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Abstract

Model quantization is a crucial step for deploying super
resolution (SR) networks on mobile devices. However, exist-
ing works focus on quantization-aware training, which re-
quires complete dataset and expensive computational over-
head. In this paper, we study post-training quantization
(PTQ) for image super resolution using only a few unla-
beled calibration images. As the SR model aims to maintain
the texture and color information of input images, the distri-
bution of activations are long-tailed, asymmetric and highly
dynamic compared with classification models. To this end,
we introduce the density-based dual clipping to cut off the
outliers based on analyzing the asymmetric bounds of acti-
vations. Moreover, we present a novel pixel aware calibra-
tion method with the supervision of the full-precision model
to accommodate the highly dynamic range of different sam-
ples. Extensive experiments demonstrate that the proposed
method significantly outperforms existing PTQ algorithms
on various models and datasets. For instance, we get a
2.091 dB increase on Urban100 benchmark when quantiz-
ing EDSR×4 to 4-bit with 100 unlabeled images. Our code
is available at both PyTorch and MindSpore.

1. Introduction
Image super resolution (SR) is a classical image pro-

cessing task in computer vision, which reconstructs high-
resolution (HR) images from the corresponding low-
resolution (LR) images. SR has been widely applied in
the real-world scenarios, such as medical imaging [12, 35],
surveillance [1, 49], satellite imagery [31, 36] and smart-
phone display [8, 19]. With the rapid development of deep
learning in recent years, SR models with deep neural net-
work (DNN) structure have continued to achieve state-of-
the-art performance on various datasets. However, these
SR models require significant storage and computational re-
sources, which makes their deployment on mobile devices
extremely difficult. To improve the inference efficiency,
various techniques have been proposed to compress the
models, such as network pruning [16, 50], model quantiza-

Table 1. Computational overhead of different quantization meth-
ods on EDSR model. The FP denotes full-precision training, the
Gt denotes the ground-truth, and the Bs denotes batch size.

Method Type Data Gt Bs Iters Run time
EDSR [28] FP 800 3 16 15,000 240×
PAMS [25] QAT 800 3 16 1,500 24×
FQSR [40] QAT 800 3 16 15,000 120×
CADyQ [14] QAT 800 3 8 30,000 240×
DAQ [15] QAT 800 3 4 300,000 1200×
DDTB [52] QAT 800 3 16 3,000 48×
Ours PTQ 100 5 2 500 1×

tion [13, 38], compact architecture design [8, 9] and knowl-
edge distillation [29, 41, 45, 46]. Among these approaches,
model quantization is much benefit to existing artificial in-
telligent (AI) accelerators [3, 42], which generally focus on
low-precision arithmetic, resulting in lower latency, smaller
memory footprint and less energy consumption.

Although the previous SR quantization methods make
great effort on improving the performance with given bit-
width, their main drawback is that they require quantiza-
tion aware training (QAT) with complete datasets and ex-
pensive computational overhead. As shown in Table 1,
the full-precision EDSR model needs to train 15,000 iters
with the batch size of 16, takes 8 days on NVIDIA Titan X
GPUs [28]. To recover the performance drop of the quan-
tized models, most methods also need to train with the same
iterative steps on the complete training dataset, in which one
training step in QAT actually takes more GPU memory and
longer running time than those of the regular floating-point.

On the contrast, post-training quantization (PTQ) only
requires a few unlabeled calibration images without train-
ing, which enables fast deployment on various devices
within minutes. Nevertheless, different from the image clas-
sification, super resolution requires accurate prediction for
each pixel of the output images, which is much sensitive
to low-bit compression for feature maps. Figure 2 shows
the original floating-point activations of different layers and
samples, we observe three properties of their distributions
that are much unfriendly to quantization: (1) Long-tailed:
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Figure 1. The overview of the proposed post-training quantization framework for image super resolution.

the distribution shows to be dense in the middle yet sparse
in the tails, which means most of values lie in a small range,
while only a few outliers have larger amplitude; (2) Asym-
metric: the density on the two tails of the distribution is
asymmetric, the skewness differ for different layers; (3)
Highly-dynamic: the activation range varies, or even by
twice, for different input samples. Therefore, the existing
PTQ methods which are designed for image classification
can not be transferred to the SR task directly.

