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Abstract

We introduce submodel co-training, a regularization

method related to co-training, self-distillation and stochas-

tic depth. Given a neural network to be trained, for each

sample we implicitly instantiate two altered networks, “sub-

models”, with stochastic depth: we activate only a subset

of the layers. Each network serves as a soft teacher to the

other, by providing a loss that complements the regular loss

provided by the one-hot label. Our approach, dubbed “co-

sub”, uses a single set of weights, and does not involve a

pre-trained external model or temporal averaging.

Experimentally, we show that submodel co-training is

effective to train backbones for recognition tasks such as

image classification and semantic segmentation. Our ap-

proach is compatible with multiple architectures, including

RegNet, ViT, PiT, XCiT, Swin and ConvNext. Our training

strategy improves their results in comparable settings. For

instance, a ViT-B pretrained with cosub on ImageNet-21k

obtains 87.4% top-1 acc. @448 on ImageNet-val.

1. Introduction

Although the fundamental ideas of deep trainable neural

networks have been around for decades, only recently have

barriers been removed to allow breakthroughs in success-

fully training deep neural architectures in practice. Many of

these barriers are related to non-convex optimization in one

way or another, which is central to the success of modern

neural networks. The optimization challenges have been

addressed from multiple angles in the literature. First, mod-

ern architectures are designed to facilitate the optimization

of very deep networks. An exceptionally successful design

principle is using residual connections [24, 25]. Although

this does not change the expressiveness of the functions that

the network can implement, the improved gradient flow al-

leviates, to some extent, the difficulties of optimizing very

deep networks. Another key element to the optimization is

the importance of data, revealed by the step-change in vi-

sual recognition performance resulting from the ImageNet

dataset [11], and the popularization of transfer learning with

pre-training on large datasets [39, 58].
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Figure 1. Co-training of submodels (cosub): for each image, two sub-

models are sampled by randomly dropping layers of the full model. The

training signal for each submodel mixes the cross-entropy loss from the

image label with a self-distillation loss obtained from the other submodel.

However, even when (pre-)trained with millions of im-

ages, recent deep networks with millions if not billions

of parameters, are still heavily overparameterized. Tradi-

tional regularization like weight decay, dropout [46], or la-

bel smoothing [47] are limited in their ability to address

this issue. Data-augmentation strategies, including those

mixing different images like Mixup [61] and CutMix [60],

have proven to provide a complementary data-driven form

of regularization. More recently, multiple works propose

to resort to self-supervised pre-training. These approaches

rely on a proxy objective that generally provides more su-

pervision signal than the one available from labels, like in

recent (masked) auto-encoders [5,16,22], which were popu-

lar in the early deep learning literature [7,19,27]. Similarly,

contrastive approaches [23] or self-distillation [9] provide a

richer supervision less prone to supervision collapse [12].

Overall, self-supervised learning makes it possible to learn

larger models with less data, possibly reducing the need of

a pre-training stage [15].
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Distillation is a complementary approach to improve op-

timization. Distillation techniques were originally devel-

oped to transfer knowledge from a teacher model to a stu-

dent model [4, 28], allowing the student to improve over

learning from the data directly. In contrast to traditional

distillation, co-distillation does not require pre-training a

(strong) teacher. Instead, a pool of models supervise each

other. Practically, it faces several limitations, including the

difficulty of jointly training more than two students for com-

plexity reasons, as it involves duplicating the weights.

In this paper, we propose a practical way to enable co-

training for a very large number of students. We consider

a single target model to be trained, and we instantiate two

submodels on-the-fly, simply by layerwise dropout [20,31].

This gives us two neural networks through which we can

backpropagate to the shared parameters of the target model.

In addition to the regular training loss, each submodel

serves as a teacher to the other, which provides an addi-

tional supervision signal ensuring the consistency across the

submodels. Our approach is illustrated in Figure 1: the pa-

rameter λ controls the importance of the co-training loss

compared to the label loss, and our experiments show that

it significantly increases the final model accuracy.

This co-training across different submodels, which we

refer to as cosub, can be regarded as a massive co-training

between 2L models that share a common set of parameters,

where L is the number of layers in the target architecture.

The target model can be interpreted as the expectation of all

models. With a layer drop-rate set to 0.5, for instance for

a ViT-H model, all submodels are equiprobable, and then it

amounts to averaging the weights of 22×32 models.

Our contributions can be summarized as follows:

• We introduce a novel training approach for deep neu-

ral networks: we co-train submodels. This signifi-

cantly improves the training of most models, establish-

ing the new state of the art in multiple cases. For in-

stance, after pre-training ViT-B on Imagenet-21k and

fine-tuning it at resolution 448, we obtain 87.4% top-1

accuracy on Imagenet-val.

• We provide an efficient implementation to subsample

models on the fly. It is a simple yet effective variation

of stochastic depth [31] to drop residual blocks.

• We provide multiple analyses and ablations. Notice-

ably, we show that our submodels are effective models

by themselves even with significant trimming, similar

to LayerDrop [20] in natural language processing.

• We validate our approach on multiple architectures

(like ViT, ResNet, RegNet, PiT, XCiT, Swin, Con-

vNext), both for image classification –trained from

scratch or with transfer–, and semantic segmentation.

• We will share models/code for reproducibility in the

DeiT repository.

