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Abstract

Multimodal models are becoming increasingly effective,
in part due to unified components, such as the Transformer
architecture. However, multimodal models still often consist
of many task- and modality-specific pieces and training pro-
cedures. For example, CLIP (Radford et al., 2021) trains in-
dependent text and image towers via a contrastive loss. We
explore an additional unification: the use of a pure pixel-
based model to perform image, text, and multimodal tasks.
Our model is trained with contrastive loss alone, so we call
it CLIP-Pixels Only (CLIPPO). CLIPPO uses a single en-
coder that processes both regular images and text rendered
as images. CLIPPO performs image-based tasks such as re-
trieval and zero-shot image classification almost as well as
CLIP-style models, with half the number of parameters and
no text-specific tower or embedding. When trained jointly
via image-text contrastive learning and next-sentence con-
trastive learning, CLIPPO can perform well on natural
language understanding tasks, without any word-level loss
(language modelling or masked language modelling), out-
performing pixel-based prior work. Surprisingly, CLIPPO
can obtain good accuracy in visual question answering,
simply by rendering the question and image together. Fi-
nally, we exploit the fact that CLIPPO does not require a
tokenizer to show that it can achieve strong performance on
multilingual multimodal retrieval without modifications.

1. Introduction

In recent years, large-scale multimodal training of
Transformer-based models has led to improvements in the
state-of-the-art in different domains including vision [2, 10,
74–76], language [6, 11], and audio [5]. In particular, in
computer vision and image-language understanding, a sin-
gle large pretrained model can outperform task-specific ex-
pert models [10, 74, 75]. However, large multimodal mod-
els often use modality or dataset-specific encoders and de-
coders, and accordingly lead to involved protocols. For
example, such models frequently involve training different

Code and pretrained models are available as part of big vision [4]
https://github.com/google-research/big_vision.
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Figure 1. CLIP [56] trains separate image and text encoders,
each with a modality-specific preprocessing and embedding, on
image/alt-text pairs with a contrastive objective. CLIPPO trains a
pure pixel-based model with equivalent capabilities by rendering
the alt-text as an image, encoding the resulting image pair using
a shared vision encoder (in two separate forward passes), and ap-
plying same training objective as CLIP.

parts of the model in separate phases on their respective
datasets, with dataset-specific preprocessing, or transferring
different parts in a task-specific manner [75]. Such modality
and task-specific components can lead to additional engi-
neering complexity, and poses challenges when introducing
new pretraining losses or downstream tasks. Developing
a single end-to-end model that can process any modality,
or combination of modalities, would be a valuable step for
multimodal learning. Here, we focus on images and text.

A number of key unifications have accelerated the
progress of multimodal learning. First, the Transformer
architecture has been shown to work as a universal back-
bone, performing well on text [6, 15], vision [16], au-
dio [5, 24, 54], and other domains [7, 34]. Second, many
papers have explored mapping different modalities into a
single shared embedding space to simplify the input/output
interface [21, 22, 46, 69], or develop a single interface to
many tasks [31, 37]. Third, alternative representations of
modalities allow harnessing in one domain neural archi-
tectures or training procedures designed for another do-
main [28, 49, 54, 60]. For example, [60] and [28, 54] repre-
sent text and audio, respectively, by rendering these modal-
ities as images (via a spectogram in the case of audio).

In this paper, we explore the use of a pure pixel-based

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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model for multimodal learning of text and images. Our
model is a single Vision Transformer [16] that processes
visual input, or text, or both together, all rendered as RGB
images. The same model parameters are used for all modal-
ities, including low-level feature processing; that is, there
are no modality-specific initial convolutions, tokenization
algorithms, or input embedding tables. We train our model
using only a single task: contrastive learning, as popular-
ized by CLIP [56] and ALIGN [32]. We therefore call our
model CLIP-Pixels Only (CLIPPO).

We find that CLIPPO performs similarly to CLIP-style
models (within 1-2%) on the main tasks CLIP was de-
signed for—image classification and text/image retrieval—
despite not having modality-specific towers. Surpris-
ingly, CLIPPO can perform complex language understand-
ing tasks to a decent level without any left-to-right lan-
guage modelling, masked language modelling, or explicit
word-level losses. In particular, on the GLUE benchmark
[73] CLIPPO outperforms classic NLP baselines, such as
ELMO+BiLSTM+attention, outperforms prior pixel-based
masked language models [60], and approaches the score
of BERT [15]. Interestingly, CLIPPO obtains good perfor-
mance on VQA when simply rendering the image and text
together, despite never having been pretrained on such data.

Pixel-based models have an immediate advantage over
regular language models because they do not require pre-
determining the vocabulary/tokenizer and navigating the
corresponding intricate trade-offs; consequently, we ob-
serve improved performance on multilingual retrieval com-
pared to an equivalent model that uses a classical tokenizer.

