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Figure 1. Given a single real-world image as input, our framework enables versatile text-guided translations of the original content. Our
results exhibit high fidelity to the input structure and scene layout, while significantly changing the perceived semantic meaning of objects
and their appearance. Our method does not require any training, but rather harnesses the power of a pre-trained text-to-image diffusion
model through its internal representation. We present new insights about deep features encoded in such models, and an effective framework
to control the generation process through simple modification of these features.

Abstract
Large-scale text-to-image generative models have been

a revolutionary breakthrough in the evolution of genera-
tive AI, synthesizing diverse images with highly complex
visual concepts. However, a pivotal challenge in leverag-
ing such models for real-world content creation is provid-
ing users with control over the generated content. In this
paper, we present a new framework that takes text-to- im-
age synthesis to the realm of image-to-image translation –
given a guidance image and a target text prompt as input,
our method harnesses the power of a pre-trained text-to-
image diffusion model to generate a new image that com-
plies with the target text, while preserving the semantic lay-
out of the guidance image. Specifically, we observe and
empirically demonstrate that fine-grained control over the
generated structure can be achieved by manipulating spa-
tial features and their self-attention inside the model. This
results in a simple and effective approach, where features
extracted from the guidance image are directly injected into
the generation process of the translated image, requiring no
training or fine-tuning. We demonstrate high-quality results
on versatile text-guided image translation tasks, including
translating sketches, rough drawings and animations into
realistic images, changing the class and appearance of ob-
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jects in a given image, and modifying global qualities such
as lighting and color.

1. Introduction
With the rise of text-to-image foundation models –

billion-parameter models trained on a massive amount of
text-image data, it seems that we can translate our imagina-
tion into high-quality images through text [13, 35, 37, 41].
While such foundation models unlock a new world of cre-
ative processes in content creation, their power and expres-
sivity come at the expense of user controllability, which is
largely restricted to guiding the generation solely through
an input text. In this paper, we focus on attaining con-
trol over the generated structure and semantic layout of the
scene – an imperative component in various real-world con-
tent creation tasks, ranging from visual branding and mar-
keting to digital art. That is, our goal is to take text-to-image
generation to the realm of text-guided Image-to-Image (I2I)
translation, where an input image guides the layout (e.g., the
structure of the horse in Fig. 1), and the text guides the per-
ceived semantics and appearance of the scene (e.g., “robot
horse” in Fig. 1).

A possible approach for achieving control of the gen-
erated layout is to design text-to-image foundation models
that explicitly incorporate additional guiding signals, such
as user-provided masks [13, 29, 35]. For example, recently
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Make-A-Scene [13] trained a text-to-image model that is
also conditioned on a label segmentation mask, defining the
layout and the categories of objects in the scene. However,
such an approach requires an extensive compute as well as
large-scale text-guidance-image training tuples, and can be
applied at test-time to these specific types of inputs. In this
paper, we are interested in a unified framework that can be
applied to versatile I2I translation tasks, where the struc-
ture guidance signal ranges from artistic drawings to photo-
realistic images (see Fig. 1). Our method does not require
any training or fine-tuning, but rather leverages a pre-trained
and fixed text-to-image diffusion model [37].

We pose the fundamental question of how structure in-
formation is internally encoded in such a model. We dive
into the intermediate spatial features that are formed during
the generation process, empirically analyze them, and de-
vise a new framework that enables fine-grained control over
the generated structure by applying simple manipulations to
spatial features inside the model. Specifically, spatial fea-
tures and their self-attentions are extracted from the guid-
ance image, and are directly injected into the text-guided
generation process of the target image. We demonstrate that
our approach is not only applicable in cases where the guid-
ance image is generated from text, but also for real-world
images that are inverted into the model.

To summarize, we make the following key contributions:
(i) We provide new empirical insights about internal spatial
features formed during the diffusion process.
(ii) We introduce an effective framework that leverages the
power of pre-trained and fixed guided diffusion, allowing
to perform high-quality text-guided I2I translation without
any training or fine-tuning.
(iii) We show, both quantitatively and qualitatively that
our method outperforms existing state-of-the-art baselines,
achieving significantly better balance between preserving
the guidance layout and deviating from its appearance.