2. Related work

Knowledge distillation. Originally, distillation was intro-

duced as a way to train a model such that it reproduces

the performance of another model [4, 28]. The typical use-

case is to improve the quality of a relatively small model

by leveraging a strong teacher, whose complexity may be

prohibitive for a practical deployment. The teacher’s soft

labels have a similar effect as label smoothing [59]. As

shown by Wei et al. [53], the teacher’s supervision takes

into account the effects of the data augmentation, which

sometimes causes a misalignment between the real label

and the image. Knowledge distillation can transfer induc-

tive biases [1] in a soft way in a student model when using a

teacher model these biases are enforced in a hard way. Tou-

vron et al. [50] proposed a variant of distillation adapted

to Vision Transformer (ViT), showing the effectiveness of

using a ConvNet teacher for a ViT student.

Mixture models. Ensembling has a long history that we

can trace back to the origins of statistics [37] and the pos-

sibility of improving the precision of measurements with

multiple observations. In machine learning, bagging [8]

combines multiple weak classifiers to produce a strong one.

This idea is naturally extended to neural networks, where it

can offer improved stability or accuracy, or other properties

like anytime inference [44]. A mixture model can also be

seen as a larger model with an internal parallel structure.

Co-distillation. At the interface of mixture models and

distillation, the concept of co-distillation [62, 64] does not

require a prior teacher: the mixture serves as the teacher to

all the networks in the mixture. The models are jointly opti-

mized, which leads to improved accuracy of the individual

models [2]. This can be regarded as a form of collaborative

learning between the different elements of the mixture [45].

Compared to training only one model, co-distillation in-

volves training two or more models, each requiring storage

for weights and activation, and computing backward and

forward passes.

Exponential moving average teacher. A special form of

teacher is a model obtained from the student model itself.

Tarvainen and Valpila [49] show that such a model obtained

by temporal averaging of intermediate checkpoints during

the training is an effective teacher, that can be obtained

with an exponential moving average (EMA). This idea has

also been adopted in self-supervised training with learning

schemes like DINO [9]. This method involves storing a

copy of the weights corresponding to the temporal averag-

ing carried out by the EMA model.

Dropout and model populations. Dropout [46] is an

effective way to regularize models. With residual archi-

tectures, one effective way to train deeper architecture is

stochastic depth [31]. It reduces the size of a network at
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Figure 2. Brief summary of related works and of submodel co-training (cosub). (a) supervised

baseline: the supervision is provided as a one-hot label. (b) Knowledge distillation [28]: a teacher

provides a (soft) target. A simple yet effective variant [50] combines the predicted label of the

teacher with the image label. KD requires a pre-existing teacher that must be stored for inference.

(c) In self-distillation, the teacher is obtained from the model itself, typically by model averaging.

(d) Co-training involves two distinct models that serves as teacher to each other. (e) Submodel

co-training generates on-the-fly two distinct models (amongst 2L) for each sample, which serves

a teacher to each other. We only need to store a single set of weights for the model and optimizer

because the random selections θ1 =T (θ) (resp., θ2) of submodels allow us to back-propagate on θ.

model params

method weights optimizer compute⋆

(a) supervised ×1 ×1 ×1
(b) KD† ×2 ×1 ×1.33
(c) mean teacher ×2 ×1 ×1.33
(d) co-training ×2 ×2 ×2
(e) Cosub (ours) ×1 ×1 ×2
⋆backward pass assumed 2× the complexity of forward
†requires a trained teacher model

training time by dropping residual blocks during training.

The initial goal of this approach was to improve the training

of deep network. However, there are other implications: in

natural language processing, Fan et al. show that the coun-

terpart of stochastic depth, namely LayerDrop [20], is ef-

fective to reduce the transformer depth on demand. Interest-

ingly, submodels extracted from a model trained with Lay-

erDrop are stronger than those trained with the full target

depth with a proper selection strategy for layers.

In our paper, we regard stochastic depth as a regulariza-

tion technique, but at the same time we adopt the point of

view of LayerDrop, i.e., an effective way to train a popu-

lation of submodels that share parameters, or entire layers

in our case. From that viewpoint, stochastic depth amounts

to training 2L distinct models. This is different from pop-

ulation training as involved in network space design [41],

whose goal is related to network architecture search [18],

which aims at optimizing the architecture itself.

More recently, model soups [56] are models obtained

by averaging the weights of multiple models finetuned with

different hyperparameter configurations. The authors show

that it often improves accuracy and robustness. We point

out that stochastic depth can be regarded as a special form

of model soup over the entire population of submodels that

we can instantiate with stochastic depth. We further discuss

this relationship in the next section.

3. Submodel co-training

In this section, we present our cosub approach, for co-

training submodels. We consider a neural network fθ pa-

rameterized by learnable parameters θ.

Submodel instantiation: model augmentation operator.

We first define a model augmentation operator T . For a

given neural network, it provides a set of parameters θ′ =

T (θ,R) that allow us to define variations fθ′ of the func-

tion fθ by drawing a random variable R. The model aug-

mentation is such that fθ and fθ′ share parameters, hence

any update on θ′ modifies θ and therefore fθ accordingly.

A simple way to define T is to replace some parameters by

zeros, which corresponds to dropout [46]. In this paper, we

focus on stochastic depth, which has interesting connections

with model averaging [56].

Overview. For a given training sample x within a batch,

the training is as follows (see also Figure 1):

1. We first data-augment the image, producing x̂.

2. The image is duplicated with the batch, effectively

doubling the batch size, which hence contains two

identical copies of each augmented image1.

