], se-
mantic labels are only used for data collection and are not
provided as input to the algorithms.

The distribution over transformations and co-occurrence
statistics between transformations and objects are shown in
Figure 3. Firstly we observe that, although there is some
bias towards more common actions, such as cutting, the
long tail of interactions is sufficiently heavy. Moreover, as
evident from the correlation statistics on the right side of

22839



Figure 4. Interface of our annotation tool. Objects are annotated
with polygons (shown in green), and additional “Category” and
“Instance id” labels (red). Annotations are automatically propa-
gated to the next frame and then manually adjusted (yellow).

the figure, cutting has an extremely broad semantic mean-
ing and can be applied to almost any object, resulting in
very different transformations (see cutting corn and paper
in Figure 2). Overall, there is substantial entropy in the cor-
relation statistics illustrating the diversity of our dataset.

3.2. Annotation collection

To label the videos selected above, we begin by adjusting
the temporal boundaries of each clip to tightly enclose the
entire duration of the transformation, with the exception of
extremely long sequences (a minute or longer). To balance
the cost and temporal density of the annotations we choose
to label videos at 5 fps.

A key question is how to annotate objects as they split
into parts (e.g. due to cutting or breaking). To avoid ambi-
guity, we adopt the most straightforward and general princi-
ple: if a region is marked as an object in the first frame of a
video, all the parts that originate from it maintain the same
identity. For example, the yolks from the broken eggs in
Figure 2 maintain the identity of the object they originated
from. This approach also ensures that there is an unam-
biguous signal in the data (spatio-temporal continuity) that
algorithms can use to achieve generalization.

There are, however, examples in which it is impossible
to provide an accurate instance mask for a region. In the
second row of Figure 2 we show two such cases. In the
first one, a piece of clay is experiencing fast motion, mak-
ing establishing a clear boundary impossible. In the sec-
ond example, the egg whites from several eggs are mixed
together, making it impossible to separate them from each
other. Rather than skipping such videos, we choose to label
the ambiguous regions with tight “Ignore” segments (shown
in gray in the figure), which are not used at either training
or evaluation time. This flexible approach allows us to con-
sistently annotate even the most challenging videos.

Given the complexity of the task, we hired a fixed team

of 20 professional annotators for the entire duration of the
project. They received detailed instructions on the task and
edge cases which we detail in the appendix. The annotators
were first trained for 4 weeks to ensure consistent behav-
ior. Each video was labeled by one annotator using Amazon
SageMaker GroundTruth tool for polygon labeling shown in
Figure 4. For videos featuring multiple objects and an ad-
ditional “Instance id” label was provided. The videos were
then reviewed by a small, held-out group of skilled annota-
tors and returned to the original worker for correction. This
process was repeated until no more issues could be iden-
tified. On average, 3.9 annotation-review cycles were per-
formed for each video to ensure the highest label quality.

Overall 175,913 masks were collected, with an average
track duration of 21.3 seconds. We report additional statis-
tics of the dataset in the appendix.

3.3. Splits and metrics

VOST is split into 572 train, 70 validation, and 71 test
videos. We have released the labels for train and validation
sets, but the test set is held out and only accessible via an
evaluation server to prevent over-fitting. Furthermore, we
ensure that all three sets are well separated by enforcing that
each kitchen from [13] and each subject from [21] appears
in only one of the train, validation or test sets.

For evaluation, traditionally, video object segmentation
datasets use a combination of region similarity J and con-
tour accuracy F [42, 59]. The former is the standard
intersection-over-union [17] between the predicted M and
ground truth masks G, which captures the fraction of pixels
that are correctly labeled. Contour accuracy, on the other
hand, measures how accurate the boundaries of the pre-
dicted masks are [36]. Both quantities are computed sep-
arately for each instance in each frame and then averaged
over frames in a video and over instances.

