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Figure 1. Estimating a 3D body from an image is ill-posed. A recent, representative, optimization method [59] produces bodies that are in
unstable poses, penetrate the floor, or hover above it. In contrast, IPMAN estimates a 3D body that is physically plausible. To achieve this,
IPMAN uses novel intuitive-physics (IP) terms that exploit inferred pressure heatmaps on the body, the Center of Pressure (CoP), and the
body’s Center of Mass (CoM). Body heatmap colors encode per-vertex pressure.

Abstract

Estimating 3D humans from images often produces im-
plausible bodies that lean, float, or penetrate the floor. Such
methods ignore the fact that bodies are typically supported
by the scene. A physics engine can be used to enforce phys-
ical plausibility, but these are not differentiable, rely on
unrealistic proxy bodies, and are difficult to integrate into ex-
isting optimization and learning frameworks. In contrast, we
exploit novel intuitive-physics (IP) terms that can be inferred
from a 3D SMPL body interacting with the scene. Inspired
by biomechanics, we infer the pressure heatmap on the body,
the Center of Pressure (CoP) from the heatmap, and the
SMPL body’s Center of Mass (CoM). With these, we develop
IPMAN, to estimate a 3D body from a color image in a “sta-
ble” configuration by encouraging plausible floor contact
and overlapping CoP and CoM. Our IP terms are intuitive,
easy to implement, fast to compute, differentiable, and can be
integrated into existing optimization and regression methods.
We evaluate IPMAN on standard datasets and MoYo, a new
dataset with synchronized multi-view images, ground-truth
3D bodies with complex poses, body-floor contact, CoM and
pressure. IPMAN produces more plausible results than the
state of the art, improving accuracy for static poses, while
not hurting dynamic ones. Code and data are available for
research at https://ipman.is.tue.mpg.de.

* This work was mostly performed at MPI-IS.

1. Introduction
To understand humans and their actions, computers need

automatic methods to reconstruct the body in 3D. Typi-
cally, the problem entails estimating the 3D human pose
and shape (HPS) from one or more color images. State-of-
the-art (SOTA) methods [46, 51, 75, 102] have made rapid
progress, estimating 3D humans that align well with image
features in the camera view. Unfortunately, the camera view
can be deceiving. When viewed from other directions, or
when placed in a 3D scene, the estimated bodies are often
physically implausible: they lean, hover, or penetrate the
ground (see Fig. 1 top). This is because most SOTA methods
reason about humans in isolation; they ignore that people
move in a scene, interact with it, and receive physical sup-
port by contacting it. This is a deal-breaker for inherently
3D applications, such as biomechanics, augmented/virtual
reality (AR/VR) and the “metaverse”; these need humans to
be reconstructed faithfully and physically plausibly with re-
spect to the scene. For this, we need a method that estimates
the 3D human on a ground plane from a color image in a
configuration that is physically “stable”.

This is naturally related to reasoning about physics and
support. There exist many physics simulators [10,30,60] for
games, movies, or industrial simulations, and using these for
plausible HPS estimation is increasingly popular [66,74,96].
However, existing simulators come with two significant
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problems: (1) They are typically non-differentiable black
boxes, making them incompatible with existing optimiza-
tion and learning frameworks. Consequently, most meth-
ods [64, 95, 96] use them with reinforcement learning to
evaluate whether a certain input has the desired outcome,
but with no ability to reason about how changing inputs af-
fects the outputs. (2) They rely on an unrealistic proxy body
model for computational efficiency; bodies are represented
as groups of rigid 3D shape primitives. Such proxy models
are crude approximations of human bodies, which, in reality,
are much more complex and deform non-rigidly when they
move and interact. Moreover, proxies need a priori known
body dimensions that are kept fixed during simulation. Also,
these proxies differ significantly from the 3D body mod-
els [41, 54, 92] used by SOTA HPS methods. Thus, current
physics simulators are too limited for use in HPS.

What we need, instead, is a solution that is fully differen-
tiable, uses a realistic body model, and seamlessly integrates
physical reasoning into HPS methods (both optimization-
and regression-based). To this end, instead of using full
physics simulation, we introduce novel intuitive-physics (IP)
terms that are simple, differentiable, and compatible with a
body model like SMPL [54]. Specifically, we define terms
that exploit an inferred pressure heatmap of the body on the
ground plane, the Center of Pressure (CoP) that arises from
the heatmap, and the SMPL body’s Center of Mass (CoM)
projected on the floor; see Fig. 2 for a visualization. Intu-
itively, bodies whose CoM lie close to their CoP are more
stable than ones with a CoP that is further away (see Fig. 5);
the former suggests a static pose, e.g. standing or holding a
yoga pose, while the latter a dynamic pose, e.g., walking.