3. We determine the stochastic depth pattern for each

sample according to the target drop-rate τ , which

amounts to producing two functions fθ1 and fθ2 . See

Section 4 for the details of this procedure.

4. The forward pass proceeds as usual: we compute the

soft output labels y1 = fθ1(x̂) and y2 = fθ2(x̂).
5. We compute the losses and the backwards pass accord-

ingly. Note that the gradients on θ1 and θ2 are directly

used to update θ, as they are just subsets of θ.

Loss. Each submodel is trained using a weighted aver-

age of (i) the standard binary cross-entropy loss obtained

from the image label y, and (ii) a binary cross-entropy loss

w.r.t. the soft-labels computed for the the same image by the

other submodel. The respective weight of the standard bi-

nary cross-entropy loss Llabel versus the cosub loss Lcosub

is controlled by the hyper-parameter λ, as

Ltot = λLlabel + (1− λ)Lcosub. (1)

1Different data-augmentations did not provide any advantage in our

preliminary experiments. We simply duplicate the batch for simplicity.
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In details, the loss writes as

Ltot = λ

(

L(y1, y) + L(y2, y)

2

)

+ (1− λ)

(

L(y1, sg(y2)) + L(y2, sg(y1))

2

)

, (2)

where L(y, y′) is either the binary cross-entropy (BCE) or

a cross-entropy (CE) loss. Importantly, when applying this

loss, we do not back-propagate on the second term y′. This

is indicated by the stop-gradient operator sg(·).

Discussion. The submodel instantiation provides a model

that is, by itself, a valid neural network model. Co-training

submodels is a way to enforce that all such submodels pro-

duce a consistent output. Amongst these submodels, a very

special case is when we retain all residual blocks, which is

the model that we primarily intend to use at inference time.

Note that Fan et al. [20] show, in an NLP context, that sub-

models extracted from a deeper model are superior, for a

given target depth. With proper rescaling of the residual

branches, this specific submodel with all blocks activated

can be seen as the expectation over all models. This can be

shown as follows: let us consider an extra scalar parame-

ter sl associated with a given residual block rl(x), which

we use as a multiplicative factor on output of each residual:

sl = 1 if the residual block rl is included in the submodel,

sl = 0 otherwise. Each submodel is fully parameterized by

a binary vector s = (s1, . . . , sL), where L is the total num-

ber of layers. Therefore all submodels have the same pa-

rameters θ, and only differ by s indicating the zeroed resid-

ual blocks. The weight expectation θ̄ is hence

θ̄ = Es∈[0,1]L [θ] = θ,

s̄ = Es∈[0,1]L [s] = [1− τ, . . . , 1− τ ]⊤, (3)

where s̄ is the scaling factor used in stochastic depth. Under

a uniform distribution of submodels that is obtained when

the stochastic drop rate τ = 0.5, the inference-time model is

exactly the average of all 2L models. While stochastic depth

is often regarded as a regularization technique, this averag-

ing interpretation relates it to the recent model soup [56].

4. Efficient stochastic depth

We revisit the original stochastic depth [31] formulation

in order enable an efficient implementation, which we will

release for PyTorch [40]. Instantiating a submodel for a

sample amounts to selecting a subset of residual layers of

the model and performing training on these. This can be im-

plemented using the stochastic depth (SD) approach, whose

objective was initially to improve the training of very deep

networks. In stochastic depth, for each sample and each

layers of the network, we select whether the layers will be

dropped or not with a certain probability τ .
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Figure 3. Efficient implementation of stochastic depth, using the permute-

select approach. In this example, we drop the residuals for samples 3 and

6, corresponding to a drop rate τ = 0.25. For a drop rate higher than 0.1, the

overhead of the approach is negligible in terms of memory and compute.

In practice, e.g. in the timm library [54], stochastic depth

is implemented by masking with zeros the residuals added

for a given sample of a batch. This is not efficient: this

naive approach performs the computations for a residual

then throws it away, wasting computation.

Our efficient stochastic depth (ESD) approach addresses

this issue, saving both memory and compute, and is illus-

trated in Figure 3. For each layer, given a batch size B and

a drop rate τ , we apply the layer to Bkeep = round(B×(1−
τ)) samples in the batch. In contrast to the original version

of SD, our efficient version drops a fixed number of samples

at each layer, where d is adjusted such that Bkeep is an in-

teger. In our experiments, this did not have an effect on the

final accuracy of the models. Our efficient implementation

proceeds as follows: (i) we apply a random permutation of

the B samples, then (ii) we select the first Bkeep samples.

We then compute the residual function for the selected sub-

set, then add the result onto the full batch using the built-in

index add function and scaling the result by 1
1−τ

to have

the correct scaling as in the original SD formulation.

Discussion: progressive vs uniform rate. In the original

paper [31], stochastic depth drops a layer with a probabil-

ity that is linearly increasing during the forward pass: lay-

ers closer to the output has a higher chance to be dropped.

However this strategy is limited with high drop rates, as

later layers are excessively dropped. Touvron et al. [52]

adopt a uniform rate drop per layer. It is as effective as

the progressive rate with vision transformers, but it makes

it possible to target a drop-rate greater than 0.5 on average.

For this reason we adopt an uniform drop rate everywhere.

