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Abstract

Distance-based classification is frequently used in trans-
ductive few-shot learning (FSL). However, due to the high-
dimensionality of image representations, FSL classifiers are
prone to suffer from the hubness problem, where a few points
(hubs) occur frequently in multiple nearest neighbour lists
of other points. Hubness negatively impacts distance-based
classification when hubs from one class appear often among
the nearest neighbors of points from another class, degrading
the classifier’s performance. To address the hubness prob-
lem in FSL, we first prove that hubness can be eliminated by
distributing representations uniformly on the hypersphere.
We then propose two new approaches to embed representa-
tions on the hypersphere, which we prove optimize a tradeoff
between uniformity and local similarity preservation – reduc-
ing hubness while retaining class structure. Our experiments
show that the proposed methods reduce hubness, and signifi-
cantly improves transductive FSL accuracy for a wide range
of classifiers1.

1. Introduction
While supervised deep learning has made a significant

impact in areas where large amounts of labeled data are
available [6, 11], few-shot learning (FSL) has emerged as
a promising alternative when labeled data is limited [3, 12,
14, 16, 21, 26, 28, 31, 33, 39, 40]. FSL aims to design
classifiers that can discriminate between novel classes based
on a few labeled instances, significantly reducing the cost of
the labeling procedure.

In transductive FSL, one assumes access to the entire
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Figure 1. Few-shot accuracy increases when hubness decreases.
The figure shows the 1-shot accuracy when classifying different
embeddings with SimpleShot [33] on mini-ImageNet [29].

query set during evaluation. This allows transductive FSL
classifiers to learn representations from a larger number of
samples, resulting in better performing classifiers. However,
many of these methods base their predictions on distances
to prototypes for the novel classes [3, 16, 21, 28, 39, 40].
This makes these methods susceptible to the hubness prob-
lem [10, 22, 24, 25], where certain exemplar points (hubs)
appear among the nearest neighbours of many other points.
If a support sample is a hub, many query samples will be
assigned to it regardless of their true label, resulting in low
accuracy. If more training data is available, this effect can
be reduced by increasing the number of labeled samples in
the classification rule – but this is impossible in FSL.

Several approaches have recently been proposed to embed
samples in a space where the FSL classifier’s performance
is improved [4, 5, 7, 17, 33, 35, 39]. However, only one of
these directly addresses the hubness problem. Fei et al. [7]
show that embedding representations on a hypersphere with
zero mean reduces hubness. They advocate the use of Z-
score normalization (ZN) along the feature axis of each
representation, and show empirically that ZN can reduce
hubness in FSL. However, ZN does not guarantee a data
mean of zero, meaning that hubness can still occur after ZN.
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In this paper we propose a principled approach to em-
bed representations in FSL, which both reduces hubness
and improves classification performance. First, we prove
that hubness can be eliminated by embedding representa-
tions uniformly on the hypersphere. However, distributing
representations uniformly on the hypersphere without any
additional constraints will likely break the class structure
which is present in the representation space – hurting the
performance of the downstream classifier. Thus, in order
to both reduce hubness and preserve the class structure in
the representation space, we propose two new embedding
methods for FSL. Our methods, Uniform Hyperspherical
Structure-preserving Embeddings (noHub) and noHub with
Support labels (noHub-S), leverage a decomposition of the
Kullback-Leibler divergence between representation and em-
bedding similarities, to optimize a tradeoff between Local
Similarity Preservation (LSP) and uniformity on the hyper-
sphere. The latter method, noHub-S, also leverages label
information from the support samples to further increase the
class separability in the embedding space.

Figure 1 illustrates the correspondence between hubness
and accuracy in FSL. Our methods have both the least hub-
ness and highest accuracy among several recent embedding
techniques for FSL.

Our contributions are summarized as follows.

• We prove that the uniform distribution on the hyper-
sphere has zero hubness and that embedding points uni-
formly on the hypersphere thus alleviates the hubness
problem in distance-based classification for transduc-
tive FSL.

• We propose noHub and noHub-S to embed representa-
tions on the hypersphere, and prove that these methods
optimize a tradeoff between LSP and uniformity. The
resulting embeddings are therefore approximately uni-
form, while simultaneously preserving the class struc-
ture in the embedding space.

• Extensive experimental results demonstrate that noHub
and noHub-S outperform current state-of-the-art em-
bedding approaches, boosting the performance of a
wide range of transductive FSL classifiers, for multiple
datasets and feature extractors.