We use these intuitive-physics terms in two ways. First,
we incorporate them in an objective function that extends
SMPLify-XMC [59] to optimize for body poses that are
stable. We also incorporate the same terms in the training
loss for an HPS regressor, called IPMAN (Intuitive-Physics-
based huMAN). In both formulations, the intuitive-physics
terms encourage estimates of body shape and pose that have
sufficient ground contact, while penalizing interpenetration
and encouraging an overlap of the CoP and CoM.

Our intuitive-physics formulation is inspired by work in
biomechanics [32, 33, 61], which characterizes the stability
of humans in terms of relative positions between the CoP,
the CoM, and the Base of Support (BoS). The BoS is de-
fined as the convex hull of all contact regions on the floor
(Fig. 2). Following past work [6,71,74], we use the “inverted
pendulum” model [85, 86] for body balance; this considers
poses as stable if the gravity-projected CoM onto the floor
lies inside the BoS. Similar ideas are explored by Scott et
al. [71] but they focus on predicting a foot pressure heatmap
from 2D or 3D body joints. We go significantly further to
exploit stability in training an HPS regressor. This requires
two technical novelties.
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Figure 2. (1) A SMPL mesh sitting. (2) The inferred pressure map
on the ground (color-coded heatmap), CoP (green), CoM (pink),
and Base of Support (BoS, yellow polygon). (3) Segmentation of
SMPL into NP = 10 parts, used for computing CoM; see Sec. 3.2.

The first involves computing CoM. To this end, we uni-
formly sample points on SMPL’s surface, and calculate each
body part’s volume. Then, we compute CoM as the average
of all uniformly sampled points weighted by the correspond-
ing part volumes. We denote this as pCoM, standing for
“part-weighted CoM”. Importantly, pCoM takes into account
SMPL’s shape, pose, and all blend shapes, while it is also
computationally efficient and differentiable.

The second involves estimating CoP directly from the
image, without access to a pressure sensor. Our key insight is
that the soft tissues of human bodies deform under pressure,
e.g., the buttocks deform when sitting. However, SMPL
does not model this deformation; it penetrates the ground
instead of deforming. We use the penetration depth as a
proxy for pressure [68]; deeper penetration means higher
pressure. With this, we estimate a pressure field on SMPL’s
mesh and compute the CoP as the pressure-weighted average
of the surface points. Again this is differentiable.

For evaluation, we use a standard HPS benchmark
(Human3.6M [37]), but also the RICH [35] dataset. How-
ever, these datasets have limited interactions with the floor.
We thus capture a novel dataset, MoYo, of challenging yoga
poses, with synchronized multi-view video, ground-truth
SMPL-X [63] meshes, pressure sensor measurements, and
body CoM. IPMAN, in both of its forms, and across all
datasets, produces more accurate and stable 3D bodies than
the state of the art. Importantly, we find that IPMAN im-
proves accuracy for static poses, while not hurting dynamic
ones. This makes IPMAN applicable to everyday motions.

To summarize: (1) We develop IPMAN, the first HPS
method that integrates intuitive physics. (2) We infer biome-
chanical properties such as CoM, CoP and body pressure.
(3) We define novel intuitive-physics terms that can be easily
integrated into HPS methods. (4) We create MoYo, a dataset
that uniquely has complex poses, multi-view video, and
ground-truth bodies, pressure, and CoM. (5) We show that
our IP terms improve HPS accuracy and physical plausibility.
(6) Data and code are available for research.

2. Related Work

3D Human Pose and Shape (HPS) from images. Ex-
isting methods fall into two major categories: (1) non-

4714



parametric methods that reconstruct a free-form body rep-
resentation, e.g., joints [1, 56, 57] or vertices [52, 58, 100],
and (2) parametric methods that use statistical body mod-
els [5, 25, 41, 54, 63, 92, 97]. The latter methods focus on
various aspects, such as expressiveness [13, 18, 63, 69, 87],
clothed bodies [15, 88, 91], videos [24, 45, 78, 99], and multi-
person scenarios [38, 75, 103], to name a few.