Our efficient stochastic depth implementation variant

works both with uniform and progressive drop-rate. In the

case of progressive, the effective batch size is decreasing

during to the forward pass. One limitation is that our tech-

nique implies a quantization of the drop-rate, which can be

problematic for small batch sizes. Therefore one must take

care to properly verify that the drop-rate is not too severely

quantized, in particular in the progressive case for which the

drop-rate can be very high in the last layers. In the supple-

mental material (Appendix C), we discuss with more details

the drop-rate quantization effect.
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Figure 4. Cosub as population training: each submodel extracted by a

transformation T is a valid neural network. Our cosub strategy can hence

be regarded as co-training a large number of subnetworks. We plot the ac-

curacy of the submodels as a function of the number of layers that we pre-

serve. We drop layers with probability τ = 0.2 for ViT-B and τ = 0.45 for

ViT-L. On average our method provides a significant boost in performance

for the whole population of submodels extracted from the main model.

Model ViT-S ViT-M ViT-B ViT-L ViT-H

τ (0.05) (0.1) (0.2) (0.45) (0.6)

baseline 81.4 82.5 83.7 84.5 84.9

baseline + cosub 81.5 82.8 83.9 84.9 85.5

Table 1. Comparison of top-1 accuracy with ViT architecture trained

with/without cosub at resolution 224 (800 epochs) on Imagenet-1k. The

improvement is not significant for the smaller architecture ViT-S. Cosub is

gradually more effective when we increase the model size and the SD rate.

5. Experiments

We evaluate our approach on residual architectures [24,

25], since they are readily compatible with the stochastic

dropout. We take as our main reference the vanilla Vision

Transformer introduced by Dosovitskiy et al. [14]. How-

ever, as shown in our experiments, our approach is effective

with all the residual architectures that we have considered.

5.1. Baseline and training settings

We adopt the state-of-the-art training procedure pro-

posed in the DeiT III paper [51] as baseline for transformers

architectures and the training procedure from Wightman et

al. [55] for the convnets. All hyper-parameters are identical

except on Imagenet-21k, where the hyper-parameter τ are

adjusted depending on the training setting. We recapitulate

the training hyper-parameters in Appendix A.

We additionally adopt and measure the impact of

LayerDecay for the fine-tuning when transferring from

Imagenet-21k to Imagenet-1k. This method slightly boosts

the performance, as discussed later in this section, and in

Table 10. This method was adopted in multiple recent pa-

pers and in particular for fine-tuning of self-supervised ap-

proaches [5, 22], yet the contribution of this fine-tuning in-

gredient was not quantitatively measured.

Model τ Original Baseline +cosub ∆

Transformers

ViT-L [14] 0.45 76.5 84.5 84.9 +0.4

CaiT-L24 [52] 0.45 83.8 84.4 +0.6

PiT-B [26] 0.25 82.0 83.8 84.1 +0.3

XCiT-L12 [17] 0.20 82.6 83.0 +0.4

Swin-B [34] 0.20 83.5 82.9 83.3 +0.4

Swin-L [34] 0.45 80.8 84.0 +3.2

Convnets

ResNet-50 [24] 0.10 76.2 80.2 80.3 +0.1

ResNet-101 [24] 0.20 77.4 81.8 82.1 +0.4

ResNet-152 [24] 0.30 78.3 82.4 83.1 +0.7

RegNet-16GF [42] 0.30 80.4 82.9 83.8 +0.9

Table 2. Benefit of cosub for different architectures trained from scratch

on Imagenet-1k at resolution 224. We report top-1 acc. for the supervised

baseline and cosub, as well as results reported in the corresponding pa-

pers when available (trained with different settings). We have adjusted the

stochastic-depth drop-rate (SD) hyper-parameter for each architecture.

Loss BCE-soft BCE-hard CE-hard

Imagenet-val top-1 accuracy 83.5 83.5 81.9

Table 3. Ablation on the loss for cosub with ViT-H trained at resolution

126×126 on Imagenet-1k during 800 epochs. The training is inherited

from DeiT-III, which also uses BCE when training with Imagenet-1k only.

5.2. Empirical analysis of cosub

We perform various ablations on Imagenet-1k to analyse

the impact of our training method on the learned networks.

Performance for different model sizes and architectures.

Table 1 provides the results obtained by the baseline and

cosub when we vary the model size of vision transform-

ers. The stochastic depth coefficient was optimized for the

baseline and we keep it unchanged with cosub. As to be ex-

pected, our method is almost neutral for small models like

ViT-S: +0.1% top-1 accuracy, which is about the standard

deviation of measurements. The improvement is increas-

ingly important for larger models, up to a significant im-

provement of +0.6% top-1 accuracy for ViT-H models.

In Table 2, we show that our approach is beneficial with

all architectures that we have tried. We report the results of

the original paper, evaluate the performance with our base-

line training, and measure the improvement brought by co-

sub. For almost all architectures, we observe a significant

boost in performance. The exception is the ResNet-50, for

which cosub improves the top-1 accuracy by only +0.1%,

similar to our observation with ViT-S. In Table B.1 in the

appendix we present improved results obtained for multiple

architectures pre-trained with cosub on Imagenet-21k.