2. Related work

Multimodal and contrastive pretraining Most closely
related to CLIPPO are CLIP [67] and ALIGN [32] which
developed the paradigm of large-scale contrastive training
on noisy data from the web. Follow-ups [55,85] have scaled
further and employed state-of-the-art image representation
learning to boost performance.

A number of works have explored model unification via
weight-sharing. In the contrastive context, LIMoE [53] and
MS-CLIP [80] explore a one-tower model similar to ours,
studying the use of mixture of experts and selective shar-
ing of modules, respectively. Outside contrastive training,
co-training distinct tasks [1, 46] is a popular strategy, with
some approaches [44] involving knowledge distillation and
gradient masking. Other works use self-supervised learn-
ing algorithms to unify task training [21]. These broadly
use discriminative tasks to learn representations for vari-
ous downstream modalities; generative approaches to mul-
timodal modelling have been scaled to billions of param-
eters, generating text [2, 10, 74, 82], images [58, 62, 83],
videos [27, 72] or audio [5] from various modalities.

Another related domain is document and user interface
(UI) understanding. Corresponding models are trained on
diverse multimodal data sets and can usually solve a range
of document/UI understanding tasks. Many models rely on
text extracted using an off-the-shelf OCR pipeline in combi-
nation with document images [3, 29], but image-only mod-
els are getting more popular [35, 41]. While these models
can understand visual cues and text from the input image,
they still rely on a tokenized text for training and inference.
Contrastive training in NLP There is a sizable body
of work on contrastive pretraining on sentence pairs (see
[59] for a recent survey), which we explore as an auxil-
iary objective for CLIPPO. Popular augmentations to gener-
ate text pairs involve word deletion, span deletion, reorder-
ing, synonym substitution, and next-sentence-prediction
[20, 47, 77]. Other methods use different realizations of
dropout masks in the model to emulate sentence pairs, or
supervised labels to obtain positive and negative pairs [19].
Visual text and tokenization in NLP The most closely
related method to CLIPPO from the NLP domain is PIXEL
[60], which is a masked autoencoder (MAE) [26] trained
on rendered text. It obtains strong performance on multilin-
gual syntactic (part-of-speech tagging, dependency parsing)
and semantic language understanding (named entity recog-
nition, sentence understanding) tasks, while being more ro-
bust to noise in the text than BERT. Other applications for
which visual text has been explored include sentiment anal-
ysis [68] and machine translation [49, 63].

Visual text side-steps the design and construction of an
appropriate tokenizer, which is a large area of research of
its own, and can hence simplify text processing in certain—
in particular multilingual—scenarios. We refer to [52] for
a survey on tokenizers. Popular models include WordPiece
[15], Byte-Pair Encoding [65], and SentencePiece [39].

Subword-based vocabularies are popular in monolingual
setups and usually lead to a good performance trade-off
compared to word and character based vocabularies for cer-
tain languages including English. In multilingual contexts,
appropriately representing the vocabulary of all languages
becomes challenging as the number of languages increases
[13,61], which in turn can lead to poor performance in tasks
involving underrepresented languages. A variety of mitiga-
tion strategies has been developed; we refer to [60, Sec. 5.1]
for a more detailed discussion of these strategies.

3. Contrastive language-image pretraining

with pixels

Contrastive language-image pretraining has emerged as
a powerful, scalable paradigm to train versatile vision mod-
els on web-scale data sets [56]. Concretely, this approach
relies on image/alt-text pairs which can be automatically
collected at large scale from the web. Thereby, the textual
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descriptions are usually noisy, and can e.g. consist of single
keywords, sets of keywords, or potentially lengthy descrip-
tions with many attributes describing the image content.
Using this data, two encoders are jointly trained, namely a
text encoder embedding the alt-texts and an image encoder
embedding the corresponding images into a shared latent
space. These two encoders are trained with a contrastive
loss, encouraging the embeddings of matching images and
alt-text to be similar, and at the same time to be dissimilar
from all other image and alt-text embeddings.

Once trained, such an encoder pair can be used in many
ways: It can be specialized to classifying a fixed set of vi-
sual concepts via their textual descriptions (zero-shot clas-
sification); the embeddings can be used to retrieve im-
ages given a textual description and vice-versa; or the vi-
sion encoder can be transferred in supervised fashion to a
downstream task by fine-tuning on a labeled data set or by
training a head on top of the frozen image encoder rep-
resentation. In principle, the text encoder can be used as
a standalone text embedding, but this application—to our
knowledge—has not been explored in-depth, with some au-
thors citing the low quality of the alt-texts leading to weak
language modeling performance of the text encoder [67].