Inference is done by either optimization or regression.
Optimization-based methods [7, 16, 63, 87, 88] fit a body
model to image evidence, such as joints [11], dense ver-
tex correspondences [2] or 2D segmentation masks [23].
Regression-based methods [42, 44, 48, 51, 76, 102, 106, 109]
use a loss similar to the objective function of optimization
methods to train a network to infer body model parameters.
Several methods combine optimization and regression in
a training loop [47, 50, 59]. Recent methods [24, 40] fine-
tune pre-trained networks at test time w.r.t. an image or a
sequence, retaining flexibility (optimization) while being
less sensitive to initialization (regression).

Despite their success, these methods reason about the
human in “isolation”, without taking the surrounding scene
into account; see [77, 107] for a comprehensive review.

Contact-only scene constraints. A common way of
using scene information is to consider body-scene contact
[12, 17, 27, 28, 65, 84, 90, 94, 98, 104, 105, 110]. Yamamoto
et al. [93] and others [19,27,70,98,104] ensure that estimated
bodies have plausible scene contact. For videos, encouraging
foot-ground contact reduces foot skating [36,65,72,105,110].
Weng et al. [84] use contact in estimating the pose and scale
of scene objects, while Villegas et al. [80] preserve self- and
ground contact for motion retargeting.

These methods typically take two steps: (1) detecting
contact areas on the body and/or scene and (2) minimizing
the distance between these. Surfaces are typically assumed
to be in contact if their distance is below a threshold and
their relative motion is small [27, 35, 98, 104].

Many methods only consider contact between the ground
and the foot joints [66, 110] or other end-effectors [65]. In
contrast, IPMAN uses the full 3D body surface and exploits
this to compute the pressure, CoP and CoM. Unlike binary
contact, this is differentiable, making the IP terms useful for
training HPS regressors.

Physics-based scene constraints. Early work uses
physics to estimate walking [8, 9] or full body motion [82].
Recent methods [21,22,66,73,74,89,96] regress 3D humans
and then refine them through physics-based optimization.
Physics is used for two primary reasons: (1) to regularise dy-
namics, reducing jitter [49, 66, 74, 96], and (2) to discourage
interpenetration and encourage contact. Since contact events
are discontinuous, the pipeline is either not end-to-end train-
able or trained with reinforcement learning [64, 96]. Xie
et al. [89] propose differentiable physics-inspired objectives
based on a soft contact penalty, while DiffPhy [21] uses a

differentiable physics simulator [31] during inference. Both
methods apply the objectives in an optimization scheme,
while IPMAN is applied to both optimization and regres-
sion. PhysCap [74] considers a pose as balanced, when the
CoM is projected within the BoS. Rempe et al. [66] impose
PD control on the pelvis, which they treat as a CoM. Scott
et al. [71] regress foot pressure from 2D and 3D joints for
stability analysis but do not use it to improve HPS.

All these methods use unrealistic bodies based on shape
primitives. Some require known body dimensions [66, 74,
96] while others estimate body scale [49, 89]. In contrast,
IPMAN computes CoM, CoP and BoS directly from the
SMPL mesh. Clever et al. [14] and Luo et al. [55] estimate
3D body pose but from pressure measurements, not from
images. Their task is fundamentally different from ours.

3. Method

3.1. Preliminaries

Given a color image, I, we estimate the parameters of the
camera and the SMPL body model [54].

Body model. SMPL maps pose, θ, and shape, β, pa-
rameters to a 3D mesh, M(θ,β). The pose parameters,
θ ∈ R24×6, are rotations of SMPL’s 24 joints in a 6D rep-
resentation [108]. The shape parameters, β ∈ R10, are
the first 10 PCA coefficients of SMPL’s shape space. The
generated mesh M(θ,β) consists of NV = 6890 vertices,
V ∈ RNV ×3, and NF = 13776 faces, F ∈ RNF×3×3.

Note that our regression method (IPMAN-R, Sec. 3.4.1)
uses SMPL, while our optimization method (IPMAN-O,
Sec. 3.4.2) uses SMPL-X [63], to match the models used by
the baselines. For simplicity of exposition, we refer to both
models as SMPL when the distinction is not important.

Camera. For the regression-based IPMAN-R, we follow
the standard convention [42, 43, 47] and use a weak perspec-
tive camera with a 2D scale, s, translation, tc = (tcx, t

c
y),

fixed camera rotation, Rc = I3, and a fixed focal length
(fx, fy). The root-relative body orientation Rb is predicted
by the neural network, but body translation stays fixed at
tb = 0 as it is absorbed into the camera’s translation.