Analysis of submodel performance. With cosub, we sam-

ple different subnetworks during training to perform the co-

training. We analyse the impact of cosub on the accuracy of

the sub networks themselves. In Figure 4 we consider the

accuracy of submodels of different size of ViT-B and ViT-L
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Method ViT-L ViT-H

(a) supervised baseline [51] 84.5 84.9

(b) KD 85.3 85.3

(c) mean teacher 84.4 83.4

(d) co-training 82.6 83.1

(e) cosub 84.9 85.5

(b) + (e) KD + cosub 85.3 85.7

Table 4. Training strategies with distillation. We compare on Imagenet-1k

at resolution 224× 224 different approaches involving co- or self-training

with distillation. KD, mean teacher and co-training use the same λ = 0.5
and same hyper-parameters as in Deit-III. Unlike cosub, the mean teacher

(c) requires other hyper-parameters for EMA. We perform a small grid-

search to adjust this parameters. Note (last row): our approach is comple-

mentary with KD, assuming a pre-trained teacher is available beforehand.

λ 0.1 0.3 0.5 0.7 0.9 1.0

top1 accuracy 79.05 83.27 83.55 83.20 83.04 82.91

Table 5. Ablation of the parameter λ controlling the weight of the co-

distillation loss across submodels (Imagenet1k-val, top1-acc). Model ViT-

H trained at resolution 126×126 on Imagenet-1k during 800 epochs. λ =
1.0 corresponds a supervised baseline and λ = 0.5 corresponds to cosub.

models. Cosub improves the accuracy of the whole popula-

tion of sub-networks and, in particular, the target network.

Loss formulation. In Table 3 we experiment with different

losses for cosub. With Imagenet1k, DeiT-III training uses

BCE instead of CE for the main loss. With cosub, BCE is

more compatible with the loss of the baseline and, as to be

expected, we also observe a better performance with BCE.

We have done ablations using hard and soft targets for the

cosub loss. The results are similar, therefore by default we

keep soft-targets for the cosub loss.

Alternative teacher/student. In Table 4 we report the re-

sults obtained with the different distillation or co-training

approaches depicted in Figure 2. Other approaches are not

effective off-the-shelf, except KD that requires a pre-trained

teacher. Our approach is on par with KD (lower for ViT-L,

better or ViT-H), and in the last row we show that it even

provides a slight boost to combine KD with cosub.

Impact of the cosub loss. The hyper-parameter λ controls

the tradeoff between the co-distillation loss and the cross-

entropy classification loss. Setting λ = 1 means that we

have a regular supervised training setting, except that (i) we

double the batch size by duplicating the image after data

augmentation, and (ii) stochastic depth selects different lay-

ers for each image copy.

In Table 5, we measure the impact of λ, with all other

hyper-parameters being fixed, for ViT-H trained at resolu-

tion 126×126 on Imagenet-1k. We observe that the best

ratio is to use an equal weighting of the cosub loss and the

classic training loss. Using the cosub loss increases the per-

formance by 0.6% Top-1 accuracy on Imagenet-val, which

is the typical improvement that we observe for large models.

Model τ epochs
Baseline +cosub

val v2 val v2

CaiT-M12 0.20
400 83.2 72.9 83.7 73.5

800 82.9 72.6 83.6 73.1

PiT-B 0.25
400 83.8 73.6 84.1 74.1

800 82.4 71.9 83.1 72.8

ViT-B 0.20

400 83.1 72.6 83.2 73.1

800 83.7 73.1 83.9 73.5

1200 83.3 72.8

1600 83.3 73.4

ViT-H 0.60
400 84.8 75.3 85.0 75.8

800 84.9 75.6 85.5 76.3

Table 6. We compare ViT models trained with and without cosub on

ImageNet-1k only with different number of epochs at resolution 224×224.

One can see that cosub is more effective for larger models yielding higher

values of the SD hyper-parameter τ . It avoids the early saturation or over-

fitting of the performance that we typically observe with the baseline when

we increase the training time without re-adjusting hyper-parameters. See

also Table 5 for a direct comparison with and without the co-distillation

loss, and Table 7 for the corresponding training times per epoch.

Training method model GPUs Memory Time (min)

used peak (GB) by epoch

DeiT-III
ViT-L 32 21.4 8

ViT-H 64 27.6 12

DeiT-III + ESD
ViT-L 32 15.1 9

ViT-H 64 15.2 11

cosub (with ESD)
ViT-L 32 26.9 16

ViT-H 64 25.0 17

Table 7. Training times of different models trained at resolution 224×224
with batch size 2048 on Imagenet-1k with DeiT-III and our approach. co-

sub uses our efficient stochastic depth (ESD), which amortizes the extra

memory needed by cosub, especially for the largest models with high

stochastic depth values (0.45 for ViT-L, and 0.6 for ViT-H). Timings are in-

dicative and not representative of an optimized selection of the batch size,

see Appendix C for measurements with adjusted parameters.

Number of training epochs. In Table 6 we compare re-

sults on Imagenet-1k-val and Imagenet-v2 different for ar-

chitectures trained with and without cosub on Imagenet-1k

only at resolution 224×224 with different number of epochs.

We observe less overfitting with cosub and longer training

schedule. In particular, with bigger architecture like ViT-H,

we observe continuous improvement with a longer schedule

where the baseline saturates.

Training time. In Table 7 we compare the training costs

of cosub and DeiT-III. Thanks to our efficient stochastic

depth formulation we maintain a similar memory peak dur-

ing training. For bigger architectures the gap in training

speed between cosub and the baseline is decreasing.