Previous works [46, 53] have shown that the image and
text encoder can be can be realized with a single shared
transformer model (henceforth referred to as single tower
model, or 1T-CLIP), where the images are embedded using
a patch embedding, and the tokenized text is embedded us-
ing a separate word embedding. Apart from the modality-
specific embeddings, all model parameters are shared for
the two modalities. While this type of sharing usually leads
to a minor performance drop on image/image-language
tasks it also halves the number of model parameters.

CLIPPO takes this idea one step further: text inputs are
rendered on blank images, and are subsequently dealt with
entirely as images, including the initial patch embedding
(see Fig. 1 for an illustration). By training this single vision
transformer contrastively as prior works, we obtain a single
vision transformer model that can understand both images
and text through the single interface of vision and provides
a single representation which can be used to solve image,
image-language, and pure language understanding tasks.

Alongside multimodal versatility, CLIPPO alleviates
common hurdles with text processing, namely the devel-
opment of an appropriate tokenizer and vocabulary. This
is particularly interesting in a massively multilingual setup,
where the text encoder has to handle dozens of languages.

We find that CLIPPO trained on image/alt-text pairs per-
forms comparably with its 1T-CLIP counterpart on com-
mon image and image-language benchmarks, and is com-
petitive with strong baseline language models on the GLUE
benchmark [73]. However, due to the low quality of the
alt-texts which are often not grammatical sentences, learn-

ing language understanding exclusively from alt-texts is
fundamentally limited. Therefore, we augment image/alt-
text contrastive pretraining with language-based contrastive
training. Specifically, we use positive pairs of consecutive
sentences sampled from a text corpus which is seamlessly
integrated into the contrastive training by supplementing
batches of image/alt-texts with (rendered) text/text pairs.

4. Experiments

4.1. Training details and models

We rely on a single training setup for all our baselines
and visual text models. This setup was tuned to produce
good results for standard image/alt-text contrastive training
as in [56] (using exactly the same loss function as [56], fol-
lowing the pseudocode in [56, Fig. 3]) and we found that it
readily transfers to 1T-CLIP and CLIPPO (including vari-
ants with text/text co-training).

Our default architecture is a ViT-B/16 [16] and we per-
form a subset of experiments with a ViT-L/16 architecture
to study the effect of scale (we equip both models a MAP
head [40] to pool embeddings). In all cases, the represen-
tation dimension used for the contrastive loss is 768. We
set the batch size to 10,240 and train the main models for
250k steps, using a minimum 100k training steps for abla-
tions. For models co-trained with a certain percentage of
text/text data, we scale the number of iterations such that
the number of image/alt-text pairs seen matches the number
of iterations of the corresponding model without text/text
data (e.g. when 50% of the data is text/text pairs we in-
crease the number of iterations from 250k to 500k). The
contrastive loss is computed across the full batch. We use
the Adafactor optimizer [66] with a learning rate of 10�3

and decoupled weight decay with weight 10�4.
Baseline CLIP-style models are trained using the T5-

en SentencePiece tokenizer [57]; we use the abbreviation
CLIP⇤ for the two tower model from [56] trained from
scratch using the setup described above, to avoid confusion
with the model released by [56]. A sequence length of 196
is used, as this matches the number of visual text “tokens”
CLIPPO can process with patch size 16 has at 224px reso-
lution (which we use throughout unless noted otherwise).
Visual text For visual text rendering [60, 63] relied on
the Google Noto font family1 which supports the majority
of Unicode code points. Here, we use the GNU Unifont
bitmap font2, which has a similar coverage but allows for
efficient, lookup-based on-the-fly rendering in our prepro-
cessing pipeline. We emphasize that this rendering strategy
does not slow down training compared to tokenizer-based
models. In preliminary explorations, we found this to be
performance-neutral when compared to the Noto font.

1https://fonts.google.com/noto
2http://unifoundry.com/unifont
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#param. training dataset I1k 10s. I1k 0s. C I!T C T!I F I!T F T!I

CLIP* 203M WebLI 55.8 65.1 48.5 31.3 79.2 59.4

1T-CLIP 118M WebLI 53.9 62.3 48.0 30.3 77.5 58.2
CLIPPO 93M WebLI 53.0 61.4 47.3 30.1 76.4 57.3
CLIPPO 93M WebLI + 25%C4 52.1 57.4 40.7 26.7 68.9 51.8
CLIPPO 93M WebLI + 50%C4 48.0 53.1 35.2 23.4 64.8 47.2

1T-CLIP L/16 349M WebLI 60.8 67.8 50.7 32.5 81.0 61.0
CLIPPO L/16 316M WebLI 60.3 67.4 50.6 33.4 79.2 62.6
CLIPPO L/16 316M WebLI + 25%C4 60.5 66.0 44.5 29.8 72.9 57.3
CLIPPO L/16 316M WebLI + 50%C4 56.8 61.7 39.7 27.3 70.1 54.7

Table 1. Vision and vision-language cross-modal results. We report ImageNet-1k 10-shot linear transfer validation accuracy (I1k 10s.),
ImageNet-1k zero-shot transfer validation accuracy (I1k 0s.), image-to-text and text-to-image retrieval recall@1 on MS-COCO (C I!T
and C T!I) and on Flickr30k (F T!I and F I!T). CLIPPO and 1T-CLIP incur a minor drop in these evaluations compared to CLIP⇤,
while only using about half of the model parameters. Co-training with text pairs from C4 (models with + xx%C4) degrades performance
on some cross-modal tasks (but leads to improved language understanding capabilities, see Table 2).