For the optimization-based IPMAN-O, we follow Müller
et al. [59] to use the full-perspective camera model and op-
timize the focal lengths (fx, fy), camera rotation Rc and
camera translation tc. The principal point (ox, oy) is the
center of the input image. K is the intrinsic matrix storing
focal lengths and the principal point. We assume that the
body rotation Rb and translation tb are absorbed into the
camera parameters, thus, they stay fixed as Rb = I3 and
tb = 0. Using the camera, we project a 3D point X ∈ R3 to
an image point x ∈ R2 through x = K(RcX+ tc).

Ground plane and gravity-projection. We assume that
the gravity direction is perpendicular to the ground plane in
the world coordinate system. Thus, for any arbitrary point in
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3D space, u ∈ R3, its gravity-projected point, u′ = g(u) ∈
R3, is the projection of u along the plane normal n onto
the ground plane, and g(.) is the projection operator. The
function h(u) returns the signed “height” of a point u with
respect to the ground; i.e., the signed distance from u to the
ground plane along the gravity direction, where h(u) < 0 if
u is below the ground and h(u) > 0 if u is above it.

3.2. Stability Analysis

We follow the biomechanics literature [32, 33, 61] and
Scott et al. [71] to define three fundamental elements for
stability analysis: We use the Newtonian definition for the
“Center of Mass” (CoM); i.e., the mass-weighted average
of particle positions. The “Center of Pressure” (CoP) is
the ground-reaction force’s point of application. The “Base
of Support” (BoS) is the convex hull of all body-ground
contacts. Below, we define intuitive-physics (IP) terms using
the inferred CoM and CoP. BoS is only used for evaluation.

Body Center of Mass (CoM). We introduce a novel
CoM formulation that is fully differentiable and consid-
ers the per-part mass contributions, dubbed as pCoM; see
Sup. Mat. for alternative CoM definitions. To compute this,
we first segment the template mesh into NP = 10 parts
Pi ∈ P; see Fig. 2. We do this once offline, and keep the
segmentation fixed during training and optimization. Assum-
ing a shaped and posed SMPL body, the per-part volumes
VPi are calculated by splitting the SMPL mesh into parts.

However, mesh splitting is a non-differentiable opera-
tion. Thus, it cannot be used for either training a regressor
(IPMAN-R) or for optimization (IPMAN-O). Instead, we
work with the full SMPL mesh and use differentiable “close-
translate-fill” operations for each body part on the fly. First,
for each part P , we extract boundary vertices BP and add in
the middle a virtual vertex vg , where vg =

∑
j∈BP

vj/|BP |.
Then, for the BP and vg vertices, we add virtual faces to

“close” P and make it watertight. Next, we “translate” P
such that the part centroid cP =

∑
j∈P vj/|P | is at the ori-

gin. Finally, we “fill” the centered P with tetrahedrons by
connecting the origin with each face vertex. Then, the part
volume, VP , is the sum of all tetrahedron volumes [101].

To create a uniform distribution of surface vertices, we
uniformly sample NU = 20000 surface points V U ∈
RNU×3 on the template SMPL mesh using the Triangle
Point Picking method [83]. Given V U and the template
SMPL mesh vertices V T , we follow [59], and analytically
compute a sparse linear regressor W ∈ RNU×NV such that
V U = WV T . During training and optimization, given an
arbitrary shaped and posed mesh with vertices V , we ob-
tain uniformly-sampled mesh surface points as V U = WV .
Each surface point, vi, is assigned to the body part, Pvi ,
corresponding to the face, F vi , it was sampled from.

Finally, the part-weighted pCoM is computed as a

volume-weighted mean of the mesh surface points:

m̄ =

∑NU

i=1 VPvi vi∑NU

i=1 VPvi

, (1)

where VPvi is the volume of the part Pvi ∈ P to which vi is
assigned. This formulation is fully differentiable and can be
employed with any existing 3D HPS estimation method.

Note that computing CoM (or volume) from uniformly
sampled surface points does not work (see Sup. Mat.) be-
cause it assumes that mass, M , is proportional to surface
area, S. Instead, our pCoM computes mass from volume, V ,
via the standard density equation, M = ρV , while our close-
translate-fill operation computes the volume of deformable
bodies in an efficient and differentiable manner.

Center of Pressure (CoP). Recovering a pressure
heatmap from an image without using hardware, such as
pressure sensors, is a highly ill-posed problem. However,
stability analysis requires knowledge of the pressure ex-
erted on the human body by the supporting surfaces, like the
ground. Going beyond binary contact, Rogez et al. [68] esti-
mate 3D forces by detecting intersecting vertices between
hand and object meshes. Clever et al. [14] recover pressure
maps by allowing articulated body models to deform a soft
pressure-sensing virtual mattress in a physics simulation.