2. Related Work

The hubness problem. The hubness problem refers to
the emergence of hubs in collections of points in high-
dimensional vector spaces [22]. Hubs are points that appear
among the nearest neighbors of many other points, and are
therefore likely to have a significant influence on e.g. near-
est neighbor-based classification. Radovanovic et al. [22]
showed that points closer to the expected data mean are more

likely be among the nearest neighbors of other points, indi-
cating that these points are more likely to be hubs. Hubness
can also be seen as a result of large density gradients [9], as
points in high-density areas are more likely to be hubs. The
hubness problem is thus an intrinsic property of data distribu-
tions in high-dimensional vector spaces, and not an artifact
occurring in particular datasets. It is therefore important to
take the hubness into account when designing classification
systems in high-dimensional vector spaces.
Hubness in FSL. Many recent methods in FSL rely on
distance-based classification in high-dimensional representa-
tion spaces [1, 3, 19, 33, 36, 38, 40], making them vulnerable
to the hubness problem. Fei et al. [7] show that hyperspher-
ical representations with zero mean reduce hubness. Moti-
vated by this insight, they suggest that representations should
have zero mean and unit standard deviation (ZN) along the
feature dimension. This effectively projects samples onto
the hyperplane orthogonal to the vector with all elements
= 1, and pushes them to the hypersphere with radius

√
d,

where d is the dimensionality of the representation space.
Although ZN is empirically shown to reduce hubness, it
does not guarantee that the data mean is zero. The normal-
ized representations can therefore still suffer from hubness,
potentially decreasing FSL performance.
Embeddings in FSL. FSL classifiers often operate on em-
beddings of representations instead of the representations
themselves, to improve the classifier’s ability to generalize
to novel classes [5, 33, 35, 39]. Earlier works use the L2
normalization and Centered L2 normalization to embed rep-
resentations on the hypersphere [33]. Among more recent
embedding techniques, ReRep [5] performs a two-step fus-
ing operation on both the support and query features with an
attention mechanism. EASE [39] combines both support and
query samples into a single sample set, and jointly learns
a similarity and dissimilarity matrix, encouraging similar
features to be embedded closer, and dissimilar features to be
embedded far away. TCPR [35] computes the top-k neigh-
bours of each test sample from the base data, computes the
centroid, and removes the feature components in the direc-
tion of the centroid. Although these methods generally lead
to a reduction in hubness and an increase in performance
(see Figure 1), they are not explicitly designed to address
the hubness problem resulting in suboptimal hubness reduc-
tion and performance. In contrast, our proposed noHub and
noHub-S directly leverage our theoretic insights to target the
root of the hubness problem.
Hyperspherical uniformity. Benefits of uniform hyper-
spherical representations have previously been studied for
contrastive self-supervised learning (SSL) [32]. Our work
differs from [32] on several key points. First, we study a
non-parametric embedding of support and query samples
for FSL, which is a fundamentally different task from con-
trastive SSL. Second, the contrastive loss studied in [32] is a
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combination of different cross-entropies, making it different
from our KL-loss. Finally, we introduce a tradeoff-parameter
between uniformity and LSP, and connect our theoretical
results to hubness and Laplacian Eigenmaps.

3. Hyperspherical Uniform Eliminates Hubness
We will now show that hubness can be eliminated com-

pletely by embedding representations uniformly on the hy-
persphere2.

Definition 1 (Uniform PDF on the hypersphere.). The uni-
form probability density function (PDF) on the unit hyper-
sphere Sd = {x ∈ Rd | ||x|| = 1} ⊂ Rd is

uSd(x) = A−1
d δ(||x|| − 1) (1)

where Ad = 2πd/2

Γ(d/2) is the surface area of Sd, and δ(·) is the
Dirac delta distribution.

We then have the following propositions3 for random
vectors with this PDF.

Proposition 1. Suppose X has PDF uSd(x). Then

E(X) = 0 (2)

Proposition 2. Let Πp be the tangent plane of Sd at an
arbitrary point p ∈ Sd. Then, for any direction θ∗ in Πp the
directional derivative of uSd along θ∗ is

∇θ∗uSd = 0 (3)

These two propositions show that the hyperspherical uni-
form has (i) zero mean; and (ii) zero density gradient along
all directions tangent to the hypersphere’s surface, at all
points on the hypersphere. The hyperspherical uniform thus
provably eliminates hubness, both in the sense of having a
zero data mean, and having zero density gradient everywhere.
We note that the latter property is un-attainable in Euclidean
space, as it is impossible to define a uniform distribution over
the whole space. It is therefore necessary to embed points on
a non-Euclidean sub-manifold in order to eliminate hubness.

4. Method
In the preceding section, we proved that uniform em-

beddings on the hypersphere eliminate hubness. However,
naïvely placing points uniformly on the hypersphere does
not incorporate the inherent class structure in the data, lead-
ing to poor FSL performance. Thus, there exists a tradeoff
between uniformity on the hypersphere and the preservation
of local similarities. To address this tradeoff, we introduce

2Our results assume hyperspheres with unit radius, but can easily be
extended to hyperspheres with arbitrary radii.