We propose two modifications to the standard metrics
to better reflect our problem setting. Firstly, we note that
contours are often not well defined for the kind of masks
we are dealing with: some objects are semi-transparent, and
the amount of motion blur is significant. Thus, we do not
measure contour accuracy in our experiments. Secondly,
recall that region similarity J for every object oi is averaged
over all video frames:

J (oi, F ) =
1

|F |
∑
f∈F

J (Mf
oi , G

f
oi), (1)

where F is the set of frames and Mf
oi , G

f
oi are the predicted

and ground truth masks for object oi in frame f respectively.
Hence, every frame has an equal influence on the overall
score. This is adequate for the standard VOS setting, but
we are interested not in how well a method can segment an
object overall, but in how robust it is to transformations. To
reflect this fact, we separately measure the region similarity
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VOST val VOST test DAVIS’17 val

Jtr J Jtr J Jtr J

OSMN Match [61] 7.0 8.7 8.5 10.2 41.3 49.6
OSMN Tune [61] 17.6 23.0 20.1 26.1 57.2 68.3
CRW [26] 13.9 23.7 20.8 28.0 53.6 64.4
CFBI [63] 32.0 45.0 32.1 43.9 75.0 79.3
CFBI+ [65] 32.6 46.0 31.6 46.7 76.3 80.1
AOT [64] 36.4 48.7 37.1 49.9 80.4 82.3
XMem [11] 33.8 44.1 32.0 44.0 81.1 82.9
HODOR Img [3] 13.9 24.2 22.1 29.0 70.2 74.7
HODOR Vid [3] 25.4 37.1 27.6 42.0 74.0 77.4

Table 2. Benchmarking existing methods on VOST. We report results on both validation and test sets of our dataset, using IoU after
transformation Jtr as well as the overall IoU J . We include DAVIS’17 val scores for reference. Performance of all methods is 2.2-5.9
times lower in terms of Jtr on VOST compared to DAVIS, emphasizing the complexity of the problem.

after the transformation has been mostly completed: Jtr =
J (oi, F̂ ), where F̂ represents the last 25% of the frames in
a sequence. We report both J and Jtr in our experiments,
but use the latter as the main metric.

4. Analysis of the State-of-the-art Methods
We now use VOST to analyze how well can existing

VOS methods handle object transformations. All the mod-
els are initialized from their best DAVIS’17 checkpoint
(usually pre-trained on a large-scale image and/or video col-
lection) and fine-tuned on the training set of VOST, unless
stated otherwise. We use the original implementations, only
adapting the loss to correctly handle “Ignore” labels and
tuning the number of training iterations on the validation
set. More details are provided in the appendix.

4.1. Methods

We evaluate a total of nine video segmentation algo-
rithms and their variants, which are selected to cover the
main trends in the field over recent years. In addition, the
methods’ performance on existing benchmarks and public
availability of the code were taken into account.

We include OSMN [61] as a representative approach for
early deep-learning methods that either fine-tune a CNN on
the first frame (denoted as OSMN Tune) or employ a more
efficient matching mechanism (OSMN Match). As a com-
plementary approach, we evaluate the self-supervised CRW
objective [26] for mask propagation which only uses local
information between consecutive frame pairs.

In the mainstream, memory-based family of methods we
evaluate CFBI [63] and its improved variant CFBI+ [65],
which have been established as very strong baselines on ex-
isting benchmarks. In addition, we include the transformer-
based AOT approach [64], and the very recent XMem
framework [11], which specifically focuses on long videos.

Finally, we study another recent method - HODOR [3],
which performs template matching on the object, not on the

patch level. We include both the image-based version of this
approach, which is trained on COCO (denoted as HODOR
Img), as well as the video-based one (HODOR Vid).

4.2. Results

Can existing methods handle transformations? In Ta-
ble 2 we start by reporting the performance of approaches
described above on the validation and test sets of VOST. For
reference, we also report the performance of these methods
on the validation set of DAVIS’17 on the right.

Firstly, we observe that the appearance matching base-
line (OSMN Match in the table) fails dramatically. This is
to be expected as virtually all videos in our dataset feature
major appearance changes. Expensive test time fine-tuning
on the first frame of a video (OSMN Tune) improves the
performance of this baseline, but the validation set score re-
mains 3.3 times lower than on DAVIS. Local mask propaga-
tion used by CRW is more robust to appearance change, but
cannot handle occlusions, which are plentiful in first-person
videos, and hence also struggles on VOST.

Next, we see that the more advanced, memory-based
methods (rows 4 to 7 in the table) are indeed more capable
due to their efficient mechanism for updating the appear-
ance model of the target. That said, performance remains
low, with the gap between Jtr and J on VOST being espe-
cially large. On DAVIS, on the other hand, the gap is almost
completely eliminated by the most recent AOT and XMem
baselines. These results demonstrate that, while memory-
based methods are capable of segmenting objects through
minor appearance changes caused by translations and defor-
mations, they fail under more challenging transformations.