2. Related Work

Image-to-image translation. Image-to-Image (I2I) trans-
lation is aimed at estimating a mapping of an image from
a source domain to a target domain, while preserving the
domain-invariant characteristics of the input image, e.g.,
objects’ structure or scene layout. From classical to modern
data-driven methods, numerous visual problems have been
formulated and tackled as an I2I task (e.g., [8,11,18,33,43]).
Seminal deep-learning-based methods have proposed vari-
ous GAN-based frameworks to encourage the output image
to comply with the distribution of the target domain [23,
30, 31, 51]. Nevertheless, these methods require datasets
of example images from both source and target domains,
and often require training from scratch for each translation
task (e.g., horse-to-zebra, day-to-night, summer-to-winter).
Other works utilize pre-trained GANs by performing the
translation in its latent space [1, 36, 46]. Several meth-

ods have also considered the task of zero-shot I2I by train-
ing a generator on a single source-target image pair exam-
ple [47, 49]. With the advent of unconditional image diffu-
sion models, several methods have been proposed to adopt
or extend them for various I2I tasks [40, 50]. In this paper,
we consider the task of text-guided image-to-image trans-
lation where the target domain is not specified through a
dataset of images but rather via a target text prompt. Our
method is zero-shot, does not require training and is appli-
cable to versatile I2I tasks.

Text-guided image manipulation. With the tremendous
progress in language-vision models, a surge of methods
have been proposed to perform various types of text-driven
image edits. Various methods have proposed to combine
CLIP [34], which provides a rich and powerful joint image-
text embedding space, with a pre-trained unconditional im-
age generator, e.g., a GAN [7, 15, 27, 32] or a diffusion
model [2, 3, 22, 25]. For example, DiffusionCLIP [22] uses
CLIP to fine-tune a diffusion model to perform text guided
manipulations. Concurrent to our work, [25] uses CLIP and
semantic losses of [47] to guide a diffusion process to per-
form I2I translation. Aiming to edit the appearance of ob-
jects in real-world images, Text2LIVE [5] trains a generator
on a single image-text pair, without additional training data;

Recently, text-to-image generative models [13,29,35,37,
41] have demonstrated unprecedented capabilities in gener-
ating high-quality and diverse images from text, capturing
complex visual concepts (e.g., object interactions, geome-
try, or composition). Nevertheless, such models offer little
control over the generated content. This creates a great in-
terest in developing methods to adopt such unconstrained
text-to-image models for controlled content creation.

For example, SDEdit [28] edits user-provided images
using free text prompts by noising the guidance image to
an intermediate diffusion step, and then denoising it condi-
tioned on the input prompt. This simple approach leads to
impressive results, yet exhibit a tradeoff between preserv-
ing the guidance layout and fulfilling the target text. Several
concurrent methods have taken first steps in controlling dif-
ferent properties of the generated content [14,21,39,48,50].
DreamBooth [39] and Textual Inversion [14] personalize a
pre-trained text-to-image diffusion model given a few user-
provided images. Our method also leverages a pre-trained
text-to-image diffusion model to achieve our goal, yet does
not involve any training or fine-tuning. Instead, we devise a
simple framework that intervenes in the generation process
by directly manipulating the spatial features.

Our approach of operating in the diffusion feature space
is related to Prompt-to-Prompt (P2P) [17], which recently
observed that by manipulating the cross-attention layers, it
is possible to control the relation between the spatial lay-
out of the image to each word in the text. Intuitively,
since the cross attention is formed by the association of
spatial features to words, it allows to capture rough re-
gions at the object level, yet localized spatial information
that is not expressed in the source text prompt (e.g., ob-
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Figure 2. Plug-and-play Diffusion Features. (a) Our framework takes as input a guidance image and a text prompt describing the desired
translation; the guidance image is inverted to initial noise xG

T , which is then progressively denoised using DDIM sampling. During this
process, we extract (f l

t, q
l
t,k

l
t) – spatial features from the decoder layers and their self-attention, as illustrated in (b). To generate our

text-guided translated image, we fix x∗
T = xG

T and inject the guidance features (f l
t, q

l
t,k

l
t) at certain layers, as discussed in Sec. 4.

ject parts) is not guaranteed to be preserved by P2P. Instead,
our method focuses only on spatial features and their self-
affinities – we show that such features exhibit high granular-
ity of spatial information, allowing us to control the gener-
ated structure, while not restricting the interaction with the
text. Thus, our method offers several key advantages: (i) en-
ables fine-grained control over the generated shape and lay-
out, (ii) allows to use arbitrary text-prompts to express the
target translation; in contrast to P2P that requires word-to-
word alignment between a source and target text prompts,
(iii) demonstrates superior performance of real-world guid-
ance images.