3The proofs for all propositions are included in the supplementary.
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Rk

Figure 2. Illustration of the noHub embedding. Given represen-
tations ∈ Rk, LLSP preserves local similarities. LUnif simulta-
neously encourages uniformity in the embedding space Sd. This
feature embedding framework helps reduce hubness while improv-
ing classification performance.

two novel embedding approaches for FSL, namely noHub
and noHub-S. noHub (Sec. 4.1) incorporates a novel loss
function for embeddings on the hypersphere, while noHub-
S (Sec. 4.2), guides noHub with additional label informa-
tion, which should act as a supervisory signal for a class-
aware embedding that leads to improved classification per-
formance. Figure 2 provides an overview of the proposed
noHub method. We also note that, since our approach gener-
ates embeddings, they are compatible with most transductive
FSL classifier.
Few-shot Preliminaries. Assume we have a large la-
beled base dataset XBase = {(xi, yi) | yi ∈ CBase; i =
1, . . . , nBase}, where xi and yi denotes the raw features and
labels, respectively. Let CBase denote the set of classes for the
base dataset. In the few–shot scenario, we assume that we
are given another labeled dataset XNovel = {(xi, yi) | yi ∈
CNovel; i = 1, . . . , nNovel} from novel, previously unseen
classes CNovel, satisfying CBase ∩ CNovel = ∅. In addition, we
have a test set T , T ∩ XNovel = ∅, also from CNovel.

In a K–way NS–shot FSL problem, we create randomly
sampled tasks (or episodes), with data from K randomly
chosen novel classes. Each task consists of a support set
S ⊂ XNovel and a query set Q ⊂ T . The support set contains
|S | = NS ·K random examples (NS random examples from
each of the K classes). The query set contains |Q| = NQ ·K
random examples, sampled from the same K classes. The
goal of FSL is then to predict the class of samples x ∈ Q by
exploiting the labeled support set S , using a model trained on
the base classes CBase. We assume a fixed feature extractor,
trained on the base classes, which maps the raw input data
to the representations xi.

4.1. noHub: Uniform Hyperspherical Structure-
preserving Embeddings

We design an embedding method that encourages uni-
formity on the hypersphere, and simultaneously preserves
local similarity structure. Given the support and query rep-
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resentations x1, . . . ,xn ∈ Rk, n = K(NS + NQ) , we
wish to find suitable embeddings z1, . . . ,zn ∈ Sd, where
local similarities are preserved. For both representations and
embeddings, we quantify similarities using a softmax over
pairwise cosine similarities

pij =
pi|j + pj|i

2
, pi|j =

exp(κi
x⊤

i xj

||xi||·||xj || )∑
l,m

exp(κi
x⊤

l xm

||xl||·||xm|| )
(4)

and

qij =
exp(κz⊤

i zj)∑
l,m

exp(κz⊤
l zm)

, (5)

where κi is chosen such that the effective number of neigh-
bours of xi equals a pre-defined perplexity4. As in [27, 30],
local similarity preservation can now be achieved by mini-
mizing the Kullback-Leibler (KL) divergence between the
pij and the qij

KL(P ||Q) =
∑
i,j

pij log
pij
qij

. (6)

However, instead of directly minimizing KL(P ||Q), we find
that the minimization problem is equivalent to minimizing
the sum of two loss functions5

argmin
z1,...,zn∈Sd

KL(P ||Q) = argmin
z1,...,zn∈Sd

LLSP + LUnif (7)

where

LLSP = −κ
∑
i,j

pijz
⊤
i zj , (8)

LUnif = log
∑
l,m

exp(κz⊤
l zm). (9)

In Sec. 5 we provide a thorough theoretical analysis of
these losses, and how they relate to LSP and uniformity on
the hypersphere. Essentially, LLSP is responsible for the
local similarity preservation by ensuring that the embedding
similarities (z⊤

i zj) are high whenever the representation
similarities (pij) are high. LUnif on the other hand, can be
interpreted as a negative entropy on Sd, and is thus mini-
mized when the embeddings are uniformly distributed on Sd.
This is discussed in more detail in Sec. 5.

Based on the decomposition of the KL divergence, and
the subsequent interpretation of the two terms, we formulate
the loss in noHub as the following tradeoff between LSP and
uniformity

LnoHub = αLLSP + (1− α)LUnif (10)
4Details on the computation of the κi are provided in the supplementary.
5Intermediate steps are provided in the supplementary.

Input: Features ∈ Rk, {x1, . . . ,xn}; perplexity, P ;
number of iterations, T ; learning rate, η.

Output: Embeddings ∈ Sd, {z1, . . . ,zn}
Compute pij from Eq (4)
Initialize solution Z0 = {z1, . . . , zn} with PCA
for i← 1 to T do

Compute qij from Eq. (5)
Compute gradients dLnoHub

dZ
, using loss from Eq. (10)

Update Zt using the ADAM optimizer with learning
rate η [15]

Re-normalize elements of Zt using L2 normalization
end
return ZT

Algorithm 1: noHub algorithm for embeddings on
the hypersphere

where α is a weight parameter quantifying the tradeoff.
LnoHub can then be optimized directly with gradient descent.
The entire procedure is outlined in Algorithm 1.