In this paper, we propose a coarse-to-fine method to get
the accurate quantized SR model with post-training quan-
tization. We first introduce the density-based dual clipping
(DBDC) to cut off most of the outliers for narrowing the
distribution to a valid range. Different from previous meth-
ods [25, 40], the amplitudes of lower and upper clip are
not same and the clipping position is depend on the den-
sity of two tails. The clipping scheme is employed itera-
tively to eliminate the long-tail distribution. The asymmet-
ric quantizer with adjustable lower and upper clip values is
adopted to solve the asymmetric distribution in SR models.
And then we further propose a novel pixel-aware calibration
(PaC) to help the quantized network fit the highly dynamic
activations for different samples. The PaC leverages fea-
ture maps of the full-precision model to supervise those of
the quantized model. To stabilize the finetune process, we
only update the quantization parameters instead of the orig-
inal weights. The whole quantization process of our method
can be finished within minutes with a few unlabeled images.
The contributions of this paper are summarized as follow:

(1) We present a detailed analysis to demonstrate the
challenge of post-training quantization on image super reso-
lution, indicating that the performance degradation of quan-
tized SR model suffers from the long-tailed, asymmetric
and highly-dynamic distribution of feature maps.

(2) We introduce a coarse-to-fine quantization method
to accommodate above problems. With the density-based
dual clipping and the pixel-aware calibration, the proposed
method is able to conduct accurate quantization with only a

few unlabeled calibration images. To the best of our knowl-
edge, we are the first to optimize the post-training quantiza-
tion for image super resolution task.

(3) Extensive experiments on various benchmark models
and datasets demonstrate that our method significantly out-
performs the existing PTQ methods, and is able to achieve
comparable performance with the QAT in some setting.
Further, our method can speed up the convergence and bring
up the performance when combined with QAT methods.

2. Related works

Model quantization is a promising technique for com-
pressing deep neural networks, which has received ex-
tensive attention and has been applied in various tasks
widely. Ma et al. [32] firstly explored the weight binariza-
tion for image SR task, only compressed the residual blocks
with a learnable weight for each binary filter. BAM [44]
proposed a bit accumulation mechanism to approximate
the full-precision convolution and BTM [21] introduced a
novel training mechanism based on the feature distribution.
E2FIF [23] constructed binary super resolution networks
from the perspective of information flow integrity.

Except for the 1-bit binarization, some recent works [15,
25, 40, 52] also focus on the optimization of low-bit quanti-
zation. PAMS [25] designed a layer-wise symmetric quan-
tizer with the learnable clip value only for high-level fea-
ture extraction module. To compress the SR network fur-
ther, FQSR [40] quantized all the layers and residual branch
with learnable quantization interval. DAQ [15] introduced
a channel-wise distribution-aware quantization scheme and
DDTB [52] designed an asymmetric activation quantizer
with dynamic dual trainable clip values, pushing the com-
pression to 2-4 bit. However, these above methods all need
to train on the complete dataset and take even longer than
the training of full-precision models. To this end, we aim
to propose a post-training quantization method to compress
the SR models without training, and only need a few unla-
beled data to calibrate the clipping values.
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Figure 2. The histograms of feature maps of different layers with different samples. The skew denotes the asymmetry of the distribution

3. Methods
We first give a brief introduction to the general quanti-

zation method. Given a floating-point tensor x that needs
to be quantized into N -bit, we denote the lower and up-
per bounds of x as l and u, respectively. As shown in the
Equation (1), there are three steps in tensor quantization:
(1) truncate the tensor x into range [l, u], denotes as xc, (2)
map the floating-point tensor xc of the range [l, u] to the in-
teger tensor xint of the range [0, 2N−1], (3) reconstruct the
floating point tensor xq from the integer tensor xint.

xc = Clamp(x, l, u),

xint = Round(
xc − l
u− l

× (2N − 1)),

xq = xint ×
(u− l)
2N − 1

+ l,

(1)

where Clamp(x, l, u) = min(max(x, l), u), Round(·) out-
puts the nearest integer around the input. Usually, the
post-training quantization aims to get the clipping values
({lw, uw} and {la, ua}) of weights and activations for all
the layers without the modification to original weights.

3.1. Analysis of quantization on super resolution

In this section, we investigate the challenge of quanti-
zation on super resolution tasks by conducting experiments
with different bit-width settings. As shown in Table 2, when
we only quantize the weights of EDSR model to 6-bit, there
is only a little performance drop (-0.059/-0.002) compared
with the full-precision model. On the contrast, when we
only quantize the activations, the result on Urban100 de-
creases much severely, which indicates that the quantization
on activations greatly degrade the performance of low-bit
precision models.

Then we further visualize the activation distribution of
intermediate layers to find out the problems that cause the

Table 2. The quantization results of EDSR×4 on Urban100 .
W/A 32/32 6/32 32/6 6/6