3. Preliminary
Diffusion models [12, 19, 37, 44] are probabilistic gen-

erative models in which an image is generated by progres-
sively removing noise from an initial Gaussian noise image,
xT ∼N (0, I). These models are founded on two comple-
mentary random processes. the forward process, in which
Gaussian noise is progressively added to a clean image, x0:

xt =
√
αt · x0 +

√
1− αt · z (1)

where z∼N (0, I) and {αt} are the noise schedule.
The backward process is aimed at gradually denoising

xT , where at each step a cleaner image is obtained. This
process is achieved by a neural network ϵθ(xt, t) that pre-
dicts the added noise z. Once trained, each step of the
backward process consists of applying ϵθ to the current xt,
and adding a Gaussian noise perturbation to obtain a cleaner
xt−1.

Diffusion models are rapidly evolving and have been ex-
tended and trained to progressively generate images condi-
tioned on a guiding signal ϵθ(xt,y, t), e.g., conditioning
the generation on another image [40], class label [20], or
text [22, 29, 35, 37].

In this work, we leverage a pre-trained text-conditioned
Latent Diffusion Model (LDM), a.k.a Stable Diffusion [37],
in which the diffusion process is applied in the latent space
of a pre-trained image autoencoder. The model is based on a
U-Net architecture [38] conditioned on the guiding prompt
P . Layers of the U-Net comprise a residual block, a self-
attention block, and a cross-attention block, as illustrated in
Fig. 2 (b). The residual block convolve image features ϕl−1

t

from the previous layer l−1 to produce intermediate features
f l
t. In the self-attention block, features are projected into

queries, ql
t, keys, kl

t, and values, vl
t, and the output of the

block is given by:

f̂
l

t = Al
tv

l
t where Al

t = Softmax
(
ql
tk

l
t

T
)

(2)

This operation allows for long-range interactions between
image features. Finally, cross-attention is computed be-
tween the spatial image features and the token embedding
of the text prompt P .

4. Method
Given an input guidance image IG and a target prompt

P , our goal is to generate a new image I∗ that complies
with P and preserves the structure and semantic layout of
IG. We consider StableDiffusion [37], a state-of-the-art
pre-trained and fixed text-to-image LDM model, denoted by
ϵθ(xt, P, t). This model is based on a U-Net architecture,
as illustrated in Fig. 2 and discussed in Sec. 3.

Our key finding is that fine-grained control over the gen-
erated structure can be achieved by manipulating spatial
features inside the model during the generation process.
Specifically, we observe and empirically demonstrate that:
(i) spatial features extracted from intermediate decoder lay-
ers encode localized semantic information and are less af-
fected by appearance information, and (ii) the self-attention,
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Figure 3. Visualising diffusion features. We used a set of 20 humanoid images (real and generated), and extracted spatial features from
different decoder layers, at roughly 50% of the sampling process (t = 540). For each block, we applied PCA on the extracted features
across all images and visualized the top three leading components. Intermediate features (layer 4) reveal semantic regions (e.g., legs or
torso) that are shared across all images, under large variations in object appearance and image domain. Deeper features capture more
high-frequency information, which eventually forms the noise predicted by the model. See SM for additional visualizations.
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Figure 4. Diffusion features over generation time-steps. Visualiz-
ing PCA of spatial features of layer l=4 for the humanoid images
(Fig. 3). Semantic parts are shared (have similar colors) across
images at each time step.

representing the affinities between the spatial features, al-
lows to retain fine layout and shape details.

Based on our findings, we devise a simple framework
that extracts features from the generation process of the
guidance image IG and directly injects them along with P
into the generation process of I∗, requiring no training or
fine-tuning (Fig. 2). Our approach is applicable for both
text-generated and real-world guidance images, for which
we apply DDIM inversion [45] to get the initial xG

T .
Spatial features. In text-to-image generation, one can use
descriptive text prompts to specify various scene and object
proprieties, including those related to their shape, pose and
scene layout, e.g., “a photo of a horse galloping in the for-
est”. However, the exact scene layout, the shape of the ob-
ject and its fine-grained pose often significantly vary across

generated images from the same prompt under different ini-
tial noise xT . This suggests that the diffusion process it-
self and the resulting spatial features have a role in form-
ing such fine-grained spatial information. This hypothesis
is strengthened by [6], which demonstrated that semantic
part segments can be estimated from spatial features in an
unconditional diffusion model.