4.2. noHub-S: noHub with Support labels

In order to strengthen the class structure in the embed-
ding space, we modify LLSP and LUnif by exploiting the
additional information provided by the support labels. For
LLSP, we change the similarity function in pij such that

pi|j =
exp(κisx(xi,xj))∑

l,m

exp(κisx(xl,xm))
(11)

where

sx(xi,xj) =


1 if xi,xj ∈ S , and yi = yj

−1 if xi,xj ∈ S , and yi ̸= yj

x⊤
i xj otherwise

. (12)

With this, we encourage embeddings for support samples in
the same class to be maximally similar, and support samples
in different classes to be maximally dissimilar. Similarly, for
LUnif

LUnif = log
∑
l,m

exp(κsz(zi, zj)) (13)

where

sz(zi, zj) =


−∞, if zi, zj ∈ S , and yi = yj

ε z⊤
i zj , if zi, zj ∈ S , and yi ̸= yj

z⊤
i , zj otherwise

(14)

where ε is a hyperparameter. This puts more emphasis on
between-class uniformity by weighting the similarity higher
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for embeddings belonging to different classes (ε > 1), and
ignoring the similarity between embeddings belonging to
the same class6. The final loss function is the same as
Eq. (10), but with the additional label-informed similarities
in Eqs. (11)–(14).

5. Theoretical Results
In this section we provide a theoretical analysis of LLSP

and LUnif . Based on our analysis, we interpret these losses
with regards to the Laplacian Eigenmaps algorithm and
Rényi entropy, respectively.

Proposition 3. Let Wij =
1
2κpij , where

∑
i,j

pij = 1, and let

z1, . . . ,zn ∈ Sd. Then we have

LLSP =
∑
i,j

∥zi − zj∥2Wij − κ. (15)

Proposition 4 (Minimizing LUnif maximizes entropy). Let
H2(·) be the 2-order Rényi entropy, estimated with a kernel
density estimator using a Gaussian kernel. Then

argmin
z1,...,zn∈Sd

LUnif = argmax
z1,...,zn∈Sd

H2(z1, . . . ,zn). (16)

Definition 2 (Normalized counting measure). The normal-
ized counting measure associated with a set B on A is

νB(A) =
|B ∩A|
|B| (17)

Definition 3 (Normalized surface area measure on Sd). The
normalized surface area measure on the hyperspehere Sd ⊂
Rd, of a subset S′ ⊂ Sd is

σd(S
′) =

∫
S′ dS∫
Sd dS

= A−1
d

∫
S′

dS (18)

where Ad is defined as in Eq. (1), and
∫
dS denotes the

surface integral on Sd.

Definition 4 (Weak∗ convergence of measures [32]). A
sequence of Borel measures {µn}∞n=1 in Rd converges
weak∗ to a Borel measure µ, if for all continuous functions
f : Rd → R,

lim
n→∞

∫
f(x)dµn(x) =

∫
f(x)dµ(x) (19)

Proposition 5 (Minimizer of LUnif ). For each n > 0, the n
point minimizer of LUnif is

z⋆
1, . . . ,z

⋆
n = argmin

z1,...,zn∈Sd
LUnif . (20)

Then ν{z⋆
1 ,...,z

⋆
n} converge weak∗ to σd as n → ∞.

6Although any constant value would achieve the same result, we set the
similarity to −∞ in this case to remove the contribution to the final loss.

Interpretation of Proposition 3–5. Proposition 3 states
an alternative formulation of LLSP, under the hyperspheri-
cal assumption. We recognize this formulation as the loss
function in Laplacian Eigenmaps [2], which is known to
produce local similarity-preserving embeddings from graph
data. When unconstrained, this loss has a trivial solution
where the embeddings for all representations are equal. This
is avoided in our case since LnoHub (Eq. (10)) can be inter-
preted as the Lagrangian of minimizing LLSP subject to a
specified level of entropy, by Proposition 4.

Finally, Proposition 5 states that the normalized counting
measure associated with the set of points that minimize
LUnif , converges to the normalized surface area measure
on the sphere. Since uSd is the density function associated
with this measure, the points that minimize LUnif will tend
to be uniform on the sphere. Consequently, minimizing
LLSP also minimizes hubness, by Propositions 1 and 2.