PSNR/SSIM 26.646/0.804 26.587/0.802 25.894/0.773 25.890/0.773

performance degradation of quantized models. As shown in
Figure 2, we conclude three properties that are detrimental
to quantization:
(1) Long-tailed. all the distributions show dense in the mid-
dle yet sparse in the tail, with most values distributed in
small ranges while the total range is always much larger. As
shown in Figure 2b, the activation range of body.11.conv1
with sample 2 is [−232, 210], while about 99.16% of val-
ues are in [−30, 25], which would lead to large quantization
error in dense region for the uniform quantizer.
(2) Asymmetric. The skewness is a measure for the asym-
metry of the probability distribution about its mean [7], for
an asymmetric distribution, negative skew indicates that the
longer tail is on the left side of the distribution, and posi-
tive skew indicates that the longer tail is on the right. As
we can see that the skewness of the activation distributions
show that they are much asymmetric on two tails, such as
3.78 and 1.73 for the body.0.conv1 in Figure 2a, which is
much unfriendly to the calibration of zero point using the
conventional quantization methods.
(3) Highly-dynamic. Without batch normalization, there is
a high range flexibility of activations in super resolution net-
works. For instance, the activation range of body.31.conv1
with sample 2 is the 2.19× of the sample 1 as shown in Fig-
ure 2d. High dynamic range means that the optimal quan-
tization values vary for different samples. Therefore, deter-
mining the optimal clipping values that could fit the super
resolution dataset is a non-trivial task.

In conclusion, the reasons that cause the performance
degradation for quantized SR models are the long-tailed,
asymmetric and highly-dynamic activation distribution. To
address that, we propose a coarse-to-fine quantization
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method for super resolution as Figure 1, the first step is the
coarse clipping to get the rough bounds, and the second step
is the fine-grained calibration to get the optimal ones. We
will introduce the details in the following sections.

3.2. Density-based dual clipping

The distribution of activations in SR models usually
shows to be dense in the middle yet sparse in the tail, so
that the dense region is far away from the original bound-
aries, which is very unfriendly to model quantization, espe-
cially for low bits. DDBT [52] clips the range with the 1-th
and 99-th percentiles of activations to initialize the clipping
bounds. However, This method do not consider the asym-
metric distribution for image super resolution. Therefore,
we propose the density-based dual clipping (DBDC) to cut
off outliers of activations, help narrow the distribution to a
valid range as shown in Figure 1.

Different from the unilateral clipping [5, 25, 40, 52], our
proposed DBDC takes full account of the imbalanced dis-
tribution of left and right parts for the SR model. Take the
range clipping of one layer as an example, we first divide
the original activation x into the N equal interval based on
its minimum and maximum value as Equation (2).

∆ = (max (x)−min (x))/N,

H(p) =
∑
i∈x

I(i>p & i<p+ ∆), (2)

where H(p) denotes the density of the position of p. Based
on the assumption that the lower the density of the bound,
the less the importance, we aims to keep the regions that
contain most density. As shown in Figure 2, the H(p) is
usually smaller in the two tails and bigger in the middle.
Therefore, in order to get the appropriate lower and upper
clipping bounds, we start to search the optimal lower clip-
ping value and upper clipping value (donated as la and ua)
from two tails. By comparing the density values between
the position of la and ua iteratively, we make the clipping
position with smaller density closer to the middle, which
can be formulated as:

lta, u
t
a =

{
lt−1a + ∆, ut−1a , H(lt−1a ) < H(ut−1a )
lt−1a , ut−1a −∆, H(lt−1a ) ≥ H(ut−1a )

,

(3)
where the t denotes the iterative step. The termination con-
dition for one batch of calibration samples is that the den-
sity in the clipping region accounts for more than the clip-
ping ratio (denoted as M%). After obtaining the appropri-
ate lower and upper clippings for this calibration samples,
then we input the next batch of calibration samples. In the
meanwhile, the global bounds la and ua are updated by the
exponential moving average (EMA) method [10].

la = β · la + (1− β) · lTa ,
ua = β · ua + (1− β) · lTa ,

(4)

Algorithm 1: Density-based Dual Clipping
Input: Full-precision SR model F of K layers,

calibration dataset D, clipping ratio M , the
number of bins N .

Output: {la, ua}K .

1 Initialize {la, ua}K with the minimum and
maximum values of feature maps.

2 foreach d = D0, D1, ..., Dn do
3 foreach k = 1 to K do
4 H(x1), ...,H(xN )← Histogram(F k(d))

5 l← min (F k(d)), u← max (F k(d))
6 ∆← (u− l)/N, S ←

∑xN

i=xi
H(i)

7 while
∑u

i=lH(i)/S ≥ 1−M do
8 if H(l) < H(u) then
9 l = l + ∆

10 else
11 u = u−∆
12 end
13 end
14 lka = β · lka + (1− β) · l
15 uka = β · uka + (1− β) · u
16 end
17 end

where the β is the hyper-parameter of weighting decrease,
and the lTa and lTa denotes the clipping values for current
batch of calibration sample. The procedure of the proposed
DBDC is summarized in Algorithm 1.

3.3. Pixel-aware calibration

With the coarse tuning of the density-based dual clipping
(DBDC), we get initial lower and upper bounds (la, ua)K

for the model of K layers, in which the weights and acti-
vations are not quantized. Then we further propose a pixel-
aware calibration (PaC) method to finetune these clipping
parameters for fitting the highly-dynamic feature maps of
different samples at the given bit-width setting.