Image/alt-text data We use the WebLI data set introduced
in [10] which comprises 10 billion images with 12 billion
corresponding alt-texts. Importantly, WebLI comprises alt-
texts in 109 languages (unlike previous data sets such as
LAION-400M [64] which only contain English alt-texts)
and it is therefore a great foundation to study multilingual
language-image pretraining and its applications. Please re-
fer to [10, Fig. 3] for details on the alt-text language dis-
tribution. For English-only models we obtain English ver-
sions of non-English alt-texts via GCP Translation API3. In
addition to alt-text, WebLI also provides OCR annotations,
which we do not use in this paper. Finally, WebLI was pro-
cessed with a de-duplication step removing all images from
various splits of the image evaluation sets used in this paper.
Please refer to [10, Sec. 3.2] for more details on the WebLI
data set and to [10, Appendix B] for a datasheet.

We also present a subset of results based on LAION-
400M [64] and YFCC-100M [71] as an additional compar-
ison points, see Appendix C.1 and C.2, respectively.
Text/text data For co-training with text/text pairs we
primarily rely on the publicly available Colossal Clean
Crawled Corpus (C4; default/English split) [57]. We ran-
domly sample pairs of consecutive sentences and con-
trastively train on these pairs, i.e., the model is trained for
embedding-based next sentence prediction (NSP) [47]. We
also experiment with pairs of parallel sentences in different
languages from the WMT19 data set [18] as well as back-
translated English sentences derived from C4 following the
strategy described in [12].

4.2. Evaluations and metrics

To evaluate the vision and vision/language understand-
ing capabilities of our models we use standard metrics from
the literature [53, 56, 85]: “zero-shot” transfer, which uses
(embedded) textual description of the classes to be classi-
fied/retrieved and compares these with image embeddings.

3https://cloud.google.com/translate

We report the classification accuracy on ImageNet-1k [14]
as well as the recall@1 for cross-modal retrieval on MS-
COCO [9] and Flickr30k [81]. Furthermore, we test the
low-data transfer performance of the models by means of
the linear adaptation protocol from [16], reporting the 10-
shot accuracy on ImageNet-1k.

We also evaluate CLIPPO and baselines on the popular
VQA benchmark VQAv2 [25]. To construct a VQA model
using a single pretrained ViT we render the question at the
top end of the corresponding image (using the same Unifont
renderer as used for CLIPPO training) and follow the stan-
dard prediction setup where the answer is predicted as the
most likely answer from the training set, i.e. by classifica-
tion. Specifically, we replace the last layer of our pretrained
CLIPPO and baselines with a randomly initialized one with
the appropriate number of outputs and fine-tune on VQAv2.
This setup tests the ability of the pretrained ViT to combine
image and text in intermediate layers as it has produce a
single output from a fused image/text input image, unlike in
the other cross-modal tasks (and pretraining), where image
and text representations are computed with two separate for-
ward passes. Please refer to Appendix A in the supplemen-
tary material for examples images with rendered questions
and Appendix B.1 for details on the fine-tuning protocol.

Multilingual capabilities are assessed via zero-shot re-
trieval on CrossModal3600 [70], which is a geographically
diverse set comprising 3600 images each human-annotated
with captions in 36 languages. The correspoding recall met-
ric is averaged across all languages and images.

Finally, we evaluate the language understanding capa-
bilities on the General Language Understanding Evaluation
(GLUE) benchmark [73] which comprises natural language
inference tasks (MNLI, QNLI, RTE), a sentiment analy-
sis task (SST-2), sentence similarity tasks (QQP, STS-B,
MRPC), and a linguistic acceptability task (CoLA). Follow-
ing common practice, we exclude the WNLI task from the
benchmark [15,77]. We transfer our baselines and CLIPPO
models by attaching a 2-hidden layer MLP with 768 units to
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Figure 2. Results on the VQAv2 benchmark (test-dev set). In addi-
tion to CLIPPO and baselines produced in this work, we also com-
pare to Pythia and MCAN models with ViT encoders from [67],
and with comparably sized METER [17] and ViLT [36] mod-
els. CLIPPO outperforms CLIP⇤ and 1T-CLIP clearly on “yes/no”
questions and gets similar performance as task-specific models.

their representation and following precisely the fine-tuning
protocol from BERT [15]. For sentence pair classification
tasks we simply render both sentences on the same image,
printing [SEP] to mark the start of the second sentence.