Another notable observation is that the image-based
HODOR baseline (HODOR Img in the table), which is only
trained on COCO, shows a major loss in performance com-
pared to DAVIS. This illustrates that static object models
learned from images break when objects start to transform.
Moreover, the variant of this model trained on videos also
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OSMN Tune [61] CFBI+ [65] AOT [64] HODOR Vid [3]
All 17.6 (-0.0) 32.6 (-0.0) 36.4 (-0.0) 25.4 (-0.0)
LNG 12.4 (-5.2) 30.4 (-2.2) 34.7 (-1.7) 25.0 (-0.4)
MI 14.7 (-2.9) 26.4 (-6.2) 27.2 (-9.2) 20.6 (-4.8)
OCC 17.2 (-0.4) 28.1 (-4.5) 30.7 (-5.7) 17.6 (-7.8)
FM 17.0 (-0.6) 21.8 (-10.7) 23.8 (-12.5) 16.0 (-9.4)
SM 14.4 (-3.2) 23.3 (-9.2) 24.7 (-11.7) 16.6 (-8.8)

Table 3. Quantitative evaluation of failure modes of a subset of the
baselines on the validation set using Jtr . We analyze such factors
as video length (LNG), presence of several instances (MI), occlu-
sions (OCC), fast object motion (FM) and small objects (SM).

underperforms, indicating that object-level matching might
not be the optimal approach when object shape and appear-
ance change significantly during the video.
What makes the problem challenging? Significant
change in object shape and appearance is one factor that
is common to virtually all the videos in VOST. We now an-
alyze a representative subset of the baselines more closely
to identify their additional failure modes. To this end, in
Table 3 we report the Jtr score on subsets of the validation
set characterized by various quantifiable challenges, such as
the length of the video, or presence of occlusions.

Firstly, by evaluating on videos that are longer than 20
seconds (indicated with LNG in the table), we observe that
length alone does not present a significant challenge for
most of the methods. This demonstrates that the complexity
of the problem is associated with the content of our dataset
(object transformations), not with the technical challenges
of processing long sequences.

One unique aspect of our task is that the objects in multi-
instances sequences are typically close in appearance (e.g.
several eggs). Evaluating on such sequences (indicated with
MI in the table) significantly reduces the performance of all
the methods. It is not surprising, as appearance-first mod-
els are especially ill-suited for this scenario. Intriguingly,
the object-level matching strategy of HODOR Vid as well
as the expensive test time fine-tuning of OSMN Tune, al-
though less effective overall, seems to be more robust to
multi-instance segmentation.

Next, we look at two aspects that test the methods’ ob-
ject permanence capabilities - full occlusions (denoted as
OCC in the table) and fast motion (FM), which is often as-
sociated with objects going out of frame. The latter is mea-
sured as the distance between object centers in consecutive
frames normalized by the object size (see appendix for de-
tails). Interestingly, the simplest OSMN Tune baseline is
the most robust to object disappearance. More advanced
methods rely heavily on the objects being visible through-
out the video and struggle in highly dynamic scenes.

Finally, our dataset features many small objects (denoted
as SM in the table), which are equally challenging for all
methods. Overall, we can conclude that reliance on appear-
ance cues and the lack of spatio-temporal modeling capa-
bilities (e.g. modeling object permanence) are some of the

AOT [64] + 15 fr. + R-STM + 10 fps. + m-s.
Jtr 36.4 37.4 38.5 40.7 40.1
J 48.7 49.2 49.7 51.9 52.3

Table 4. Addressing some of the limitations of AOT. We ex-
periment with training on longer sequences, replacing short-term
memory with a recurrent transformer and increasing temporal and
spatial resolution.

Figure 5. Evaluation of the effect of the training set size on AOT+
using Jtr on the validation set of VOST. We investigate both the
effect of pre-training (on static images and videos) and the fraction
of VOST train used for fine-tuning.

main limitations of existing approaches.

Are these challenges easy to address? After we have ob-
served that VOST features many challenges that are under-
represented in existing benchmarks, it is natural to ask if
we can modify the top-performing AOT baseline to address
at least some of them. To this end, in Table 4 we explore
several intuitive directions. Firstly, we increase the length
of the training sequences from 5 to 15 frames. While this
leads to some improvements, they are limited as the model
is ill-equipped to capitalize on longer-term temporal cues.