In contrast, we observe that, while real bodies interacting
with rigid objects (e.g., the floor) deform under contact,
SMPL does not model such soft-tissue deformations. Thus,
the body mesh penetrates the contacting object surface and
the amount of penetration can be a proxy for pressure; a
deeper penetration implies higher pressure. With the height
h(vi) (see Sec. 3.1) of a mesh surface point vi with respect
to the ground plane Π, we define a pressure field to compute
the per-point pressure ρi as:

ρi =

{
1− αh(vi) if h(vi) < 0,
e−γh(vi) if h(vi) ≥ 0,

(2)

where α and γ are scalar hyperparameters set empirically.
We approximate soft tissue via a “spring” model and “pene-
trating” pressure field using Hooke’s Law. Some pressure is
also assigned to points above the ground to allow tolerance
for footwear, but this decays quickly. Finally, we compute
the CoP, s̄, as

s̄ =

∑NU

i=1 ρivi∑NU

i=1 ρi
. (3)

Again, note that this term is fully differentiable.
Base of Support (BoS). In biomechanics [34, 85], BoS

is defined as the “supporting area” or the possible range of
the CoP on the supporting surface. Here, we define BoS as
the convex hull [67] of all gravity-projected body-ground
contact points. In detail, we first determine all such contacts

4716



by selecting the set of mesh surface points vi close to the
ground, and then gravity-project them onto the ground to
obtain C = {g(vi)

∣∣ |h(vi)| < τ}. The BoS is then defined
as the convex hull C of C.

3.3. Intuitive-Physics Losses

Stability loss. The “inverted pendulum” model of human
balance [85,86] considers the relationship between the CoM
and BoS to determine stability. Simply put, for a given shape
and pose, if the body CoM, projected on the gravity-aligned
ground plane, lies within the BoS, the pose is considered sta-
ble. While this definition of stability is useful for evaluation,
using it in a loss or energy function for 3D HPS estimation
results in sparse gradients (see Sup. Mat.). Instead, we define
the stability criterion as:

Lstability = ∥g(m̄) − g(s̄)∥2, (4)

where g(m̄) and g(s̄) are the gravity-projected CoM and
CoP, respectively.

Ground contact loss. As shown in Fig. 1, 3D HPS meth-
ods minimize the 2D joint reprojection error and do not
consider the plausibility of body-ground contact. Ignoring
this can result in interpenetrating or hovering meshes. In-
spired by self-contact losses [19,59] and hand-object contact
losses [26,29], we define two ground losses, namely pushing,
Lpush, and pulling, Lpull, that take into account the height,
h(vi), of a vertex, vi, with respect to the ground plane. For
h(vi) < 0, i.e., for vertices under the ground plane, Lpush
discourages body-ground penetrations. For h(vi) ≥ 0, i.e.,
for hovering meshes, Lpull encourages the vertices that lie
close to the ground to “snap” into contact with it. Note that
the losses are non-conflicting as they act on disjoint sets of
vertices. Then, the ground contact loss is:

Lground = Lpull + Lpush, with (5)

Lpull = α1 tanh (
h(vi)

α2
)2 if h(vi) ≥ 0, and (6)

Lpush = β1 tanh (
h(vi)

β2
)2 if h(vi) < 0. (7)

3.4. IPMAN

We use our new IP losses for two tasks: (1) We ex-
tend HMR [42] to develop IPMAN-R, a regression-based
HPS method. (2) We extend SMPLify-XMC [59] to de-
velop IPMAN-O, an optimization-based method. Note that
IPMAN-O uses a reference ground plane, while IPMAN-R
uses the ground plane only for training but not at test time.
It leverages the known ground in 3D datasets, and thus, does
not require additional data beyond past HPS methods.

3.4.1 IPMAN-R

Most HPS methods are trained with a mix of direct supervi-
sion using 3D datasets [37,56,81] and 2D reprojection losses

HMR
Regressor

Figure 3. IPMAN-R architecture. First, the HMR regressor esti-
mates camera translation and SMPL parameters for an input image.
These parameters are used to generate the SMPL mesh in the cam-
era frame, M c. To transform the mesh from camera into world
coordinates (M c → Mw), IPMAN-R uses the ground-truth cam-
era rotation, Rc

w, and translation, tcw. The IP losses, Lground and
Lstability, are applied on the mesh in the world coordinate system.

using image datasets [4, 39, 53]. The 3D losses, however,
are calculated in the camera frame, ignoring scene informa-
tion and physics. IPMAN-R extends HMR [42] with our
intuitive-physics terms; see Fig. 3 for the architecture. For
training, we use the known camera coordinates and the world
ground plane in 3D datasets.