We opt to gain a better understanding of how such se-
mantic spatial information is internally encoded in ϵθ. To
this end, we perform a simple PCA analysis which allows
us to reason about the visual properties dominating the high-
dimensional features in ϵθ. Specifically, we generated a di-
verse set of images containing various humanoids in differ-
ent styles, including both real and text-generated images;
sample images are shown in Fig. 3. For each image, we ex-
tract features f l

t from each layer of the decoder at each time
step t, as illustrated in Fig. 2(b). We then apply PCA on f l

t

across all images.

Fig. 3 shows the first three principal components for a
representative subset of the images across different layers
and a single time step. As seen, the coarsest and shallowest
layer is mostly dominated by foreground-background sep-
aration, depicting only a crude blob in the location of the
foreground object. Interestingly, we can observe that the
intermediate features (layer 4) encode localized semantic
information shared across objects from different domains
and under significant appearance variations – similar object
parts (e.g., legs, torso, head) are depicted in similar colors
across all images (layer=4 row in Fig. 3). These proper-
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Layers 4-8 Layers 4-11Layer 4Source image

(a) Feature injection, no attention injection“a photo of a silver 
robot in the snow”

(b)  Features Layer 4 + Attention injection 

(c) Attention injection, no feature injection 

Figure 5. Ablating features and attention injection. (a) Features
extracted from the guidance image (left) are injected into the gen-
eration process of the translated image (guided by a given text
prompt). While features at intermediate layers (Layer 4) exhibit
localized semantic information (Fig. 3), solely injecting these fea-
tures is insufficient for retaining the guidance structure. Incorpo-
rating deeper (and higher resolution) features leads to better struc-
ture preservation, but results in appearance leakage from the guid-
ance image to the generated one (Layers 4-11). (b) Injecting fea-
tures only at layer 4 and self-attention maps at higher-resolution
layers alleviates this issue. (c) Injecting only self-attention maps
restricts the affinities between the features, yet there is no semantic
association between the guidance features and the generated ones,
resulting in misaligned structure. The result of our final configu-
ration is highlighted in orange.

layer=4 layer=8 layer=11Input image

Figure 6. Self-attention visualization. Showing 3 leading compo-
nents of the self-attention matrix Al

t computed for the input image
for three different layers. The principal components are aligned
with the layout of the image: similar regions share similar colors

ties are consistent across the generation process as shown
in Fig. 4. As we go deeper into the network, the features
gradually capture more high-frequency low-level informa-
tion which eventually forms the noise predicted by the net-
work. Extended feature visualizations can be found in the
Supplementary Materials (SM) on our website.
Feature injection. Based on these observations, we now
turn to the translation task. Let xG

T be the initial noise, ob-
tained by inverting IG using DDIM [45].

Given the target prompt P , the generation of the trans-
lated image I∗ is carried with the same initial noise, i.e.,
x∗T = xG

T ; we refer the reader to SM for an analysis and
justification of this design choice.

At each step t of the backward process, we extract the
guidance features {f l

t} from the denoising step: zG
t−1 =

ϵθ(x
G
t ,∅, t).1 These features are then injected into the gen-

eration of I∗, i.e., in the denoising step of x∗t , we override
the resulting features {f∗lt } with {f l

t}. This operation is
expressed by:

z∗t−1 = ϵ̂θ(x
∗
t , P, t ; {f

l
t}) (3)

where we use ϵ̂θ(· ; {f l
t}) to denote the modified denoising

step with the injected features {f l
t}. In case of no injection,

ϵ̂θ(xt, P, t ; ∅) = ϵθ(xt, P, t).
Fig. 5(a) shows the effect of injecting spatial features f l

t

at increasing layers l. As seen, injecting features only at
layer l=4 is insufficient for preserving the structure of the
guidance image. As we inject features in deeper layers, the
structure is better preserved, yet appearance information is
leaked into the generated image (e.g., shades of the red t-
shirt and blue jeans are apparent in Layer 4-11). To achieve
a better balance between preserving the structure of IG and
deviating from its appearance, we do not modify spatial fea-
tures at deep layers, but rather leverage the self-attention
layers as discussed below.
Self-attention. Self-attention modules compute the affini-
ties Al

t between the spatial features after linearly project-
ing them into queries and keys. These affinities have a
tight connection to the established concept of self-similarly,
which has been used to design structure descriptors by both
classical and modern works [4,24,42,47]. This motivates us
to consider the attention matrices Al

t to achieve fine-grained
control over the generated content.