4.3. Vision and vision-language understanding

Image classification and retrieval Table 1 shows the per-
formance of CLIPPO along with the baseline models on
the benchmarks described in Sec. 4.2. It can be seen that
the CLIPPO and 1T-CLIP incur a drop of a 2-3 percentage
points absolute compared to CLIP⇤. This is not surprising
and can be attributed to the fact that single tower models
only have about half the parameters count of a correspond-
ing two tower model. The difference in performance be-
tween the English-only CLIPPO and 1T-CLIP is very small
for a B/16 backbone at 100k training steps (see Table 6 in
the supplementary material), and vanishes with longer train-
ing and/or by increasing the model size, despite the fact that
CLIPPO has 25% and 10% fewer parameters than 1T-CLIP
for a B/16 and L/16 architecture, respectively (which is due
to the absence of the text embedding in CLIPPO).

The multilingual CLIPPO model performs somewhat
worse than the corresponding 1T-CLIP, and the gap does
not close completely when training longer (see Table 6).

However, when evaluated across a broad set of languages
on the CrossModal3600 CLIPPO performs on par with or
slightly better than 1T-CLIP (see Sec. 4.4 below).

As we add sentence pairs to the training mix the per-
formance on the cross-modal retrieval metrics decreases.
This is not surprising as we keep the total batch size con-
stant so that the effective batch size of image/alt-text con-
trastive training decreases, which is known to impact per-
formance [85]. Interestingly, the the 10-shot transfer perfor-
mance does not move in tandem, but only decreases signifi-
cantly when half of the training data is sentence pairs. In ex-
change, co-training with text data leads to significantly im-
proved language understanding performance (see Sec. 4.5).

VQA In Fig. 2 we report the VQAv2 score of our mod-
els and baselines. It can be seen that CLIPPO outperforms
CLIP⇤, 1T-CLIP, as well as a pretrained ViT-B/16 from [16]
by a significant margin, achieving a score of 66.3, and co-
training with 25% C4 data leads to a slight improvement
of the score. The improved score of CLIPPO is manly due
to better performance in “yes/no” questions. Increasing the
model size to L/16 adds another 2 points which originate
from improvements in the “number” and “other” VQAv2
categories. However, note that for an L/16 architecture 1T-
CLIP performs competitively with CLIPPO (see Table 7).
One possible explanation for this could be that 1T-CLIP de-
velops better OCR capabilities thanks to the higher model
capacity (alt-texts can correlate with text in images/scene
text, see [10, Fig. 3]). Increasing the resolution to 384px
adds 2 to 3 points across models.

We also compare CLIPPO with baselines from the liter-
ature. Specifically, [17] proposes framework (called ME-
TER) for multimodal tasks, where pretrained transformer-
based image and text encoders are combined with a
transformer-based fusion module. CLIPPO L/16 achieves
performance competitive with their model combining a
CLIP B/32 vision backbone with a BERT-Base language
backbone, which is roughly comparable in size and com-
putational cost with our L/16 models. Another related
work is [67], which combines different CLIP vision back-
bones with two existing VQA systems, Pythia [33] and
MCAN [84]. CLIPPO outperforms different CLIP ViT-
based Pythia and MCAN models from [67]. Note, how-
ever, that ResNet-based CLIP backbones lead to better re-
sults when combined with these systems. We further note
that both [17] and [67] also investigate training their models
on a mix of different image-text data sets with multiple ob-
jectives such as grounded masked language modeling and
text-image matching, before transferring to the VQA task,
which leads to significant improvements. ViLT [36] relies
on such a strategy to train a single transformer backbone
jointly encoding image and text tokens. At 384px resolu-
tion, CLIPPO (with 25% C4 data) obtains a VQA score
comparable with that of ViLT (and other models from the
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literature such as ViLBERT [48], VisualBERT [43], and
PixelBERT [30]), despite only using a contrastive objective
for pretraining.

4.4. Multilingual vision-language understanding

For typical language models, tokenizer choice can
be a challenging process [78]. Commonly used
English-language tokenizers generalize poorly to non-latin
scripts [85]. This can be alleviated by the use of larger,
multilingual vocabularies, at the expense of very large pa-
rameter counts. CLIPPO bypasses this issue, removing any
language-related bias stemming from unbalanced or restric-
tive tokenizers. We consider multilingual image/text re-
trieval on Crossmodal3600 and compare CLIPPO, trained
on WebLI with multilingual alt-texts, against 1T-CLIP with
a number of SentencePiece tokenizers; one trained from
300M WebLI multilingual alt-texts, English (T5-en) and
multilingual (T5-all) tokenizers from T5 [57], and a mul-
tilingual tokenizer (mT5) from mT5 [79], all with a vocabu-
lary size of 32,000. The results are shown in Fig. 4. On av-
erage, CLIPPO achieves comparable retrieval performance
to these baselines. In the case of mT5, the use of extra data
to create the specialized vocabulary can boosts performance
above that of CLIPPO; the leveraging of such extra parame-
ters and data in the multilingual context will be an interest-
ing future direction for CLIPPO.