With the unlabeled calibration images and full-precision
pretrained model, we can get outputs and the middle feature
maps for different layers, which could provide abundant su-
pervision information for the quantized model. Thus, we
can build a dataset for finetuning, the pair of input and label
for the i-th sample could be represented as:

(input, label)i = (xi, (F i
1, F

i
2, ..., F

i
N , O

i)), (5)

where F i
n denotes the feature map of the n-th residual block

andOi denotes the output of the full-precision model for the
i-th sample, thus we create a finetune dataset with only 100
pairs of input-label.

With the limitation of the number of calibration images,
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the finetune of this method only focus on the clipping pa-
rameters, thus keeping the number of parameters and sam-
ples similar for avoiding over-fitting. The supervision con-
tains output and feature maps, we adopt the conventional `1
loss as Equation (6) for the output:

Lo =
1

Ho ·Wo · Co
||O −Oq||1, (6)

where || · || denotes the L1 norm, the (Ho,Wo, Co) denotes
the height, width and channel number of the output shape
respectively, and O and Oq represent the outputs of full-
precision model and quantized model. For the supervision
of feature maps, inspired by [47, 51], we propose the pixel
transfer loss to calculate the distance of the intermediate
outputs of full-precision model and quantized model. We
first apply L2 norm on the feature maps:

F̂i =
Fi

||Fi||2
, F̂qi =

Fqi

||Fqi ||2
, (7)

where the Fi and Fqi represent the output of the i−th resid-
ual block of full-precision model and quantized model. And
then we calculate the mean square error of these two feature
map of all the blocks, the pixel transfer loss is as following:

Lpt =
1

B

N∑
i

1

Hi ·Wi · Ci
||F̂i − F̂qi ||2, (8)

where (Hi,Wi, Ci) denotes the height, width and channel
number of the output shape of the i-th residual block re-
spectively, and B denotes the block number. This simi-
lar technique is also used in QAT methods [25, 52], called
structured knowledge transfer, in which the feature maps are
transformed with a spatial mapping firstly. Different from
that, our proposed pixel transfer loss does not extract the
spatial attention, but directly aligns the error of each pixel
of the quantized model and the corresponding full-precision
model, which is much benefit to post-training quantization
with a few unlabeled images. Then we can get the total loss:

LPaC = Lo + λLpt, (9)

where λ is the hyper-parameter to balance these two losses,
which is set to 5 in our experiments. With the minimization
of total loss that takes full account of the reconstructed loss
and cumulative error of quantization, the quantized model
tends to imitate the full-precision model and attempt to find
the clipping parameters that are best adapted to the highly-
dynamic distributions.

To stabilize the finetune process, we further propose to
iteratively optimize the clipping parameters of weights and
activations instead of finetuning them together. As shown in
Figure 1, we firstly freeze the clipping parameters of activa-
tions, finetune those of weights with the total loss. The gra-
dient calculation of these parameters are similar as [5, 25],

and we also approximate ∂wq/∂w with 1 by using straight-
through estimator [6] as previous methods. Then we freeze
the clipping parameters of weights, finetune those of acti-
vations with the same loss function. The calculation of the
gradient is the same as that of weights. This iterative op-
timization repeats circularly until it reaches the calibration
epochs, in which the original weights are not updated.

4. Experiments

4.1. Experimental setup

Datasets and evaluation metrics. Following the existing
quantization methods [25, 40, 52] for super resolution, we
conduct the experiments on the DIV2K [37] dataset. Dif-
ferent from QAT that needs complete training dataset, we
randomly choose 100 images as the calibration set, in which
the HR images are not used. And the test datasets in our ex-
periments are Set5 [2] with 5 images, Set14 [48] with 14
images, BSD100 [33] with 100 images and Urban100 [17]
with 100 images. For the evaluation metrics, we adopt
Peak Signal to Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) [43] on the Y channel between the reconstructed
image and the corresponding HR image.