6. Experiments
6.1. Setup
Implementation details. Our implementation is in Py-
Torch [20]. We optimize noHub and noHub-S for T = 150
iterations, using the Adam optimizer [15] with learning rate
η = 0.1. The other hyperparameters were chosen based
on validation performance on the respective datasets7. We
analyze the effect of α in Sec. 6.2. Analyses of the κ and ε
hyperparameters are provided in the supplementary.
Initialization. Since noHub and noHub-S reduce the em-
bedding dimensionality (d = 400), we initialize embeddings
with Principal Component Analysis (PCA) [13], instead of a
naïve, random initialization. The PCA initialization is com-
putationally efficient, and approximately preserves global
structure. It also resulted in faster convergence and better
performance, compared to random initialization.
Base feature extractors. We use the standard networks
ResNet-18 [11] and Wide-Res28-10 [37] as the base fea-
ture extractors with pretrained weights from [28] and [18],
respectively.
Datasets. Following common practice, we evaluate FSL per-
formance on the mini-ImageNet (mini) [29], tiered-ImageNet
(tiered) [23], and CUB-200 (CUB) [34] datasets.
Classifiers. We evaluate the baseline embeddings and
our proposed methods using both established and recent
FSL classifiers: SimpleShot [33], LaplacianShot [40],
α−TIM [28], Oblique Manifold (OM) [21], iLPC [16], and
SIAMESE [39].
Baseline Embeddings. We compare our proposed method
with a wide range of techniques for embedding the base fea-
tures: None (No embedding of base features), L2 [33], Cen-
tered L2 [33], ZN [7], ReRep [5], EASE [39], and TCPR [35].

7Hyperparameter configurations for all experiments are included in the
supplementary.
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mini tiered CUB
Embedding Feature Extractor 1-shot↑ 5-shot↑ 1-shot↑ 5-shot↑ 1-shot↑ 5-shot↑

None ResNet-18 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

L2 (ARXIV’19 [33]) ResNet-18 73.77 (0.24) 83.14 (0.14) 80.46 (0.26) 87.04 (0.16) 83.1 (0.23) 89.48 (0.12)
CL2 (ARXIV’19 [33]) ResNet-18 75.56 (0.26) 84.04 (0.15) 82.1 (0.26) 87.9 (0.16) 84.35 (0.24) 90.14 (0.12)

ZN (ICCV’21 [7]) ResNet-18 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

ReRep (ICML’21 [5]) ResNet-18 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

EASE (CVPR’22 [39]) ResNet-18 76.05 (0.27) 84.61 (0.15) 82.57 (0.27) 88.33 (0.16) 85.24 (0.24) 90.42 (0.12)
TCPR (NEURIPS’22 [35]) ResNet-18 75.99 (0.26) 84.39 (0.15) 82.65 (0.26) 88.26 (0.16) 85.34 (0.23) 90.5 (0.11)

noHub (OURS) ResNet-18 76.65 (0.28) 84.05 (0.16) 82.94 (0.27) 87.87 (0.17) 85.88 (0.24) 90.34 (0.12)
noHub-S (OURS) ResNet-18 76.68 (0.28) 84.67 (0.15) 83.09 (0.27) 88.43 (0.16) 85.81 (0.24) 90.52 (0.12)

None WideRes28-10 45.69 (0.31) 58.82 (0.31) 75.29 (0.28) 82.56 (0.22) 61.36 (0.55) 82.22 (0.37)
L2 (ARXIV’19 [33]) WideRes28-10 80.2 (0.23) 87.11 (0.13) 80.89 (0.26) 87.34 (0.15) 91.98 (0.18) 94.15 (0.1)

CL2 (ARXIV’19 [33]) WideRes28-10 75.23 (0.27) 83.99 (0.16) 79.59 (0.27) 86.71 (0.16) 92.17 (0.18) 94.48 (0.09)
ZN (ICCV’21 [7]) WideRes28-10 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

ReRep (ICML’21 [5]) WideRes28-10 36.69 (0.28) 36.41 (0.3) 67.41 (0.29) 76.49 (0.24) 57.62 (0.56) 60.36 (0.6)
EASE (CVPR’22 [39]) WideRes28-10 81.19 (0.25) 87.82 (0.13) 82.04 (0.26) 88.06 (0.16) 91.99 (0.19) 94.36 (0.09)

TCPR (NEURIPS’22 [35]) WideRes28-10 81.27 (0.24) 87.8 (0.13) 81.89 (0.26) 87.95 (0.16) 91.91 (0.18) 94.25 (0.1)
noHub (OURS) WideRes28-10 81.97 (0.25) 87.78 (0.14) 82.8 (0.27) 87.99 (0.17) 92.53 (0.18) 94.56 (0.09)

noHub-S (OURS) WideRes28-10 82.0 (0.26) 88.03 (0.13) 82.85 (0.27) 88.31 (0.16) 92.63 (0.18) 94.69 (0.09)

Table 1. Accuracies (Confidence interval) with the SIAMESE [39] classifier for different embedding approaches. Best and second best
performance are denoted in bold and underlined, respectively. ∗The SIAMESE classifier is sensitive to the norm of the embedding, thus
leading to detrimental performance for some of the embedding approaches.

Evaluation protocol. We follow the standard evaluation
protocol in FSL and calculate the accuracy for 1-shot and
5-shot classification with 15 images per class in the query
set. We evaluate on 10000 episodes, as is standard prac-
tice in FSL. Additionally, we evaluate the hubness of the
representations after embedding using two common hub-
ness metrics, namely the skewness (Sk) of the k-occurrence
distribution [22] and the hub occurrence (HO) [8], which
measures the percentage of hubs in the nearest neighbour
lists of all points.

