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Abstract

Unsupervised Domain Adaptation (UDA) is an effective

approach to tackle the issue of domain shift. Specifically,

UDA methods try to align the source and target representa-

tions to improve generalization on the target domain. Fur-

ther, UDA methods work under the assumption that the

source data is accessible during the adaptation process.

However, in real-world scenarios, the labelled source data

is often restricted due to privacy regulations, data transmis-

sion constraints, or proprietary data concerns. The Source-

Free Domain Adaptation (SFDA) setting aims to alleviate

these concerns by adapting a source-trained model for the

target domain without requiring access to the source data.

In this paper, we explore the SFDA setting for the task of

adaptive object detection. To this end, we propose a novel

training strategy for adapting a source-trained object de-

tector to the target domain without source data. More pre-

cisely, we design a novel contrastive loss to enhance the

target representations by exploiting the objects relations for

a given target domain input. These object instance rela-

tions are modelled using an Instance Relation Graph (IRG)

network, which are then used to guide the contrastive repre-

sentation learning. In addition, we utilize a student-teacher

to effectively distill knowledge from source-trained model

to target domain. Extensive experiments on multiple ob-

ject detection benchmark datasets show that the proposed

approach is able to efficiently adapt source-trained object

detectors to the target domain, outperforming state-of-the-

art domain adaptive detection methods. Code and models

are provided in https://viudomain.github.io/irg-sfda-web/.

1. Introduction

In recent years, object detection has seen tremendous

advancements due to the rise of deep networks [12, 42,

44, 45, 53, 79]. The major contributor to this success is

the availability of large-scale annotated detection datasets

[10, 13, 15, 43, 73], as it enables the supervised training

of deep object detector models. However, these models
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Figure 1. Left: Supervised training of detection model on the

source domain. Right: Source-Free Domain Adaptation where

a source-trained model is adapted to the target domain in the ab-

sence of source data with pseudo-label self-training and proposed

Instance Relation Graph (IRG) network guided contrastive loss.

often have poor generalization when deployed in visual

domains not encountered during training. In such cases,

most works in the literature follow the Unsupervised Do-

main Adaptation (UDA) setting to improve generalization

[7, 14, 23, 24, 57, 62]. Specifically, UDA methods aim to

minimize the domain discrepancy by aligning the feature

distribution of the detector model between source and tar-

get domain [9, 19, 28, 56, 59]. To perform feature align-

ment, UDA methods require simultaneous access to the la-

beled source and unlabeled target data. However in practi-

cal scenarios, the access to source data is often restricted

due to concerns related to privacy/safety, data transmis-

sion, data proprietary etc. For example, consider a detec-

tion model trained on large-scale source data, that performs

poorly when deployed in new devices having data with dif-

ferent visual domains. In such cases, it is far more effi-

cient to transmit the source-trained detector model (∼500-

1000MB) for adaptation rather than transmitting the source

data (∼10-100GB) to these new devices [27,37]. Moreover,

transmitting only source-trained model alleviates many pri-

vacy/safety, data proprietary concerns as well [41, 47, 70].

Hence, adapting the source-trained model to the target do-

main without having access to source data is essential in the

case of practical deployment of detection models. This mo-

tivates us to study Source-Free Domain Adaptation (SFDA)

setting for adapting object detectors (illustrated in Fig. 1).

The SFDA is a more challenging setting than UDA.

Specifically, on top of having no labels for the target data,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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(a) Prediction (b) Ground truth

Figure 2. (a) Object predictions by Cityscapes-trained model

on the FoggyCityscapes image. (b) Corresponding ground truth.

Here, the proposals around the bus instance have inconsistent pre-

dictions, indicating that instance features are prone to large shift

in the feature space, for a small shift in the proposal location.

the source data is not accessible during adaptation. There-

fore, most SFDA methods for detection consider train-

ing with pseudo-labels generated by source-trained model

[27, 40]. During our initial SFDA training experiments,

we identified two key challenges. Firstly, noisy pseudo-

labels generated by the source-trained model due to domain

shift can result in suboptimal distillation of target domain

information into the source-trained model [11, 46]. Sec-

ondly, Fig. 2 shows object proposals for an image from

FoggyCityscapes, predicted by a detector model trained on

Cityscapes. Here, all the proposals have Intersection-over-

Union>0.9 with respective ground-truth bounding boxes

and each proposal is assigned a prediction with a confidence

score. Noticeably, the proposals around the bus instance

have different predictions, e.g., car with 18%, truck with

93%, and bus with 29% confidence. This indicates that the

pooled features are prone to a large shift in the feature space

for a small shift in the proposal location. This is because,

the source-trained model representations would tend to be

biassed towards source data, resulting in weak representa-

tion for the target data. Therefore, we consider two major

challenges in SFDA training: 1) Effectively distill target do-

main information into source-trained model 2) Enhancing

the target domain feature representations.