Implementation details. The SR models are EDSR [28]
and SRResNet [24] with upscaling factors of 2 and 4, the
pretrained parameters are trained based on the open-source
code. All the layers are quantized in our experiments, where
the first layer and the last layer are always quantized to 8-
bit. For DBDC, we set the epoch number to 1 with batch
size of 16. The clipping ratios are set to 4e− 5, 5e− 5 and
1e − 5 for the 4, 6 and 8-bit quantization, and the smooth-
ing parameters β is set to 0.9. The samples during clip-
ping are shuffled, and the number of equal bins are 2048.
For EDSR, we do not clip the weight and adopt the mini-
mum and maximum as the lower bound and upper bound,
and we clipping the weight with ratio of 1e-4 for SRRes-
Net, which will work better. For PaC, the total epoch is
10 with batch size of 2, the initial learning rates for clip-
ping values of weights and activations are set to 0.001 and
0.05, respectively. The optimizer we adopt is Adam [22]
and the learning rate scheduler is CosineAnnealingLR [30].
The baselines that we choose include two kinds of post-
training quantization methods, the first one is the commer-
cial quantization toolkits for existing AI accelerate devices,
including OpenVINO [11], TensorRT [39] and SNPE [18],
the unspported bit-width (4 and 6-bit) are simulated with
MQbench [27], the other is the classical post-training meth-
ods, contain MSE [4], Percentile [26] and MinMax [20],
which are widely used in image classification, the calibra-
tion epoch is set to 20 with batch size of 16. All the experi-
ments are conducted with PyTorch [34].

5860



Table 3. PSNR(dB)/SSIM comparisons between existing post-training quantization methods and ours on EDSR of scale 4 and scale 2. Bit
denotes the bit-width of weights and activations.

Method Bit Set5 (×4) Set14 (×4) BSD100 (×4) Urban100 (×4) Set5 (×2) Set14 (×2) BSD100 (×2) Urban100 (×2)

Baseline 32 32.485/0.899 28.815/0.788 27.721/0.742 26.646/0.804 38.193/0.961 33.948/0.920 32.352/0.902 32.967/0.936
Bicubic 32 28.420/0.810 26.000/0.703 25.960/0.668 23.140/0.658 33.660/0.930 30.24/0.869 29.560/0.843 26.880/0.840
OpenVINO [11] 8 32.148/0.892 28.629/0.782 27.572/0.735 26.454/0.796 32.148/0.892 28.629/0.782 27.572/0.735 26.454/0.796
TensorRT [39] 8 32.329/0.895 28.711/0.784 27.639/0.738 26.548/0.799 37.880/0.958 33.774/0.917 32.217/0.899 32.764/0.933
SNPE [18] 8 32.329/0.896 28.707/0.786 27.646/0.740 26.551/0.800 37.786/0.957 33.751/0.917 32.189/0.898 32.733/0.932
MSE [4] 8 32.191/0.897 28.524/0.785 27.539/0.740 26.341/0.799 37.781/0.960 33.349/0.919 32.114/0.901 32.237/0.934
Percentile [26] 8 32.306/0.897 28.642/0.785 27.630/0.739 26.310/0.796 38.041/0.960 33.686/0.910 32.256/0.901 32.690/0.934
MinMax [20] 8 32.350/0.896 28.730/0.785 27.654/0.740 26.560/0.800 37.983/0.959 33.832/0.918 32.260/0.900 32.719/0.934
Ours 8 32.460/0.898 28.763/0.787 27.695/0.741 26.567/0.802 38.120/0.960 33.850/0.920 32.313/0.901 32.810/0.935
OpenVINO [11] 6 30.283/0.843 27.426/0.735 26.592/0.687 25.214/0.740 34.337/0.907 31.436/0.860 30.236/0.833 30.172/0.878
TensorRT [39] 6 30.696/0.851 27.719/0.744 26.765/0.694 25.459/0.749 34.735/0.913 31.778/0.867 30.472/0.841 30.582/0.887
SNPE [18] 6 30.493/0.839 27.599/0.735 26.664/0.685 25.386/0.742 34.305/0.903 31.499/0.858 30.249/0.831 30.336/0.877
MSE [4] 6 30.648/0.879 27.593/0.771 26.881/0.725 25.256/0.773 35.746/0.950 32.163/0.909 31.231/0.909 30.302/0.917
Percentile [26] 6 31.496/0.875 28.188/0.768 27.213/0.720 25.890/0.773 36.610/0.944 32.890/0.904 31.599/0.885 31.666/0.917
MinMax [20] 6 31.073/0.863 27.986/0.760 27.011/0.713 25.643/0.713 36.037/0.936 32.544/0.897 31.286/0.878 31.208/0.908
Ours 6 32.300/0.894 28.653/0.784 27.627/0.738 26.382/0.797 37.896/0.958 33.675/0.918 32.186/0.899 32.452/0.932
OpenVINO [11] 4 20.526/0.542 18.949/0.475 18.636/0.439 18.418/0.467 24.157/0.606 22.642/0.559 22.346/0.543 22.083/0.589
TensorRT [39] 4 21.343/0.512 19.809/0.461 19.495/0.423 19.100/0.450 23.897/0.608 22.325/0.571 22.208/0.553 22.068/0.600
SNPE [18] 4 21.417/0.472 20.035/0.413 19.925/0.392 19.320/0.406 23.284/0.548 22.086/0.522 22.215/0.517 21.873/0.555
MSE [4] 4 24.600/0.737 24.365/0.668 24.343/0.635 22.183/0.649 28.813/0.855 27.898/0.827 27.706/0.813 25.714/0.826
Percentile [26] 4 26.570/0.696 24.834/0.620 24.173/0.576 22.871/0.608 29.803/0.788 27.992/0.758 27.187/0.736 26.514/0.766
MinMax [20] 4 23.132/0.635 21.208/0.569 23.266/0.508 20.220/0.554 28.005/0.744 25.960/0.703 24.684/0.682 24.717/0.725
Ours 4 31.203/0.867 27.977/0.760 27.085/0.714 25.556/0.764 36.327/0.942 32.753/0.904 31.477/0.884 30.900/0.913