Fig. 6, shows the leading principal components of a ma-
trix Al

t for a given image. As seen, in early layers, the at-
tention is aligned with the semantic layout of the image,
grouping regions according to semantic parts. Gradually,
higher-frequency information is captured.

Practically, injecting the self-attention matrix is done by
replacing the matrix Al

t in Eq. 2. Intuitively, this operation
pulls features close together, according to the affinities en-
coded in Al

t. We denote this additional operation by modi-
fying Eq. (3) as follows:

z∗t−1 = ϵ̂θ(xt, P, t;f
4
t , {A

l
t}) (4)

Fig. 5(b) shows the effect of Eq. (4) for increasing injection
layers; the maximal injection layer of Al

t controls the fi-
delity to the original structure, while mitigating the issue of
appearance leakage. Fig. 5(c) demonstrates the pivotal role
of the features f4

t . As seen, with only self-attention, i.e.,
z∗t−1 = ϵ̂θ(xt, P, t; {Al

t}), there is no semantic associa-
tion between the original and translated contents, resulting
in large structural deviations.

1In the case of a generated guidance image, zG
t−1 = ϵθ(x

G
t , PG, t),

where PG is the text used to generate IG.
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Algorithm 1 Plug-and-Play Diffusion Features
Inputs:
IG ▷ real guidance image
P ▷ target text prompt
τf , τA ▷ injection thresholds

xG
T ← DDIM-inv(IG)

x∗
T ← xG

T ▷ Starting from same seed
for t← T . . . 1 do

zG
t−1, f

4
t ,

{
Al

t

}
← ϵθ

(
xG

t ,∅, t
)

xG
t−1 ← DDIM-samp

(
xG

t , zG
t−1

)
if t > τf then f∗4

t ← f4
t else f∗4

t ← ∅
if t > τA then A∗l

t ← Al
t else A∗l

t ← ∅
z∗
t−1 ← ϵ̂θ

(
x∗

t , P, t ; f∗4
t ,

{
A∗l

t

})
x∗

t−1 ← DDIM-samp
(
x∗

t , z
∗
t−1

)
end for
Output: I∗ ← x∗

0

Our plug-and-play diffusion features framework is sum-
marized in Alg. 1, and is controlled by two parameters:
(i) τf is the sampling step until which f4

t are injected.
(ii) τA is the sampling step until which Al

t are injected. In
all our results, self-attention is injected in all decoder layers.
The exact parameters settings are discussed in Sec. 5.

Negative-prompting. To increase the deviation from guid-
ance image content, we use negative prompting [26] with a
prompt Pn that describes the guidance image. Additionally,
we use a parameter α∈ [0, 1] to balance between neutral and
negative prompting. That is, at each sampling step, our fi-
nal noise prediction becomes ϵ = wϵθ(xt, P, t)+(1−w)ϵ̃,
where ϵ̃ is given by

ϵ̃ = αϵθ(xt,∅, t) + (1− α)ϵθ(xt, Pn, t) (5)

where w is the classifier-free guidance scale. We find
negative-prompting to be beneficial for translating texture-
less “primitives” images (e.g., silhouettes). For natural-
looking guidance images, it plays a minor role. See SM
for more details.