Motivated by [46], we utilize mean-teacher [61] frame-

work to effectively distill of target domain knowledge into

source-trained model. However, the key challenge of en-

hancing the target domain feature representations remained.

To address this, we turned to contrastive representation

learning (CRL) methods, has been shown to learn high-

quality representations from images in an unsupervised

manner [5, 6, 69]. CRL methods achieve this by forcing

representations to be similar under multiple views (or aug-

mentations) of an anchor image and dissimilar to all other

images. In classification, the CRL methods assume that

each image contains only one object. On the contrary,

for object detection, each image is highly likely to have

multiple object instances. Furthermore, the CRL train-

ing also requires large batch sizes and multiple views to

Source only model

(a) RPN Proposal

Multiple views cropped from RPN proposals

Push
PullPull

(b) RPN-view Contrastive Learning

Bus Car

Figure 3. (a) Class agnostic object proposals generated by Re-

gion Proposal Network (RPN). (b) Cropping out RPN propos-

als will provide multiple contrastive views of an object instance.

We utilize this to improve target domain feature representations

through RPN-view contrastive learning. However as RPN pro-

posals are class agnostic, it is challenging to form positive (same

class)/negative pairs (different class), which is essential for CRL.

learn high-quality representations, which incurs a very high

GPU/memory cost, as detection models are computation-

ally expensive. To circumvent these issues, we propose

an alternative strategy which exploits the architecture of

the detection model like Faster-RCNN [54]. Interestingly,

the proposals generated by the Region Proposal Network

(RPN) of a Faster-RCNN essentially provide multiple views

for any object instance as shown in Fig. 3 (a). In other

words, the RPN module provides instance augmentation

for free, which could be exploited for CRL, as shown in

Fig. 3 (b). However, RPN predictions are class agnos-

tic and without the ground-truth annotations for target do-

main, it is impossible to know which of these proposals

would form positive (same class)/negative pairs (different

class), which is essential for CRL. To this end, we propose

a Graph Convolution Network (GCN) based network that

models the inter-instance relations for generated RPN pro-

posals. Specifically, each node corresponds to a proposal

and the edges represent the similarity relations between the

proposals. This learned similarity relations are utilized to

extract information regarding which proposals would form

positive/negative pairs and are used to guide CRL. By doing

so, we show that such graph-guided contrastive representa-

tion learning is able to enhance representations for the target

data. Our contributions are summarized as follows:

• We investigate the problem of source-free domain adap-

tation for object detection and identify some of the major

challenges that need to be addressed.

• We introduced an Instance Relation Graph (IRG) frame-

work to model the relationship between proposals gener-

ated by the region proposal network.

• We propose a novel contrastive loss which is guided by

the IRG network to improve the feature representations

for the target data.

• The effectiveness of the proposed method is evaluated on

multiple object detection benchmarks comprising of visu-

ally distinct domains. Our method outperforms existing

source-free domain adaptation methods and many unsu-

pervised domain adaptation methods.
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2. Related works

Unsupervised Domain Adaption. Unsupervised domain

adaptation for object detection was first explored by Chen

et al. [8]. Chen et al. [8] proposed adversarial-based fea-

ture alignment for a Faster-RCNN network at image and

instance level to mitigate the domain shift. Later, Saito

et al. [56] proposed a method that performs strong local

feature alignment and weak global feature alignment based

on adversarial training. Instead of utilizing an adversarial-

based approach, Khodabandeh et al. [30] proposed to miti-

gate domain shift by pseudo-label self-training on the target

data. Self-training using pseudo-labels ensures that the de-

tection model learns target representation. Recently, Hsu et

al. [25] explored domain adaptation for one-stage object de-

tection, where he utilized a one-stage detection framework

to perform object center-aware training while performing

adversarial feature alignment. Also, there exists multiple

UDA work for object detection [2, 19, 50, 55, 59, 66, 67];

however, all these works assume you have access to labeled

source and unlabeled target data.

Source-Free Domain Adaptation. In a real-world sce-

nario, the source data is not often accessible during the

adaptation process due to privacy regulations, data trans-

mission constraints, or proprietary data concerns. Many

works have addressed the source-free domain adaptation

(SFDA) setting for classification [38, 41], 2D and 3D ob-

ject detection [21, 22, 27, 64] and video segmentation [48]

tasks. First for the classification task, the SFDA setting

was explored by Liang et al. [41] proposed source hypoth-

esis transfer, where the source-trained model classifier is

kept frozen and target generated features are aligned via

pseudo-label training and information maximization. Fol-

lowing the segmentation task Liu et al. [47] proposed a self-

supervision and knowledge transfer-based adaptation strat-

egy for target domain adaptation. For object detection task,

[40] proposed a pseudo-label self-training strategy and [27]

proposed self-supervised feature representation learning via

previous models approach.