4.2. Results and analysis

The results are shown in Table 3, Table 4 and Table 5.
Each model is conducted with multiple configurations, con-
tains two upscaling factors (×2 and×4) and three bit-width
(4, 6 and 8-bit). For reference, we also list the results of
bicubic interpolation.
Evaluation on EDSR. Table 3 shows the quantitative re-
sults of EDSR, we can see that the existing post-training
methods could achieve a not bad results when quantized to
8-bit, but cause great performance drop when further com-
press to lower bit-width. For the 4-bit, the best baseline of
upscaling 4 is the MSE, causes 4.255 dB, 2.828 dB, 3.378
dB and 4.463 dB PSNR drop on these four test sets, even
worse than bicubic interpolation. In contrast, with our pro-
posed method, the quantized model can achieve a much
better results. When quantized to 8-bit, we could achieve
4× compression ratio with negligible performance drop un-
der two upscaling factors, and when quantized to 4-bit, our
method only drop about 1 dB PSNR on upscaling 4, much
better than bicubic interpolation and significantly outper-
form the existing post-training quantization methods. Be-
sides, we find that the model of upscaling 2 shows much
sensitive to all the quantization setting than upscaling 4.
The conventional quantization method even drop 10 dB on
Set5 when quantizd to 4-bit. With our proposed DBDC and
PaC, the performance degradation could be reduce within 2
dB, and we could achieve 31.357 dB, only drop 0.884 dB
compared with the full-precision model, and much better

than bicubic interpolation with 29.650 dB.

Evaluation on SRResNet. As shown in Table 4, for the
upscaling of 4, the existing post-training quantization base-
lines drop within 0.2 dB when quantized to 8-bit, but the
performance degradation get much larger when quantized to
6-bit and 4-bit. Contrastively, our proposed method could
reduce the performance drop within 0.05 dB when quan-
tized to 8-bit, about 0.2 dB and 1 dB when quantized to 6-bit
and 4-bit, all the quantized models with our method could
significantly outperform bicubic interpolation and baselines
by a large margin. For the upscaling of 2, our method could
also perform better on different bit-width settings. When
we quantize the model to 4-bit, only get 1.604 dB, 1.348
dB, 0.984 dB and 2.471 dB PSNR drop on these four test
sets, outperform the best baseline method (MSE) by 5.248
dB, 3.298 dB, 2.88 dB and 3.52 dB, respectively, and also
surpass the bicubic interpolation. The quantization sensi-
tivity of model with upscaling 2 shows the similar as EDSR
model, but we still could help reduce the performance drop
compared to the corresponding full-precision model.

Comparison with QAT. To further show the effectiveness
of our proposed method, we also compare with the exist-
ing quantization aware training works [25,40], in which the
parameters are fixed after finetuning instead of the dynamic
quantization [14, 52]. Besides, we also implement QAT on
our quantized model with only 10 epochs and batch size of
16, in which our PTQ provides the initial parameters. As
shown in Table 5, compared with PAMS [25], QAT with
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Table 4. PSNR(dB)/SSIM comparisons between existing post-training quantization methods and ours on SRResNet of scale 4 and scale 2.
Bit denotes the bit-width of weights and activations.

Method Bit Set5 (×4) Set14 (×4) BSD100 (×4) Urban100 (×4) Set5 (×2) Set14 (×2) BSD100 (×2) Urban100 (×2)