5. Results
We thoroughly evaluate our method both quantitatively

and qualitatively on diverse guidance image domains, both
real and generated ones, as discussed below. Please see SM
for full implementation details of our method.
Datasets. Our method supports versatile text-guided
image-to-image translation tasks and can be applied to arbi-
trary image domains. Since there is no existing benchmark
for such diverse settings, we created two new datasets: (i)
Wild-TI2I, comprises of 148 diverse text-image pairs, 53%
of which consists of real guidance images that we gathered
from the Web; (ii) ImageNet-R-TI2I, a benchmark we de-
rived from the ImageNet-R dataset [16], which comprises
of various renditions (e.g., paintings, embroidery, etc.) of
ImageNet object classes. To adopt this dataset for our pur-
pose, we manually selected 3 high-quality images from 10
different classes. To generate our image-text examples, we
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Figure 7. Sample results of our method on image-text pairs from
Wild-TI2I and ImageNet-R-TI2I benchmarks.

created a list of text templates by defining for each source
class target categories and styles, and automatically sam-
pled their combinations. This results in total of 150 image-
text pairs. See SM for full details.

Figs. 1 and 7 show a sample of our results on both real
and generated guidance images. Our results show both ad-
herence to the guidance shape and compliance with differ-
ent target prompts. Our method successfully handles both
naturally looking as well as artistic and textureless guidance
images.

5.1. Comparison to Prior/Concurrent Work

We focus our comparisons on state-of-the-art baselines
that can be applied to diverse text-guided I2I tasks, in-
cluding: (i) SDEdit [28] under three different noising lev-
els, (ii) P2P [17], (iii) DiffuseIT [25], and (iv) VQGAN-
CLIP [10]. We further provide qualitative comparisons to
Text2LIVE [5], FlexIT [9] and DiffusionCLIP [22].

We note that P2P requires a source prompt that is word-
aligned to the target prompt. Thus, we include a qualita-
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Figure 8. Comparisons. Sample results are shown for ImageNet-R-TI2I and Wild-TI2I benchmarks, including real and generated guidance
images. Left to right: guidance image, text prompt, our result, P2P [17], DiffuseIT [25], SDedit [28] w/ 3 noising levels, and VQ+CLIP [10].

Ours (full)    

Ours 
(w/o features)

SDEdit (n=0.85) Ours 
(w/o self-att.)

SDEdit (n=0.75)

DiffuseIT

VQGAN
-CLIP

Generated images
Real images

VQGAN
-CLIP

SDEdit (n=0.85)

SDEdit (n=0.75)

P2P

Ours    

SDEdit (n=0.6)

DiffuseIT

SDEdit (n=0.6)

(b) ImageNet-R-TI2I(a) Wild-TI2I

Text-Image Similarity (CLIP cosine similarity) Text-Image Similarity (CLIP cosine similarity)

St
ru

ct
ur

e 
D

is
ta

nc
e 

(D
IN

O
 se

lf-
si

m
ila

ri
ty

)

St
ru

ct
ur

e 
D

is
ta

nc
e 

(D
IN

O
 se

lf-
si

m
ila

ri
ty

)

Text-Image Similarity (CLIP cosine similarity)

St
ru

ct
ur

e 
D

is
ta

nc
e 

(D
IN

O
 se

lf-
si

m
ila

ri
ty

) VQGAN
-CLIPSDEdit (n=0.85)

SDEdit (n=0.75)
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BetterBetter Better

Figure 9. Quantitative evaluation. We measure CLIP cosine similarity (higher is better) and DINO-ViT self-similarity distance (lower is
better) to quantify the prompt fidelity and structure preservation, respectively. The metrics are reported on 3 benchmarks: (a) Wild-TI2I,
which includes ablations of our method, (b) ImageNet-R-TI2I, and (c) Generated-ImageNet-R-TI2I. Note that P2P can be applied only for
(b) and (c) due to the prompts restriction. All baselines struggle to achieve both low structure distance and a high CLIP score. Our method
exhibits a better balance between these two ends across all benchmarks.

tive and quantitative comparison to P2P on our ImageNet-R-
TI2I benchmark, for which we created aligned source-target
prompts. We further include qualitative comparison to a
subset of Wild-TI2I for which the source and target prompts
are aligned. For evaluating P2P on real guidance images,
we applied DDIM inversion with the source text as in [17].

Fig. 8 shows sample results of our method compared
with the baselines. As seen, our method successfully trans-

lates diverse inputs, both for real and generated guidance
images. In all cases, our results exhibit both high preserva-
tion of the layout and high fidelity to the target prompt. In
contrast, SDEdit suffers from an inherent tradeoff between
the two – with low noise level, the structure is well pre-
served in the expanse of hardly changing the appearance;
larger deviation in appearances is achieved with higher
noise level, yet the structure is damaged. VQGAN+CLIP
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Figure 10. Comparison to P2P on generated-ImageNet-R-TI2I
benchmark. P2P has noticeable deviation from the structure, es-
pecially in multiple word swaps (last row). See more examples in
SM.

exhibits the same behavior, with overall lower image qual-
ity. Similarly, DiffuseIT shows high fidelity to the structure,
with little changes to the appearance.