Resolution. In Table 8 we compare different ViT architec-

tures trained with and without cosub at different resolutions

on Imagenet-1k. We fine-tune during 20 epochs at resolu-

tion 224× 224 before evaluation at this resolution. We ob-

serve that cosub gives significant improvements across the

different resolutions and models.
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Model Resolution
Deit-III Baseline +cosub

val v2 val v2

ViT-B

128× 128 83.5 73.4 83.8 74.0

192× 192 83.8 73.6 84.1 74.0

224× 224 83.7 73.1 83.9 73.5

ViT-L

128× 128 84.5 74.7 85.1 75.5

192× 192 84.9 75.1 85.2 75.7

224× 224 84.5 75.0 84.9 75.6

ViT-H

126× 126 85.1 75.6 85.6 76.4

182× 182 85.1 75.9 85.7 76.6

224× 224 84.9 75.6 85.5 76.3

Table 8. Imagenet-1k val and v2 top-1 accuracy of ViT models trained with

and without cosub for 800 epochs on Imagenet-1k at different resolutions,

followed by finetuning for 20 epochs at resolution 224×224.

resol. → 112 224 336 448 112 224 336 448

↓ model Imagenet-val Imagenet-v2

ViT-S 78.0 83.1 84.6 85.2 66.6 73.7 75.1 76.3

ViT-M 80.6 85.0 86.0 86.3 69.6 76.0 76.8 77.2

ViT-B 82.8 86.3 86.9 87.4 72.1 77.0 77.9 78.3

ViT-L 85.4 87.5 88.1 88.3 75.7 79.1 79.8 80.0

ViT-H 86.2 88.0 - - 76.9 79.6 - -

ViT-g 86.5 - - - 77.3 - - -

Table 9. Performance of models at different resolutions. We report the

results obtained on Imagenet-val by models of different sizes pre-trained

with cosub on Imagenet-21k and fine-tuned on Imagenet-1k. Training

schedule: 270 epochs except ViT-g (90 epochs). Except for ViT-S, the

results at resolution 336 and 448 were pre-trained on Imagenet-21k at res-

olution 224 for efficiency reasons. We have not fine-tuned ViT-H and ViT-g

at large resolutions since these models are computationally expensive.

Method
Long Layer Model

Training Decay ViT-S ViT-B ViT-L

baseline ✗ ✗ 82.6 85.2 86.8

cosub

✗ ✗ 82.5 85.8 87.4

✗ ✓ 82.7 86.0 87.5

✓ ✗ 82.8 86.0 87.4

✓ ✓ 83.1 86.3 87.5

Table 10. We measure the impact of layer-decay during the finetuning on

Imagenet-1k for models pre-trained on Imagenet-21k with cosub during 90

epochs (default) and 270 epochs (long training).

Imagenet-21k impact of layer-decay. In Table 10 we

compare different number of epochs for the pre-training on

Imagenet-21k and the finetuning on Imagenet-1k with and

without layer-decay. We observe that both layer-decay and

long training bring improvements with cosub.

5.3. Comparisons with the state of the art

Imagenet-1k. In Table 11 we compare architectures

trained with cosub with state-of-the-art results from the lit-

erature for this architecture. We observe that architectures

trained with cosub are very competitive. For instance, for

ResNet-152, RegNetY-16GF, PiT-B we improve the best

results reported in the literature by more than 0.9% top-1

accuracy on Imagenet-1k-val.

Model nb params throughput FLOPs Peak Mem Top-1 v2

(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets

ResNet-50 [24, 55] 25.6 2587 4.1 2182 80.4 68.7

ResNet-101 [24, 55] 44.5 1586 7.9 2269 81.5 70.3

ResNet-101 – cosub 44.5 1586 7.9 2269 82.1 70.8

ResNet-152 [24, 55] 60.2 1122 11.6 2359 82.0 70.6

ResNet-152 – cosub 60.2 1122 11.6 2359 83.1 72.1

RegNetY-8GF [42, 55] 39.2 1158 8.0 3939 82.2 71.1

RegNetY-16GF [42, 50] 83.6 714 16.0 5204 82.9 72.4

RegNetY-16GF – cosub 83.6 714 16.0 5204 83.8 72.8

Vision Transformers derivatives

Swin-T [34] 28.3 1109 4.5 3345 81.3 69.5

Swin-B [34] 87.8 532 15.4 4695 83.5

PiT-S [26] 23.5 1809 2.9 3293 80.9

PiT-S – cosub 23.5 1809 2.9 3293 81.3 69.7

PiT-B [26] 73.8 615 12.5 7564 82.0

PiT-B – cosub 73.8 615 12.5 7564 84.1 74.1

Vanilla Vision Transformers

ViT-S [50] 22.0 1891 4.6 987 79.8 68.1

ViT-S – Deit III [51] 22.0 1891 4.6 987 81.4 70.5

ViT-S – cosub 22.0 1891 4.6 987 81.5 70.8

ViT-B [14] 86.6 831 17.5 2078 77.9 –

ViT-B – DeiT [50] 86.6 831 17.5 2078 81.8 71.5

ViT-B – DeiT/distilled 86.6 831 17.5 2078 83.4 73.2

ViT-B – Deit III [51] 86.6 831 17.5 2078 83.8 73.6

ViT-B – cosub 86.6 831 17.5 2078 84.2 74.2

ViT-L – Deit III [51] 304.4 277 61.6 3789 84.9 75.1

ViT-L – cosub 304.4 277 61.6 3789 85.3 75.5

ViT-H – Deit III [51] 632.1 112 167.4 6984 85.2 75.9

ViT-H – cosub 632.1 112 167.4 6984 85.7 76.6

Table 11. Classification with Imagenet1k training. We compare with

models trained on Imagenet-1k only at resolution 224×224 without self-

supervised pre-training (see supp. material for a comparison). We report

Top-1 accuracy on Imagenet-1k-val and Imagenet-v2 with different mea-

sures of complexity: throughput, FLOPs, number of parameters and peak

memory usage. The throughput and peak memory are measured on a sin-

gle V100-32GB GPU with batch size fixed to 256 and mixed precision.