Baseline 32 32.234/0.896 28.656/0.784 27.630/0.738 26.229/0.791 38.091/0.961 33.752/0.919 32.241/0.900 32.367/0.931
Bicubic 32 28.420/0.810 26.000/0.703 25.960/0.668 23.140/0.658 33.660/0.930 30.240/0.869 29.560/0.843 26.880/0.840
OpenVINO [11] 8 32.003/0.890 28.505/0.778 27.509/0.732 26.039/0.783 37.451/0.955 33.350/0.912 31.978/0.895 31.978/0.924
TensorRT [39] 8 32.013/0.891 28.507/0.779 27.508/0.733 26.069/0.785 37.506/0.956 33.428/0.913 31.984/0.895 32.026/0.925
SNPE [18] 8 32.120/0.893 28.556/0.781 27.562/0.736 26.111/0.788 37.734/0.957 33.529/0.915 32.085/0.896 32.100/0.927
MSE [4] 8 32.006/0.892 28.387/0.779 27.469/0.734 25.910/0.784 37.737/0.958 33.247/0.915 31.972/0.897 31.665/0.926
Percentile [26] 8 32.092/0.893 28.492/0.780 27.525/0.735 26.046/0.786 37.739/0.958 33.414/0.916 32.058/0.897 31.965/0.927
MinMax [20] 8 31.984/0.891 28.495/0.779 27.503/0.733 26.057/0.785 37.539/0.956 33.413/0.913 31.992/0.895 32.020/0.925
Ours 8 32.207/0.895 28.619/0.783 27.618/0.738 26.191/0.790 38.032/0.960 33.648/0.919 32.212/0.900 32.210/0.930
OpenVINO [11] 6 30.080/0.835 27.348/0.727 26.665/0.683 24.861/0.721 33.539/0.884 31.007/0.849 30.050/0.827 29.505/0.857
TensorRT [39] 6 29.990/0.828 27.277/0.724 26.553/0.681 24.782/0.719 33.634/0.885 30.923/0.846 30.011/0.827 29.270/0.854
SNPE [18] 6 29.650/0.814 27.112/0.714 26.449/0.671 24.690/0.710 33.120/0.874 30.501/0.834 29.654/0.813 28.895/0.842
MSE [4] 6 30.822/0.872 27.642/0.760 27.002/0.718 25.003/0.752 36.010/0.944 32.099/0.898 31.174/0.881 29.935/0.904
Percentile [26] 6 30.970/0.869 27.874/0.760 27.085/0.715 25.340/0.756 35.826/0.936 32.314/0.893 31.192/0.874 30.707/0.902
MinMax [20] 6 30.725/0.859 27.784/0.750 26.987/0.704 25.233/0.744 34.964/0.919 31.895/0.877 30.755/0.856 30.286/0.886
Ours 6 32.089/0.892 28.504/0.779 27.561/0.733 26.011/0.783 37.811/0.959 33.295/0.916 32.068/0.898 31.719/0.926
OpenVINO [11] 4 24.316/0.573 23.201/0.519 23.276/0.500 21.614/0.528 24.415/0.535 23.570/0.508 23.551/0.502 22.942/0.556
TensorRT [39] 4 23.729/0.461 22.648/0.402 22.808/0.389 21.089/0.399 24.769/0.535 23.753/0.502 23.733/0.491 22.753/0.526
SNPE [18] 4 23.130/0.413 22.317/0.376 22.404/0.358 20.793/0.371 24.111/0.505 23.297/0.477 23.195/0.464 22.452/0.511
MSE [4] 4 27.979/0.784 25.828/0.680 25.704/0.641 23.042/0.639 31.239/0.870 29.106/0.828 28.470/0.801 26.376/0.804
Percentile [26] 4 27.283/0.699 25.411/0.625 25.329/0.603 22.990/0.605 27.369/0.703 26.477/0.689 26.180/0.668 24.866/0.686
MinMax [20] 4 26.639/0.654 25.122/0.599 25.107/0.577 22.746/0.573 25.824/0.603 25.302/0.602 25.191/0.584 23.914/0.606
Ours 4 31.146/0.878 27.889/0.763 27.152/0.718 25.133/0.753 36.487/0.951 32.404/0.904 31.357/0.885 29.896/0.904
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Figure 3. Visual results of different methods on 4-bit EDSR models with upscaling of 4. The metrics below are PSNR(dB) and SSIM.

our method could achieve better results when keeping the
same setting of partial quantization(only residual blocks),
get 0.19 dB drop for upscaling 4 and 0.201 dB drop for up-
scaling 2 on Set5, while PAMS gets 0.514 dB and 0.320 dB
drop. When quantizing all the layers, QAT with the pro-
posed method also could get much better results compared
with FQSR [40], get 0.844 dB drop for upscaling 4 and
0.632 dB drop for upscaling 2 on Set5, while FQSR gets
1.08 dB and 0.847 dB drop. This experiment proves that
our proposed method could provide a better initialization
to help the faster convergence of QAT process and achieve
excellent performance.

Visualization. Figure 3 shows the visual results of differ-

ent quantization methods. For reference, we also show the
bicubic interpolation image. Compared with existing PTQ
methods and bicubic scaling, the reconstructed HR image
of our proposed method could achieve outstanding perfor-
mances, provide more texture and details.

4.3. Ablation studies

To demonstrate the effectiveness of density-based dual
clipping (DBDC) and pixel-aware calibration (PaC), we
conduct the experiments with a vanilla post-training quanti-
zation based MinMax method, and then add these two tech-
niques gradually. The results are shown in Table 6, we can
see that when using the conventional post-training quan-
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Table 5. PSNR(dB) and SSIM comparisons between existing quantization-aware training methods and the proposed method on EDSR of
scale 4 and scale 2 with 4-bit quantization. Bit denotes the bit-width of weights and activations, FQ denotes full-quantization and QAT
denotes quantization aware training. QAT with the initialization of our method only run 10 epochs in our experiments.