As described in Sec. 3.1 (paragraph “Camera”), HMR
infers the camera translation, tc, and SMPL parameters, θ
and β, in the camera coordinates assuming Rc = I3 and
tb = 0. Ground truth 3D joints and SMPL parameters are
used to supervise the inferred mesh M c in the camera frame.
However, 3D datasets also provide the ground, albeit in the
world frame. To leverage the known ground, we transform
the predicted body orientation, Rb, to world coordinates us-
ing the ground-truth camera rotation, Rc

w, as Rb
w = Rc⊤

w Rb.
Then, we compute the body translation in world coordinates
as tbw = −tc + tcw. With the predicted mesh and ground
plane in world coordinates, we add the IP terms, Lstability and
Lground, for HPS training as follows:

LIPMAN-R(θ,β, t
c) =λ2DL2D + λ3DL3D + λSMPLLSMPL+

λsLstability + λgLground, (8)

where λs and λg are the weights for the respective IP terms.
For training (data augmentation, hyperparameters, etc), we
follow Kolotouros et al. [47]; for more details see Sup. Mat.

3.4.2 IPMAN-O

To fit SMPL-X to 2D image keypoints, SMPLify-XMC [59]
initializes the fitting process by exploiting the self-contact
and global-orientation of a known/presented 3D mesh. We
posit that the presented pose contains further information,
such as stability, pressure and contact with the ground-plane.
IPMAN-O uses this insight to apply stability and ground
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contact losses. The IPMAN-O objective is:

EIPMAN-O(β,θ,Φ) =EJ2D + λβEβ + λθhEθh+

λθ̃b
Eθ̃b

+ λC̃EC̃+

λsEstability + λgEground. (9)

Φ denotes the camera parameters: rotation Rc, translation
tc, and focal length, (fx, fy). EJ2D is a 2D joint loss, Eβ

and Eθh are L2 body shape and hand pose priors. Eθ̃b
and

EC̃ are pose and contact terms w.r.t. the presented 3D pose
and contact (see [59] for details). ES and EG are the stability
and ground contact losses from Sec. 3.3. Since the estimated
mesh is in the same coordinate system as the presented mesh
and the ground-plane, we directly apply IP losses without
any transformations. For details see Sup. Mat.

4. Experiments
4.1. Training and Evaluation Datasets

Human3.6M [37]. A dataset of 3D human keypoints and
RGB images. The poses are limited in terms of challeng-
ing physics, focusing on common activities like walking,
discussing, smoking, or taking photos.
RICH [35]. A dataset of videos with accurate marker-less
motion-captured 3D bodies and 3D scans of scenes. The
images are more natural than Human3.6M and Fit3D [20].
We consider sequences with meaningful body-ground inter-
action. For the list of sequences, see Sup. Mat.
Other datasets. Similar to [47], for training we use 3D
keypoints from MPI-INF-3DHP [56] and 2D keypoints from
image datasets such as COCO [53], MPII [4] and LSP [39].

4.1.1 MoCap Yoga (MoYo) Dataset

We capture a trained Yoga professional in 200 highly com-
plex poses (see Fig. 4) using a synchronized MoCap system,
pressure mat, and a multi-view RGB video system with
8 static, calibrated cameras; for details see Sup. Mat. The
dataset contains ∼ 1.75M RGB frames in 4K resolution with
ground-truth SMPL-X [63], pressure and CoM. Compared
to the Fit3D [20] and PosePrior [1] datasets, MoYo is more
challenging; it has extreme poses, strong self-occlusion, and
significant body-ground and self-contact.

4.2. Evaluation Metrics

We use standard 3D HPS metrics: The Mean Per-Joint
Position Error (MPJPE), its Procrustes Aligned version
(PA-MPJPE), and the Per-Vertex Error (PVE) [62].
BoS Error (BoSE). To evaluate stability, we propose a new
metric called BoS Error (BoSE). Following the definition of
stability (Sec. 3.3) we define:

BoSE =

{
1 g(m̄) ∈ C(C)

0 g(m̄) /∈ C(C)
(10)

where C(C) is the convex hull of the gravity-projected con-
tact vertices for τ = 10 cm. For efficiency reasons, we
formulate this computation as the solution of a convex sys-
tem via interior point linear programming [3]; see Sup. Mat.