Imagenet-21k. In Table 12 we compare ViT models pre-

trained with cosub on Imagenet-21k and finetuned with co-

sub on Imagenet-1k with other architectures and our base-

line DeiT-III. Our results with vanilla ViT outperform the

baseline and are competitive with recent architectures.

Overfitting analysis. As recommended in prior works [51,

55] we perform an overfitting analysis. We evaluate

our models trained with codist on Imagenet-1k val and

Imagenet-v2 [43]. The results are reported in Figure 5. For

ViT, we observe that cosub does not overfit more than the

DeiT-III baseline [51]. Our results with other architectures

in Table 12 concur with that observation: our results are

comparatively stronger on Imagenet-v2 than those reported

in the literature for the exact same models.

5.4. Downstream tasks

Semantic segmentation. First we evaluate our ViT models

pre-trained on Imagenet with cosub for semantic segmenta-

tion on the ADE20k dataset [63]. ADE20k consists of 20k

training and 5k validation images with labels over 150 cat-

egories. We adopt the training schedule from Swin: 160k

iterations with UperNet [57]. At test time we evaluate with
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Architecture nb params throughput FLOPs peak mem top1 acc.

(×106) (im/s) (×109) (MB) val v2

Convnets

EfficientNetV2-M [48] 54.1 312 25.0 7127 86.2 75.9

EfficientNetV2-L [48] 118.5 179 53.0 9540 86.8 76.9

ResNet-152 [24, 55] 60.2 1122 11.6 2359 82.0 70.6

ResNet-152 – cosub 60.2 1122 11.6 2359 83.1 73.1

RegnetY16GF – cosub 83.6 714 16.0 5204 84.2 74.7

ConvNeXt-S– cosub 50.2 783 8.7 2218 85.2 76.0

ConvNeXt-B [35] 88.6 563 15.4 3029 85.8 75.6

ConvNeXt-B – cosub 88.6 563 15.4 3029 85.8 76.9

ConvNeXt-L [35] 197.8 344 34.4 4865 86.6 76.6

ConvNeXt-XL [35] 350.2 241 60.9 6951 87.0 77.0

Transformers variations

Swin-B [34] 87.8 532 15.4 4695 85.2 74.6

Swin-B – cosub 87.8 532 15.4 4695 86.2 77.2

Swin-L [34] 196.5 337 34.5 7350 86.3 76.3

Swin-L – cosub 196.5 337 34.5 7350 87.1 78.1

PiT-B – cosub [26] 73.8 615 12.5 7564 85.8 76.8

XCiT-S12 – cosub [17] 26.2 1373 4.9 1330 84.2 74.9

XCiT-M24 – cosub [17] 84.4 553 16.2 2010 86.5 78.0

XCiT-L24 – cosub [17] 189.0 334 36.1 3315 87.2 77.8

Vanilla Vision Transformers [14, 51]

ViT-S – cosub 22.0 1891 4.6 987 83.1 73.7

ViT-M – cosub 39.0 1307 8.0 1322 85.0 76.0

ViT-B – DeiT-III 86.6 831 17.6 2078 85.7 76.5

ViT-B – cosub 86.6 831 17.6 2078 86.3 77.0

ViT-L – DeiT-III 304.4 277 61.6 3789 87.0 78.6

ViT-L – cosub 304.4 277 61.6 3789 87.5 79.1

ViT-H – DeiT-III 632.1 112 167.4 6984 87.2 79.2

ViT-H – cosub 632.1 112 167.4 6984 88.0 80.0

Table 12. Classification with ImageNet-21k pretraining. We report top-

1 accuracy on the validation set of Imagenet1k and Imagenet-V2 with dif-

ferent measures of complexity. The peak memory usage is measured on

a single V100-32GB GPU with batch size fixed to 256 and mixed preci-

sion. For Swin-L the memory peak is an estimation since we decreased the

batch size to 128 to fit in memory. All models are evaluated at resolution

224 except EfficientNetV2 that use resolution 480. ViT are pretrained wit

a ×3 schedule, comparable to that used in the best DeiT-III baseline (270

vs. 240 epochs). All other cosub models are pretrained during 90 epochs

on Imagenet21k, with 50 epochs of fine-tuning. The τ hyper-parameter is

set per model based on prior choices or best guess based on model size.
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Figure 5. Overfitting measurement: top-1 accuracy on Imagenet-val vs.