Figure 3. Tokenization effi-
ciency analyzed in terms of
the sequence length produced
by a given method. CLIPPO
produces smaller sequences for
the majority of languages com-
pared to 1T-CLIP with alterna-
tive tokenizers.

Tokenization efficiency

If a tokenizer is well
suited to a particular
dataset, it will tokenize
to shorter sequences—
this is especially the case
when byte fallback [39]
is enabled. Senten-
cePiece tokenizers
have the advantageous
ability to tokenize
entire—possibly quite
long—words to single
tokens. CLIPPO cannot
learn any such com-
pression, but benefits
from equal treatment
of all languages and

words: it will by definition generalize equally well to all
data, as its tokenization schema has not been trained on a
specific dataset. We analyze 20,000 samples for each of
the 104 C4 languages. Each CLIPPO token is assumed
to be a 16 ⇥ 16 patch; though in typical computations all
approaches considered here would pad to a fixed length,
we compute CLIPPO’s sequence length according to the
last patch which contains rendered text. Fig. 3 shows the
fraction of C4 languages where CLIPPO processes tokens

Figure 4. Zero-shot image/text retrieval performance on Cross-
Modal3600 [70]. Although specialized (mc4) tokenizers can be
leveraged to improve multilingual performance CLIPPO (dashed
black line) broadly matches or exceeds comparable 1T-CLIP mod-
els trained with vocabulary size 32,000 (the word embeddings re-
sult in a 27% increase in parameter count compared to CLIPPO).

more efficiently than the vocabularies discussed above.
We conservatively define “more efficient” as producing a
shorter token sequence for over 75% of examples. Even
so, CLIPPO is indeed more efficient across the majority
of languages. Per-language breakdowns of multilingual
retrieval performance and tokenization efficiency are
further discussed in Appendix C.3.

4.5. Language understanding

Table 2 shows the GLUE benchmark results of CLIPPO
and baselines. One can observe that CLIPPO trained on We-
bLI performs competitively with the BiLSTM+Attn+ELMo
baseline which relies on deep word embeddings trained
on a large language corpus. Also, it can be seen that
CLIPPO along with 1T-CLIP outperform the language en-
coder trained using standard contrastive language vision
pretraining (CLIP⇤). This indicates that multimodal train-
ing in a single encoder benefits language understanding.
Furthermore, CLIPPO achieves a much higher GLUE score
than the CLIP⇤ image encoder, which in turn leads to sig-
nificantly better results than fine-tuning a ViT-B/16 from
scratch on GLUE (see Appendix C.2 for additional results).
Unsurprisingly, the models pretrained on WebLI cannot do
better than random guessing on the CoLA evaluation which
requires to assess the grammatical correctness of sentences
(recall that alt-texts are rarely grammatical sentences). Also
the accuracy of CLIP⇤ and 1T-CLIP vision encoders we
observe for SST-2 is in agreement with what was reported
in [56, Table 10] for CLIP with a ViT-B/16 image encoder.

Adding sentence pairs form the C4 corpus gradually im-
proves the GLUE score, and when half of the examples are
sentence pairs our model becomes competitive with PIXEL,
while still retaining decent image and vision-language un-
derstanding capabilities (cf. Table 1). Note, however, that
there is a trade-off between language-only tasks and tasks
that involve image understanding. Finally, training CLIPPO
only on sentence pairs leads to a model which outperforms
PIXEL by a significant margin. However, our model has
seen more sentence pairs than PIXEL, so PIXEL might im-
prove as well when training longer.
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training dataset MNLI-M/MM QQP QNLI SST-2 COLA STS-B MRPC RTE avg

BERT-Base Wiki + BC 84.0 / 84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 83.1
PIXEL Wiki + BC 78.1 / 78.9 84.5 87.8 89.6 38.4 81.1 88.2 60.5 76.3
BiLSTM 66.7 / 66.7 82.0 77.0 87.5 17.6 72.0 85.1 58.5 68.1
BiLSTM+Attn, ELMo 72.4 / 72.4 83.6 75.2 91.5 44.1 56.1 82.1 52.7 70.0

CLIP* img enc. WebLI 66.4 / 67.5 78.6 69.4 78.6 0.0 5.2 81.2 52.7 55.5
CLIP* text enc. WebLI 71.8 / 72.5 82.7 73.0 86.2 6.6 65.0 81.4 53.8 65.9
1T-CLIP text enc. WebLI 72.6 / 73.0 83.8 80.7 84.9 0.0 79.6 83.3 57.0 68.3
CLIPPO WebLI 73.0 / 72.6 84.3 81.2 86.8 1.8 80.5 84.1 53.4 68.6