We find that P2P struggles to deviate from the guidance
appearance to satisfy the edit when applied on real images
(Fig. 8 rows 3-6). We speculate that since DDIM inversion
is applied with a source text, it requires using low guidance
scale at sampling, which limits the editability. To factor
out the effect of DDIM inversion, we expand our compari-
son to P2P on generated guidance images. Specifically, we
created a generated-ImageNet-R-TI2I benchmark by using
prompts expressing the classes and renditions from [16]
(see SM for further details on the benchmark creation). As
seen in Fig. 10 and in Fig. 8 (first 2 rows), both our method
and P2P comply with the target text. However, P2P often
largely deviates from the structure, especially when apply-
ing multiple word swaps (second row in Fig. 10), while ours
demonstrates fine-grained structure preservation across all
examples (more examples in SM).

We numerically evaluate these results using two comple-
mentary metrics: text-image CLIP similarity to quantify the
fidelity of the generated images to the text prompt (higher
is better), and DINO-ViT self-similarity distance [47], to
quantify structure preservation (lower is better). As seen
in Fig. 9, our method outperforms the baselines by achiev-
ing both high structure preservation (in par with SDEdit w/
low noising level), and high prompt compliance (in par with
SDEdit w/ high noising level). Note that VQGAN-CLIP
and DiffuseIT directly use the evaluation metrics in their ob-
jective (CLIP loss in [10] and DINO self-similarity in [25]),
which explains their respective scores in these metrics.

Additional baselines. Fig. 11 shows qualitative compar-
isons with: (i) Text2LIVE [5], (ii) DiffusionCLIP [22], and
(iii) FlexIT [9]. These methods either fail to deviate from
the guidance image or result in noticeable visual artifacts.

5.2. Ablation
We ablate our key design choices by evaluating our per-

formance for the following cases: (i) w/o spatial features in-
jection (w/o features), (ii) w/o self-attention injection. The
metrics are reported in Fig. 9(a) and a representative ex-
ample is shown in Fig. 5. The results demonstrate that both

Text2LiveGuidance DiffusionCLIP FlexIT Ours

“a photo 
of  

Venom”

“a photo 
of an 

ancient 
Asian 
tower”

Figure 11. Qualitative comparisons to additional baselines:
Text2LIVE [5], DiffusionCLIP [22], FlexIT [9]. These methods
fail to deviate from the structure for conveying the edit, or create
undesired artifacts. More comparisons are included in the SM.

Guidance Image Ours Guidance Image Ours

Figure 12. Limitations. Our method fails when there is no seman-
tic association between the guidance content and the target text
(e.g. arbitrarily colored segmentation masks)

features and self-attention are critical for structure preserva-
tion – the features provide a semantic association between
the original and translated content, while self-attention is
essential for maintaining this association and capturing finer
structural information. See SM for further ablations.

6. Discussion and Conclusion
We presented a new framework for diverse text-guided

image-to-image translation, founded on new insights about
the internal representation of a pre-trained text-to-image
diffusion model. Our method, based on simple manipula-
tion of features, outperforms existing baselines, achieving
a significantly better balance between preserving the guid-
ance layout and deviating from its appearance. As for lim-
itations, our method relies on the semantic association be-
tween the original and translated content in the diffusion
feature space. Thus, it does not work well on arbitrarily
colored segmentation masks (Fig. 12). In addition, we ob-
served that for textureless “minimal” images, DDIM may
occasionally result in a latent that encodes dominant low-
frequency appearance information, which would result in
appearance information leakage into our results. We believe
that our work demonstrates the yet unrealized potential of
the rich and powerful feature space spanned by pre-trained
text-to-image diffusion models. We hope it will motivate
future research in this direction.
Acknowledgments: We thank Omer Bar-Tal for his in-
sights. This project received funding from the Israeli Sci-
ence Foundation (grant 2303/20), the Carolito Stiftung, and
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