Imagenet-v2 for models in Tables 11 and 12 pre-trained on Imagenet-1k

and Imagenet-21k, respectively. Our cosub ViTs (plain lines and points) do

not overfit more than DeiT-III [51] overall. Our Imagenet-21k results for

Swin and Convnext generalize much better on v2 than the original models.

a single scale and multi-scale. Our UperNet implementa-

tion is the same as in DeiT III [51]. Our results are reported

in Table 13. We observe that vanilla ViTs trained with co-

sub outperform our baseline DeiT-III but also have better

FLOPs-accuracy trade-offs than recent architectures.

Backbone
#params FLOPs Single-scale Multi-scale

(×106) (×109) mIoU mIoU

DeiT-S 52.0 1099 44.0

Swin-T 59.9 945 44.5 46.1

ViT-S – DeiT-III 41.7 588 45.6 46.8

ViT-S – cosub 41.7 588 47.0 48.0

PatchConvNet-B60 140.6 1258 48.1 48.6

PatchConvNet-B120 229.8 1550 49.4 50.3

MAE ViT-B 127.7 1283 48.1

Swin-B 121.0 1188 48.1 49.7

ViT-B – DeiT-III 127.7 1283 49.3 50.2

ViT-B – cosub 127.7 1283 49.3 49.9

ViT-L – DeiT-III 353.6 2231 51.5 52.0

ViT-L – cosub 353.6 2231 52.5 53.1

PatchConvNet–B60† 140.6 1258 50.5 51.1

Swin-B† (640× 640) 121.0 1841 50.0 51.6

ViT-B – DeiT-III † 127.7 1283 53.4 54.1

ViT-B – cosub† 127.7 1283 53.7 54.7

PatchConvNet-L120† 383.7 2086 52.2 52.9

Swin-L† (640× 640) 234.0 3230 53.5

ViT-L – DeiT-III † 353.6 2231 54.6 55.6

ViT-L – cosub† 353.6 2231 55.7 56.3

Table 13. ADE20k semantic segmentation performance using UperNet

[57], in comparable setting as prior works [13,17,34]. All models are pre-

trained on Imagenet-1k, except bottom models identified with †, which

are pre-trained on Imagenet-21k. By default the finetuning resolution on

ADE20k is 512×512 except when mentioned otherwise (for Swin).

Model Cifar-10 Cifar-100 Flowers Cars iNat-18 iNat-19

ViT-S – DeiT-III 98.9 90.6 96.4 89.9 67.1 72.7

ViT-B – DeiT-III 99.3 92.5 98.6 93.4 73.6 78.0

ViT-L – DeiT-III 99.3 93.4 98.9 94.5 75.6 79.3

ViT-S – cosub 99.1 91.7 97.4 93.0 70.1 75.6

ViT-B – cosub 99.1 92.6 98.4 93.5 74.1 78.1

ViT-L – cosub 99.4 93.5 98.8 94.5 76.2 80.1

Table 14. ViT models pre-trained with cosub or DeiT-III on Imagenet-

1k and finetuned on six different target datasets. We note that for small

datasets (CIFAR, Flowers, and Cars) our approach is useful for small mod-

els but neutral for larger models. The gains are more significant when

transferring to the larger iNaturalist-18 and iNaturalist-19 datasets.

Transfer learning. We now measure how the performance

improvements observed with cosub translate to other clas-

sification problems. For this purpose, we performed trans-

fer learning on the six different datasets used in DeiT-III.

Our results are reported Table 14. Our pre-trained and fine-

tuned models with cosub generally improve the baseline.

The gains are overall more significant on the more chal-

lenging datasets like iNaturalist 2018 and iNaturalist 2019.

6. Conclusion

Co-training submodels (cosub) is an effective way to im-

prove existing deep residual networks. It is straightforward

to implement, just involving a few lines of code. It does not

need a pre-trained teacher, and it only maintains a single set

of weights for the model. Extensive experimental results

on image classification, transfer learning and semantic seg-

mentation show that cosub is overall extremely effective. It

works off-the-shelf and improves the state of the art for var-

ious network architectures, including convnets like Regnet.

11708



References

[1] Samira Abnar, Mostafa Dehghani, and Willem Zuidema.

Transferring inductive biases through knowledge distillation.

arXiv preprint arXiv:2006.00555, 2020. 2

[2] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Or-

mandi, George E Dahl, and Geoffrey E Hinton. Large scale

distributed neural network training through online distilla-

tion. arXiv preprint arXiv:1804.03235, 2018. 2

[3] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-

janowski, Florian Bordes, Pascal Vincent, Armand Joulin,

Mike Rabbat, and Nicolas Ballas. Masked siamese networks

for label-efficient learning. In European Conference on Com-

puter Vision, pages 456–473. Springer, 2022. I

[4] L. Ba and R. Caruana. Do deep nets really need to be deep?

In NeurIPS, 2014. 2

[5] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training

of image transformers. arXiv preprint arXiv:2106.08254,

2021. 1, 5, I, II

[6] Irwan Bello, W. Fedus, Xianzhi Du, E. D. Cubuk, A. Srini-

vas, Tsung-Yi Lin, Jonathon Shlens, and Barret Zoph. Re-

visiting ResNets: Improved training and scaling strategies.

arXiv preprint arXiv:2103.07579, 2021. II

[7] H. Bourlard and Y. Kamp. Auto-association by multilayer

perceptrons and singular value decomposition. Biological

Cybernetics, 59:291–294, 1988. 1

[8] Leo Breiman. Bagging predictors. Machine learning,

24(2):123–140, 1996. 2

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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