6.2. Results

Comparison to the state-of-the-art. To illustrate the effec-
tiveness of noHub and noHub-S as an embedding approach
for FSL, we consider the current state-of-the-art FSL method,
which leverages the EASE embedding and obtains query
predictions with SIAMESE [39]. We replace EASE with
our proposed embedding approaches noHub and noHub-S,
as well as other baseline embeddings, and evaluate perfor-
mance on all datasets in the 1 and 5-shot setting. As shown
in Table 1, noHub and noHub-S outperform all baseline
approaches in both settings across all datasets, illustrating
noHub’s and noHub-S’ ability to provide useful FSL em-
beddings, and updating the state-of-the-art in transductive
FSL.
Aggregated FSL performance. To further evaluate the
general applicability of noHub and noHub-S as embedding
approaches, we perform extensive experiments for all classi-
fiers and all baseline embeddings on all datasets. Tables 2a
and 2b provide the results averaged over classifiers8. To

8The detailed results for all classifiers are provided in the supplementary.

clearly present the results, we aggregate the accuracy and a
ranking score for each embedding method across all classi-
fiers. The ranking score is calculated by performing a paired
Student’s t-test between all pairwise embedding methods for
each classifier. We then average the ranking scores across all
classifiers. A high ranking score then indicates that a method
often significantly outperforms the competing embedding
methods. We set the significance level to 5%. noHub and
noHub-S consistently outperform previous embedding ap-
proaches – sometimes by a large margin. Overall, we further
observe that noHub-S outperforms noHub in most settings
and is particular beneficial in the 1-shot setting, which is
more challenging, given that fewer samples are likely to
generate noisy embeddings.

Hubness metrics. To further validate noHub’s and noHub-
S’ ability to reduce hubness, we follow the same procedure
of aggregating results for the hubness metrics and average
over classifiers. Compared to the current state-of-the-art
embedding approaches, Table 3 illustrates that noHub and
noHub-S consistently result in embeddings with lower hub-
ness.

Visualization of similarity matrices. As discussed in
Sec. 4, completely eliminating hubness by distributing points
uniformly on the hypersphere is not sufficient to obtain good
FSL performance. Instead, representations need to also cap-
ture the inherent class structure of the data. To further eval-
uate the embedding approaches, we therefore compute the
pairwise inner products for the embeddings of a random
5-shot episode on tiered-ImageNet with ResNet-18 features
in Figure 3. It can be observed that the block structure is
considerably more distinct for noHub and noHub-S, with
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mini tiered CUB
Embedding Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

R
es

N
et

18

None 55.74 0.17 62.61 0.0 63.78 0.17
L2 (ARXIV’19 [33]) 68.22 2.33 75.94 2.17 78.09 2.33

CL2 (ARXIV’19 [33]) 69.56 2.83 76.97 3.0 78.26 2.83
ZN (ICCV’21 [7]) 60.0 2.33 66.21 2.5 67.43 2.67

ReRep (ICML’21 [5]) 60.76 4.0 67.07 3.67 69.6 4.17
EASE (CVPR’22 [39]) 69.63 3.67 77.05 4.0 78.84 3.67

TCPR (NEURIPS’22 [35]) 69.97 4.0 77.18 3.33 78.83 4.0
noHub (OURS) 72.58 6.83 79.77 6.83 81.91 6.83

noHub-S (OURS) 73.64 7.67 80.6 7.67 83.1 7.67

W
id

eR
es

28
-1

0

None 63.59 1.0 71.29 0.83 79.23 1.17
L2 (ARXIV’19 [33]) 74.3 3.0 76.19 2.67 88.61 3.5

CL2 (ARXIV’19 [33]) 71.32 1.33 75.17 2.0 88.52 3.33
ZN (ICCV’21 [7]) 64.27 2.5 65.64 2.5 76.0 1.5

ReRep (ICML’21 [5]) 65.51 3.0 71.83 3.17 83.1 3.5
EASE (CVPR’22 [39]) 74.95 4.33 76.59 3.67 88.51 3.5

TCPR (NEURIPS’22 [35]) 75.64 4.83 76.51 4.0 88.22 2.5
noHub (OURS) 78.22 7.0 79.76 7.0 90.25 5.67

noHub-S (OURS) 79.24 7.67 80.46 7.67 90.82 7.67

(a) 1-shot

mini tiered CUB
Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

R
es

N
et

18

None 69.83 0.83 74.38 0.67 76.01 1.17
L2 (ARXIV’19 [33]) 81.58 2.33 86.05 1.83 88.43 2.83