4.3. IPMAN Evaluation

IPMAN-R. We evaluate our regressor, IPMAN-R, on
RICH and H3.6M and summarize our results in Tab. 1. We
refer to our regression baseline as HMR∗ which is HMR
trained on the same datasets as IPMAN-R. Since we train
with paired 3D datasets, we do not use HMR’s discriminator
during training. Both IP terms individually improve upon
the baseline method. Their joint use, however, shows the
largest improvement. For example, on RICH the MPJPE
improves by 3.5mm and the PVE by 2.5mm. It is particu-
larly interesting that IPMAN-R improves upon the baseline
on H3.6M, a dataset with largely dynamic poses and lit-
tle body-ground contact. We also significantly outperform
(∼ 12%) the MPJPE of optimization approaches that use
the ground plane, Zou et al. [110] (69.9 mm) and Zanfir
et al. [98] (69.0 mm), on H3.6M. Some video-based meth-
ods [49, 96] achieve better MPJPE (56.7 and 52.5 resp.) on
H3.6M. However, they initialize with a stronger kinematic
predictor [45, 50] and require video frames as input. Further,
they use heuristics to estimate body weight and non-physical
residual forces to correct for contact estimation errors. In
contrast, IPMAN is a single-frame method, models complex
full-body pressure and does not rely on approximate body
weight to compute CoM. Qualitatively, Fig. 5 (top) shows
that IPMAN-R’s reconstructions are more stable and contain
physically-plausible body-ground contact. While HMR is
not SOTA, it is simple, isolating the benefits of our new IP
formulation. These terms can also be added to methods with
more modern backbones and architectures.

IPMAN-O. Our optimization method, IPMAN-O,
also improves upon the baseline optimization method,
SMPLify-XMC, on all evaluation metrics (see Tab. 2). We
note that adding Lstability independently improves the PVE,
but not joint metrics (PA-MPJPE, MPJPE) and BoSE. This
can be explained by the dependence of our IP terms on the
relative position of the mesh surface to the ground-plane.
Since joint metrics do not capture surfaces, they may get
worse. Similar trends on joint metrics have been reported in
the context of hand-object contact [29, 79] and body-scene
contact [27]. We show qualitative results in Fig. 5 (bottom).
While both SMPLify-XMC [59] and IPMAN-O achieve sim-
ilar image projections, another view reveals that our results
are more stable and physically plausible w.r.t. the ground.

4.4. Pressure, CoP and CoM Evaluation

We evaluate our estimated pressure, CoP and CoM
against the MoYo ground truth. For pressure evaluation,
we measure Intersection-over-Union (IoU) between our esti-
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Figure 4. Representative examples illustrating the variation and complexity of 3D pose and body-ground contact in our new MoYo dataset.

HMR (baseline) 
Camera View Side View

IPMAN-R (ours) 
Camera View Side ViewInput Image

Val 399

 Val 693

Test 396

Pressure MapPressure Map

RICH

Smplify-XMC (baseline) IPMAN-O (ours) MoYo

Figure 5. Qualitative evaluation of IPMAN-R and IPMAN-O on the RICH and MoYo datasets. The first column shows the input images of
a subject doing various sports poses. The second and third block of columns show the baseline’s and our results, respectively. In each block,
the first image shows the estimated mesh overlayed on the image (camera view), the second image shows the estimated mesh in the world
frame (side view), and the last image shows the estimated pressure map with the CoM (in pink) and the CoP (in green).
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Method
RICH Human3.6M

MPJPE ↓ PAMPJPE ↓ PVE ↓ BoSE (%) ↑ MPJPE ↓ PAMPJPE ↓
PhysCap [74] - - - - 113.0 68.9
DiffPhy [21] - - - - 81.7 55.6
Zou et al. [110] - - - - 69.9 -
Xie et al. [89] - - - - 68.1 -
VIBE [45] - - - - 61.3 43.1
Simpoe [96] - - - - 56.7 41.6
D&D [49] - - - - 52.5 35.5
HMR [42] - - - - 88.0 56.8
Zanfir et al. [98] - - - - 69.0 -
SPIN [47] 112.2 71.5 129.5 54.7 62.3 41.9
PARE [46] 107.0 73.1 125.0 74.4 - -
CLIFF [51] 107.0 67.2 122.3 67.6 81.4 52.1