Next, we increase the spatio-temporal modeling capacity
of AOT by replacing the short-term memory module, which
uses a transformer to match the patches in the current and
previous frame, with a recurrent transformer (denoted as R-
STM in the table, details are provided in the appendix). It
is more similar to classical recurrent architectures like Con-
vGRU [5] and can aggregate a rich spatio-temporal repre-
sentation of a video over time. This modification translates
to stronger transformation modeling capabilities, as indi-
cated by the improved Jtr score.

Finally, we experiment with increasing the temporal and
spatial resolution of the model at test time by evaluating at
10 fps and enabling multi-scale inference (denoted as m-s.
in the table). Both modifications increase the overall perfor-
mance J , but, notably, the spatial resolution has a smaller
effect and even decreases Jtr somewhat. This result sug-
gests that accurately modeling fine-grained temporal infor-
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Figure 6. Qualitative results of our AOT+ baseline on sequences from validation and test sets of VOST (see video for full results). Colours
represent instance ids. We can see that, while existing, appearance-first methods can handle relatively challenging transformations, they
struggle in the most testing scenarios when appearance is either not enough to distinguish between objects or it changes dramatically.

mation is key for achieving progress on VOST.
We qualitatively analyze both the success and failure

modes of the final variant, which we denote as AOT+, in
Figure 6. Firstly, we can see that this model can perfectly
handle the banana peeling sequence, illustrating its robust-
ness to relatively challenging transformations. However,
in the next sequence the limitations of appearance-first ap-
proaches start to show. AOT+ first confuses the coffeemaker
with the hand due to reflection and then fails to separate the
top part of the objects from the metal sink. Next, in the
paper rolling sequence, the two instances are correctly seg-
mented at first, but as soon as they are moved and folded
together the track of identities is lost and the model breaks
down. Finally, AOT+ fails completely in the very challeng-
ing egg-cracking example, being not able to both segment
the full extents of the eggs and to distinguish between them.

Is more data all you need? We now investigate whether
the challenges we saw above can be addressed by simply
training a model like AOT+ on a larger dataset. To this end,
we vary both the pre-training datasets and the size of the
VOST training set itself and report the results in Figure 5.

Firstly, we see that although pre-training is important the
static image dataset proposed in [33] is enough to provide a
strong initialization and further pre-training on videos from
YTVOS only brings marginal improvements. We addition-
ally experiment with pre-training on the very recent VISOR
dataset [14], which is also sourced from EPIC-KITCHENS,
but features only few transformations. In-domain pre-
training indeed improves zero-shot performance but does
not bring noticeable benefits after fine-tuning on VOST.

Finally, we observe that, while increasing the size of
the training set of VOST does have a noticeable effect on
performance, the improvements quickly saturate. If we ex-
trapolate the trend, it would require labeling at least 30,000
videos with complex object transformations for AOT+ to
reach the score of 80.0 on Jtr, which is not practical.

5. Discussion and Limitations

In this work, we demonstrated that segmenting objects
through transformations presents novel challenges, which
existing algorithms are ill-equipped to address. Our analy-
sis provides insights into the failure modes of these meth-
ods, while further raising a number of important questions.

Ambiguity is inevitable when dealing with object transfor-
mations. When designing VOST, we have put a lot of effort
to make the annotations as consistent as possible. To this
end, we followed the established opinion in cognitive sci-
ence literature [27, 47] that object perception is driven by
universal principles, such as spatio-temporal cohesion and
object permanence. We further ensured that for a few sce-
narios that cannot be resolved on the basis of these princi-
ples alone the “Ignore” label is used. That said, providing
additional annotations, for example, in the form of semantic
labels for objects parts, could further enrich the dataset.

Data plays a key role in deep learning, however, our anal-
ysis in Figure 5 demonstrates that pre-training on generic
video collections does not result in significant improve-
ments on VOST. What is needed is large amounts of data
featuring object transformations. As we have shown in Sec-
tion 3.1, collecting such videos requires a lot of effort. Au-
tomatic data collection using recent, self-supervised visual-
language models [1, 46] is a promising way to scale the
dataset and extend it to third-person videos.

Model architectures are another important dimension of
the problem. The capacity of a model is what determines
how effectively it can use the available data. In Table 4
we have shown that, while extending the spatio-temporal
capabilities of existing approaches can help, incremental
improvements do not address the most fundamental chal-
lenges. An entirely new approach to modeling objects in
videos is needed, with the recent spatio-temporal trans-
former architectures [2, 6] being a possible candidate.
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