CL2 (ARXIV’19 [33]) 81.95 2.67 86.43 3.0 88.49 2.5
ZN (ICCV’21 [7]) 71.49 4.0 75.32 3.83 76.92 3.5

ReRep (ICML’21 [5]) 70.25 2.5 74.52 1.83 76.43 2.5
EASE (CVPR’22 [39]) 81.84 3.5 86.4 3.17 88.57 3.5

TCPR (NEURIPS’22 [35]) 82.1 4.0 86.54 3.83 88.79 4.33
noHub (OURS) 82.58 5.5 86.9 4.5 89.13 6.0

noHub-S (OURS) 82.61 6.5 87.13 6.67 88.93 5.33

W
id

eR
es

28
-1

0

None 78.77 1.5 84.1 1.67 89.49 1.67
L2 (ARXIV’19 [33]) 85.65 4.0 86.29 3.83 93.47 3.67

CL2 (ARXIV’19 [33]) 83.14 1.33 85.47 1.5 93.49 4.0
ZN (ICCV’21 [7]) 74.61 4.33 75.34 5.0 81.02 3.17

ReRep (ICML’21 [5]) 73.86 1.83 81.51 1.67 87.2 2.0
EASE (CVPR’22 [39]) 85.51 3.5 86.29 3.33 93.34 3.5

TCPR (NEURIPS’22 [35]) 86.03 6.0 86.37 4.0 93.3 3.0
noHub (OURS) 86.44 5.67 87.07 5.5 93.65 4.17

noHub-S (OURS) 85.95 5.5 87.05 5.83 93.76 5.0

(b) 5-shot

Table 2. Aggregated FSL performance for all embedding ap-
proaches on the mini-ImageNet, tiered-ImageNet, and CUB-200
datasets. Results are averaged over FSL classifiers. Best and second
best performance are denoted in bold and underlined, respectively.

noHub-S slightly improving upon noHub. These results
indicate that (i) samples are more uniform, indicating the
reduced hubness; and (ii) classes are better separated, due to
the local similarity preservation.

Tradeoff between uniformity and similarity preserva-
tion. We analyze the effect of α on the tradeoff between
LSP and Uniformity in the loss function in Eq. (10), on
tiered-ImageNet with ResNet-18 features in the 5-shot set-
ting and with the SIAMESE [39] classifier. The results are
visualized in Figure 4. We notice a sharp increase in perfor-
mance when we have a high emphasis on uniformity. This

mini tiered CUB
Sk↓ HO↓ Sk↓ HO↓ Sk↓ HO↓

R
es

N
et

18

None 1.349 0.407 1.211 0.408 0.887 0.341
L2 (ARXIV’19 [33]) 0.937 0.301 0.812 0.265 0.691 0.236

CL2 (ARXIV’19 [33]) 0.667 0.233 0.679 0.249 0.549 0.201
ZN (ICCV’21 [7]) 0.68 0.231 0.698 0.264 0.564 0.216

ReRep (ICML’21 [5]) 3.655 0.548 3.604 0.549 3.565 0.513
EASE (CVPR’22 [39]) 0.521 0.16 0.479 0.158 0.466 0.153

TCPR (NEURIPS’22 [35]) 0.651 0.228 0.65 0.25 0.532 0.204
noHub (OURS) 0.315 0.095 0.303 0.102 0.32 0.112

noHub-S (OURS) 0.276 0.13 0.283 0.127 0.296 0.162

W
id

eR
es

28
-1

0

None 1.6 0.459 1.81 0.494 1.073 0.369
L2 (ARXIV’19 [33]) 0.781 0.296 0.737 0.275 0.475 0.228

CL2 (ARXIV’19 [33]) 0.981 0.288 0.817 0.307 0.52 0.267
ZN (ICCV’21 [7]) 0.73 0.287 0.769 0.302 0.517 0.263

ReRep (ICML’21 [5]) 3.56 0.704 3.55 0.777 3.026 0.47
EASE (CVPR’22 [39]) 0.47 0.177 0.477 0.175 0.437 0.213

TCPR (NEURIPS’22 [35]) 0.589 0.236 0.685 0.264 0.477 0.231
noHub (OURS) 0.29 0.111 0.301 0.111 0.188 0.108

noHub-S (OURS) 0.258 0.148 0.274 0.135 0.162 0.13

(a) 1-shot

mini tiered CUB
Sk↓ HO↓ Sk↓ HO↓ Sk↓ HO↓

R
es

N
et

18
None 1.436 0.422 1.339 0.432 0.987 0.364

L2 (ARXIV’19 [33]) 1.04 0.318 0.914 0.287 0.812 0.263
CL2 (ARXIV’19 [33]) 0.786 0.264 0.821 0.28 0.698 0.236

ZN (ICCV’21 [7]) 0.806 0.264 0.839 0.296 0.716 0.25
ReRep (ICML’21 [5]) 1.631 0.863 1.721 0.872 1.432 0.869
EASE (CVPR’22 [39]) 0.624 0.186 0.598 0.183 0.607 0.186