Finetuning on Human3.6M

HMR∗ [42] - - - - 62.1 41.6
IPMAN-R (Ours) - - - - 60.7 (-1.4) 41.1 (-0.5)

Finetuning on all datasets

HMR∗ [42] 82.5 48.3 92.4 62.0 61.6 41.9
HMR∗ [42]+Lground 80.9 47.8 89.9 66.5 61.9 41.8
HMR∗ [42]+Lstability 81.0 47.5 (-0.8) 90.8 69.6 61.2 41.9
IPMAN-R (Ours) 79.0 (-3.5) 47.6 89.9 (-2.5) 71.2 (+9.2) 60.6 (-1.0) 41.8 (-0.1)

Table 1. Top to Bottom: Comparisons with video-based and single-
frame regression methods. IPMAN-R outperforms the single-frame
baselines across all benchmarks. * indicates training hyperparam-
eters and datasets are identical to IPMAN-R. All units are in mm
except BoSE. Bold denotes best results (per category), and paren-
theses show improvement over the baseline. ü Zoom in
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Figure 6. Qualitative comparison of estimated vs the ground-truth
pressure. The ground-truth CoP is shown in green and the estimated
CoP is shown in yellow. Pressure heatmap colors as per Fig. 2.

mated and ground-truth pressure heatmaps. We also compute
the CoP error as the Euclidean distance between estimated
and ground-truth CoP. We obtain an IoU of 0.32 and a CoP
error of 57.3 mm. Figure 6 shows a qualitative visualization
of the estimated pressure compared to the ground truth. For
CoM evaluation, we find a 53.3 mm difference between our
pCoM and the CoM computed by the commercial software,
Vicon Plug-in Gait. Unlike Vicon’s estimate, our pCoM
does not require anthropometric measurements and takes
into account the full 3D body shape. For details about the
evaluation protocol and comparisons with alternative CoM
formulations, see Sup. Mat.

Physics Simulation. To evaluate stability, we run a post-
hoc physics simulation in “Bullet” [10] and measure the
displacement of the estimated meshes; a small displacement
denotes a stable pose. IPMAN-O produces 14.8% more
stable bodies than the baseline [59]; for details see Sup. Mat.

Method
MoYo

MPJPE ↓ PAMPJPE ↓ PVE ↓ BoSE (%) ↑
SMPLify-XMC [59] 75.3 36.5 16.8 98.0
SMPLify-XMC [59]+Lground 73.3 36.2 14.5 98.2
SMPLify-XMC [59]+Lstability 88.5 38.6 15.3 97.8
IPMAN-O (Ours) 71.9 (-3.4) 34.3 (-2.2) 11.4 (-5.4) 98.6 (+0.5)

Table 2. Evaluation of IPMAN-O and SMPLify-XMC [59]
(optimization-based) on MoYo. Bold shows the best performance,
and parentheses show the improvement over SMPLify-XMC.

5. Conclusion

Existing 3D HPS estimation methods recover SMPL
meshes that align well with the input image, but are often
physically implausible. To address this, we propose IPMAN,
which incorporates intuitive-physics in 3D HPS estimation.
Our IP terms encourage stable poses, promote realistic floor
support, and reduce body-floor penetration. The IP terms ex-
ploit the interaction between the body CoM, CoP, and BoS –
key elements used in stability analysis. To calculate the
CoM of SMPL meshes, IPMAN uses on a novel formulation
that takes part-specific mass contributions into account. Ad-
ditionally, IPMAN estimates proxy pressure maps directly
from images, which is useful in computing CoP. IPMAN is
simple, differentiable, and compatible with both regression
and optimization methods. IPMAN goes beyond previous
physics-based methods to reason about arbitrary full-body
contact with the ground. We show that IPMAN improves
both regression and optimization baselines across all metrics
on existing datasets and MoYo. MoYo uniquely comprises
synchronized multi-view video, SMPL-X bodies in com-
plex poses, and measurements for pressure maps and body
CoM. Qualitative results show the effectiveness of IPMAN
in recovering physically plausible meshes.

While IPMAN addresses body-floor contact, future work
should incorporate general body-scene contact and diverse
supporting surfaces by integrating 3D scene reconstruction.
In this work, the proposed IP terms are designed to help
static poses and we show that they do not hurt dynamic
poses. However, the large body of biomechanical literature
analyzing dynamic poses could be leveraged for activities
like walking, jogging, running, etc. It would be interesting to
extend IPMAN beyond single-person scenarios by exploiting
the various physical constraints offered by multiple subjects.
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