Method Scale Bit FQ QAT Set5 Set14 BSD100 Urban100

PAMS [25]
×4 32 32.095/0.894 28.576/0.781 27.562/0.736 26.035/0.785

4 5 3 31.591/0.885 28.199/0.773 27.322/0.728 25.321/0.762

×2 32 37.985/0.960 33.568/0.918 32.155/0.899 31.977/0.927
4 5 3 37.665/0.959 33.196/0.915 31.936/0.897 31.100/0.919

FQSR [40]
×4 32 32.007/0.892 28.486/0.778 27.528/0.731 25.934/0.781

4 3 3 30.928/0.870 27.816/0.761 27.073/0.715 24.927/0.744

×2 32 37.885/0.958 33.425/0.915 32.106/0.897 31.777/0.924
4 3 3 37.038/0.951 32.835/0.908 31.668/0.889 30.646/0.911

Ours

×4

32 32.485/0.899 28.815/0.788 27.721/0.742 26.646/0.804
4 5 5 32.105/0.891 28.563/0.781 27.553/0.714 26.051/0.787
4 5 3 32.295/0.895 28.576/0.784 27.558/0.738 26.232/0.794
4 3 5 31.203/0.867 27.977/0.760 27.085/0.714 25.556/0.764
4 3 3 31.641/0.881 28.217/0.772 27.332/0.727 25.748/0.777

×2

32 38.193/0.961 33.948/0.920 32.352/0.902 32.967/0.936
4 5 5 37.837/0.958 33.662/0.917 32.146/0.898 32.335/0.930
4 5 3 37.992/0.960 33.838/0.919 32.205/0.900 32.545/0.933
4 3 5 36.327/0.942 32.753/0.904 31.477/0.884 30.900/0.913
4 3 3 37.561/0.955 33.442/0.915 31.992/0.896 31.725/0.924

Table 6. The ablation studies of the proposed method on EDSR of
scale 4, the results represent the PSNR(dB) and SSIM.

DBDC PaC Set5 Set14 BSD100 Urban100
26.570/0.696 24.834/0.620 24.173/0.576 22.871/0.608

3 30.406/0.838 27.510/0.735 26.633/0.687 25.312/0.736
3 28.000/0.775 26.002/0.681 25.406/0.630 24.116/0.669

3 3 31.203/0.867 27.977/0.760 27.085/0.714 25.556/0.764

tization method, it causes much performance degradation
compared with corresponding full-precision model, 5.664
dB, 3.822 dB, 3.457 dB and 3.358 dB drop on these four
test sets. When only adding the density-based dual clip-
ping to the baseline, it could help improve 3.836 dB, 2,676
dB, 2.46 dB and 2.441 dB, respectively, which shows that
DBDC could cut out the outliers and narrow the distribution
to a valid range, help reduce the quantization error. When
only adding the pixel-aware calibration to baseline, it could
also help improve the performance, but still worse than the
baseline only with DBDC for the reason that the calibration
dataset is too small to provide adequate information for the
quantized models to get the accurate clipping values with
PaC. Combining the proposed two techniques (DBDC first
and then PaC) boosts the PSNR by 4.663 dB, 3.143 dB,
2.912 dB and 2.658 dB compared with the full-precision
model, which proves that firstly coarsely clipping outliers
and then finetune the clipping values to the optimal param-
eters could truly improve the performance of post-training
quantization for image super resolution.

5. Conclusion

This paper studies the post-training quantization for im-
age super resolution with a few unlabeled calibration im-
ages, which could help the fast deployment on mobile de-
vices. Our analysis indicates that the long-tailed, asym-
metric distributions and highly dynamic ranges of activa-
tions greatly degrade the performance of quantized mod-
els. To alleviate that, we propose a coarse-to-fine post-
training quantization framework for super resolution. With
the density-based dual clipping (DBDC), we could get the
initial lower and upper bounds of asymmetric activations
for SR models and cut off outliers, and then fine-grained
optimize them with a novel pixel aware calibration (PaC)
method with the supervision of the full-precision model,
accommodate the highly dynamic range of different sam-
ples. Extensive experiments demonstrate that the proposed
method could significantly outperform existing PTQ algo-
rithms on various models and datasets, and we also show
that our method could provide a better initialization for
quantization-aware training methods.

Besides, other pixel2pixel tasks are similar to the SR task
for that they all remove the BN layers to ensure range flexi-
bility and reduce artifacts. We will further conduct convinc-
ing experiments and explore the application of this method
to other pixel2pixel tasks in the future work.
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