TCPR (NEURIPS’22 [35]) 0.78 0.259 0.796 0.283 0.687 0.235
noHub (OURS) 0.286 0.096 0.289 0.104 0.329 0.12

noHub-S (OURS) 0.25 0.074 0.213 0.078 0.433 0.097

W
id

eR
es

28
-1

0

None 1.709 0.473 1.937 0.51 1.16 0.395
L2 (ARXIV’19 [33]) 0.887 0.322 0.86 0.305 0.632 0.266

CL2 (ARXIV’19 [33]) 1.12 0.318 0.956 0.337 0.701 0.31
ZN (ICCV’21 [7]) 0.858 0.32 0.912 0.335 0.699 0.305

ReRep (ICML’21 [5]) 1.597 0.819 1.617 0.846 1.299 0.549
EASE (CVPR’22 [39]) 0.579 0.199 0.585 0.193 0.572 0.241

TCPR (NEURIPS’22 [35]) 0.717 0.27 0.815 0.294 0.634 0.264
noHub (OURS) 0.294 0.115 0.298 0.115 0.195 0.1

noHub-S (OURS) 0.494 0.103 0.407 0.12 0.421 0.127

(b) 5-shot

Table 3. Aggregated hubness metrics for all embedding approaches
on the Mini-ImageNet, Tiered-ImageNet and CUB-200 dataset.
Results are averaged over FSL classifiers. Best and second best
performance are denoted in bold and underlined, respectively.

demonstrates the impact of hubness on accuracy in FSL
performance. As we keep increasing the emphasis on LSP,
however, after a certain point we notice a sharp drop off
in performance. This is due to the fact that the classifier
does not take into account the uniformity constraint on the
features, resulting in a large number of misclassifications.
In general, we observe that noHub-S is slightly more robust
compared to noHub.

Increasing number of classes. We analyze the behavior
of noHub and noHub-S for an increasing number of classes
(ways) on the tiered-ImageNet dataset with SIAMESE [39]
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Figure 3. Inner product matrices between features for a random episode for all embedding approaches.
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Figure 4. Accuracies for different values of the weighting parame-
ter, α, which quantifies the tradeoff between LLSP and LUnif .
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Figure 5. Accuracies for an increasing number of classes (ways)
for noHub and noHub-S.

as classifier. While classification accuracy generally de-
creases with an increasing number of classes, which is ex-
pected, we observe from Figure 5 that noHub-S has a slower
decay and is able to leverage the label guidance to obtain
better performance for a larger number of classes.
Effect of label information in LLSP and LUnif . To vali-
date the effectiveness of using label guidance in noHub-S,
we study the result of including label information in LLSP

and LUnif (Eqs. (11)–(14)). We note that the default set-
ting of noHub is that none of the two losses include la-
bel information. Ablation experiments are performed on
tiered-ImageNet with the ResNet-18 feature extractor and
the SimpleShot and SIAMESE classifier [39]. In Table 4,
we generally see improvements of noHub-S when both the
loss terms are label-informed, indicating the usefulness of
label guidance.

We further observe that incorporating label information
in LUnif tends to have a larger contribution than doing the
same for LLSP. This aligns with our observations in Figure 4,

Label-informed SimpleShot [33] SIAMESE [39]
LLSP LUnif 1-shot↑ 5-shot↑ 1-shot↑ 5-shot↑

noHub – – 76.72 (0.23) 86.31 (0.16) 82.94 (0.27) 87.87 (0.17)
noHub-S ✓ – 78.25 (0.24) 85.46 (0.16) 82.56 (0.28) 88.07 (0.17)
noHub-S – ✓ 78.33 (0.23) 86.15 (0.15) 82.81 (0.27) 88.43 (0.16)
noHub-S ✓ ✓ 78.35 (0.23) 86.22 (0.15) 83.09 (0.27) 88.43 (0.16)

Table 4. Ablation study with the label-informed losses in noHub-S.
Check marks (✓) indicate that the loss uses information from the
support labels.

where a small α yielded the best performance.

7. Conclusion
In this paper we have addressed the hubness problem

in FSL. We have shown that hubness is eliminated by em-
bedding representations uniformly on the hypersphere. The
hyperspherical uniform distribution has zero mean and zero
density gradient at all points along all directions tangent to
the hypersphere – both of which are identified as causes of
hubness in previous work [9, 22]. Based on our theoreti-
cal findings about hubness and hyperspheres, we proposed
two new methods to embed representations on the hyper-
sphere for FSL. The proposed noHub and noHub-S leverage
a decomposition of the KL divergence between similarity
distributions, and optimize a tradeoff between LSP and uni-
formity on the hypersphere – thus reducing hubness while
maintaining the class structure in the representation space.
We have provided theoretical analyses and interpretations
of the LSP and uniformity losses, proving that they opti-
mize LSP and uniformity, respectively. We comprehensively
evaluate the proposed methods on several datasets, features
extractors, and classifiers, and compare to a number of recent
state-of-the-art baselines. Our results illustrate the effective-
ness of our proposed methods and show that we achieve
state-of-the-art performance in transductive FSL.
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