CLIPPO WebLI + 25%C4 77.7 / 77.2 85.3 83.1 90.9 28.2 83.4 84.5 59.2 74.4
CLIPPO WebLI + 50%C4 79.2 / 79.2 86.4 84.2 92.9 38.9 83.4 84.8 59.9 76.6
CLIPPO C4 79.9 / 80.2 86.7 85.2 93.3 50.9 84.7 86.3 58.5 78.4

CLIPPO L/16 WebLI + 25%C4 76.6 / 75.5 87.1 79.9 93.2 48.2 84.1 84.6 56.0 76.1
CLIPPO L/16 WebLI + 50%C4 82.3 / 82.4 87.9 86.7 94.2 55.3 85.8 85.9 59.2 80.0

Table 2. Results for the GLUE benchmark (dev set). The metric is accuracy except for the performance on QQP and MRPC, which
is measured using the F1 score, CoLA which uses Matthew’s correlation, and STS-B which evaluated based on Spearman’s correlation
coefficient. “avg” corresponds to the average across all metrics. The results for BERT-Base and PIXEL are from [60, Table 3], and BiLSTM
and BiLSTM+Attn, ELMo from [73, Table 6]. All encoders considered here have a transformer architecture comparable to BERT-Base (up
to the text embedding layer), except for CLIPPO L/16 which uses a ViT L/16, and the two BiLSTM model variants. Wiki and BC stand
for (English) Wikipedia and Bookcorpus [86] data, respectively.

4.6. Ablations and analysis

Impact of weight sharing across modalities The fact that
CLIPPO 1) uses a shared patch embedding for regular im-
ages and text images and 2) this embedding has consider-
ably fewer parameters than the text embedding of 1T-CLIP
and CLIP⇤ provokes the question of whether CLIPPO could
benefit from separate patch embeddings for text images and
regular images. Further, CLIPPO relies on a single head to
compute the output representation for images and text, and
relaxing this constraint by using separate heads for the two
modalities could lead to more expressive representations.
The results (deferred to Appendix D.1) show that neither
of these variants lead to improved image classification or
retrieval metrics compared to CLIPPO.
Impact of the text location We test whether rendering the
question at the top, middle, or bottom of the image impacts
the VQA performance of CLIPPO and find that it does not,
provided that we increase the learning rate of the positional
embedding during fine-tuning (see Appendix D.2).
Typographic attacks Since CLIPPO is trained on
large amounts of rendered (alt-)text it is important to
check whether it becomes more susceptible to typographic
attacks—the tendency of CLIP-style models to zero-shot
classify an image according to adversarially injected scene
text unrelated to the scene [23,42,50]. In Appendix D.3 we
present results indicating that CLIPPO is no more vulnera-
ble to typographic attacks than 1T-CLIP and CLIP⇤.
Modality gap Liang et al. [45] discovered that text and
image embeddings of CLIP-style models form two dis-
tinct clusters rather than both filling the embedding space
densely and occupying the same spatial region. They at-
tribute this phenomenon to a combination of initialization

conditions and properties of the loss function/training dy-
namics. Since we consider single tower models here, and
also co-train some of these models with text-only pairs it
is interesting to see how this affects the modality gap. We
compute the gap and visualize it following the recipe from
[45] in Fig. 5 (see Appendices D.4 and D.5 for additional
visualizations). CLIPPO attains a slightly lower modality
gap than CLIP⇤, but clearly features a clustering structure
for image and text embeddings. However, when training
contrastively with sentence pairs in addition to image/alt-
text pairs, the clustering structure disappears, the image and
text embeddings overlap, and the modality gap decreases
significantly. A possible explanation for this behavior could
be that the additional learning pressure induced by the con-
trastive loss on sentence pairs encourages text embeddings
to spread out more and hence the structure of all embed-
dings changes.
Text/text co-training objectives To corroborate that con-
trastive NSP is a sensible objective to improve language un-
derstanding in the context of CLIPPO, we train CLIPPO
without any image/alt-text data on pairs of parallel trans-
lated sentences (this is straight-forward in our framework
since visual text is language-agnostic), as well as English
back-translated data, and evaluate the resulting text repre-
sentations on GLUE. Table 3 shows that NSP on C4 clearly
achieves the highest GLUE score.

5. Discussion and limitations

We proposed and evaluated CLIPPO which produces a
single ViT that can understand images and language jointly
using images as a sole input modality. Perhaps surpris-
ingly, CLIPPO matches the performance of the 1T-CLIP
baseline across many of the considered tasks, and only in-
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WMT19 WMT19 BT C4 NSP

GLUE score 61.2 66.6 77.6

Table 3. Ablation of text pair-based contrastive co-training tasks:
Training on parallel translated sentences (WMT19), training on
parallel back-translated sentences (WMT19 BT), and NSP for sen-
tences sampled from C4 (C4 NSP). C4 NSP leads to the highest
GLUE score by a large margin.

curs a minor drop compared to the CLIP⇤ baseline, de-
spite having less than half the parameters of CLIP⇤. As
we showed, the image-only interface enables a simple, uni-
fied data pipeline for training on and transferring to mixed
modalities. CLIPPO opens the door for additional modali-
ties (e.g. spectrograms) and, as we hope, might inspire ap-
plications of pixel-only models beyond contrastive training.
Nevertheless, several limitations remain, as discussed next.
Co-training First, to achieve language understanding per-
formance competitive with PIXEL and BERT on GLUE,
contrastive co-training with text pairs is necessary. While
adding 25% C4 data to the batch seems to strike a good
balance across all tasks considered, it does induce a non-
negligible drop in zero-shot image classification and im-
age/text retrieval. This drop becomes more severe as the
fraction of C4 examples increases. We observed an asso-
ciated change in modality gap, and further investigation of
the representation in the context of co-training might help
to develop models that achieve better overall performance
in the co-training setup.
Diverse rendered text CLIPPO currently relies on cleanly
rendered text as an input and its capabilities to handle text
from documents or web pages without further adaption is
limited (besides the basic OCR capabilities that CLIP-style
models learn from image/alt-text pairs). We emphasize that
sophisticated OCR and document understanding is not a
goal of this paper, and training CLIPPO with augmented
noisy rendered text that mimics the distribution of docu-
ments and websites is likely to lead to worse performance
across the considered tasks, since image/alt-text pairs are
less correlated and provide a weaker learning signal. How-
ever, developing CLIPPO further to handle less clean visual
text will open many additional applications.
Generative modeling CLIPPO, like CLIP, BERT, PIXEL
and many other models, uses an encoder-only design and
hence lacks the ability to generate text outputs. A com-
mon approach to equip encoder-only models with genera-
tion capabilities (e.g., for image captioning or VQA) is to
simply combine them with a (potentially pretrained) lan-
guage model [8, 76]. This approach naturally also applies
to CLIPPO and PIXEL, but defeats the advantages of visual
text in certain (e.g. multilingual) scenarios. While visual
text outputs have previously been explored in the context of

Figure 5. Visualization of the modality gap for CLIP⇤ and
CLIPPO optionally trained with 25% C4 data. The visualization
follows the analysis from [45] and shows embedded images (blue
dots) and corresponding alt-text (orange dots) from the WebLI val-
idation set, projected to the first two principal components of the
validation data matrix. CLIPPO has a slightly smaller modality
gap than CLIP⇤; co-training with C4 data strongly reduces the gap.

machine translation [49], it remains unclear what a scalable
tokenizer-free way to generate text is.
Multilingual learning Finally, we showed that CLIPPO
obtains strong multilingual image/text retrieval perfor-
mance without requiring the development of an appropri-
ate tokenizer. For fine-grained adjustment and balancing
of the retrieval performance further steps will be necessary,
including data balancing and potentially co-training with
multi-lingual text data. Furthermore, similar to PIXEL,
CLIPPO relies on certain ad-hoc design choices w.r.t. the
visual representation, for example the left-to-right render-
ing of Arabic scripts. This approach leads to decent perfor-
mance on average, but it is not clear what kind of unwanted
effects it introduces and how these could be mitigated.

6. Conclusion

We introduced CLIPPO, a model for processing images
and text jointly through the lens of vision. This reduces
design choices (in particular w.r.t. tokenization) and param-
eter count, simplifies data processing pipelines and transfer
recipes, and increases generality across multiple languages.
We also explored methods of enhancing language under-
standing, where traditional image/alt-text contrastive mod-
els trained on web data fall short. We demonstrated this is
possible by co-training with text pairs, with CLIPPO mod-
els outperforming strong NLP baselines while maintaining
solid image understanding capabilities.

Although we presented a unified contrastive training al-
gorithm, CLIPPO suffers somewhat when co-training on
multiple tasks, and future work to harmonize the co-training
could enhance the models significantly. Deeper understand-
ing of the design choices in rendering text as images, and
their impact on performance, is another interesting avenue.
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[50] Joanna Materzyńska, Antonio Torralba, and David Bau. Dis-
entangling visual and written concepts in CLIP. In CVPR,
pages 16410–16419, 2022. 7, 21

[51] Joanna Materzynska, Antonio Torralba, and David Bau. Dis-
entangling visual and written concepts in clip. In CVPR,
2022. 21, 22

[52] Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin
Raffel, Manan Dey, Matthias Gallé, Arun Raja, Chenglei Si,
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