Contrastive Learning. The huge success in unsupervised

feature learning is due to contrastive learning which has at-

tributed to huge improvement in many unsupervised tasks

[5,27,52]. Contrastive learning generally learns a discrimi-

native feature embedding by maximizing the agreement be-

tween positive pairs and minimizing the agreement with

negative pairs. In [5, 17, 52]. in batch of an image, an

anchor image undergoes different augmentation and these

augmentations for that anchor forms positive pair and nega-

tive pairs are sampled from other images in the given batch.

Later, in [31] exploiting the task-specific semantic informa-

tion, intra-class features embedding is pulled together and

repelled away from cross-class feature embedding. In this

way, [31] learned a more class discriminative feature rep-

resentation. All these works are performed for the classi-

fication task, and these methods work well for large batch

size tasks [5, 31]. Extending this to object detection tasks

generally fails as detection models are computationally ex-

pensive. To overcome this, we exploit graph convolution

networks to guide contrastive learning for object detection.

Graph Convolution Neural Networks (GNNs). Graph

Convolution Neural Networks was first introduced by Gori

[16] to process the data with a graph structure using neu-

ral networks. The key idea is to construct a graph with

nodes and edges relating to each other and update node/edge

features, i.e., a process called node feature aggregation.

In recent years, different GNNs have been proposed (e.g.,

GraphConv [49], GCN [35], each with a unique feature ag-

gregation rule which is shown to be effective on various

tasks. Recent works in image captioning [51, 76], scene

graph parsing [72] etc. try to model inter-instance rela-

tions by IoU based graph generation. For these applica-

tions, IoU based graph is effective as modelling the inter-

action between objects is essential and can be achieved by

simply constructing a graph based on object overlap. How-

ever, the problem araises with IoU based graph generation

when two objects have no overlap and in these cases, it dis-

regards the object relation. For example, see Fig. 3 (a),

where the proposals for the left sidecar and right sidecar

has no overlap; as a result, IoU based graph will output no

relation between them. In contrast for the CRL case, they

need to be treated as a positive pair. To overcome these is-

sues, we propose a learnable graph convolution network to

models inter-instance relations present within an image.

3. Proposed method

3.1. Preliminaries

Background. UDA [9, 24, 62] considers labeled source

and unlabeled target domain datasets for adaptation. Let

us formally denote the labeled source domain dataset as

Ds = {x
n
s , y

n
s }

Ns

n=1
, where xn

s denotes the nth source image

and yns denotes the corresponding ground-truth, and the un-

labeled target domain dataset as, Dt = {x
n
t }

Nt

n=1
, where xn

t

denotes nth the target image without the ground-truth anno-

tations. In contrast, the SFDA setting [34,40,41,47] consid-

ers a more practical scenario where the access to the source

dataset is restricted and only a source-trained model Θ and

the unlabeled target data Dt are available during adaptation.

Mean-teacher based self-training. Self-training adapta-

tion strategy updates the detection model on unlabeled tar-

get data using pseudo-labels generated by the source-trained

model [30]. Reliable pseudo-labels are selected based on a

confidence threshold and the pseudo-label supervision loss

for the detection model is expressed as:

LSL = Lrpn
cls (xn

t , ỹ
n
t ) + L

rpn
reg (x

n
t , ỹ

n
t )

+ Lroi
cls (x

n
t , ỹ

n
t ) + L

roi
reg(x

n
t , ỹ

n
t ), (1)
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Figure 4. Overall architecture of our method. We follow a student-teacher framework for the detector model training. The proposed

Instance Relation Graph (IRG) network models the relation between the object proposals generated by the detector. Using the inter-

proposal relations learned by IRG, we generate pairwise labels to identify positive/negative pairs for contrastive learning. The IRG network

is regularized with distillation loss between student and teacher model.

where pseudo label ỹnt is obtained by filtering low con-

fidence predictions. However, due to domain shift, the

pseudo labels generated by the source-trained model are

still noisy. Therefore, to effectively distill target domain

information to the source-trained model, it is necessary to

improve the quality of the pseudo labels [11, 46].

To this end, we utilize mean-teacher [61] which con-

sists of student and teacher networks with parameters Θs

and Θt, respectively. In the mean-teacher, the student is

trained with pseudo labels generated by the teacher and the

teacher is progressively updated via Exponential Moving

Average (EMA) of student weights. Furthermore, moti-

vated by semi-supervised techniques [11, 46], the student

and teacher networks are fed with strong and weak augmen-

tations, respectively and consistency between their predic-

tions improves detection on target data. Hence, the overall

student-teacher self-training based object detection frame-

work updates can be formulated as:

Θs ← Θs + γ
∂(Lst

SL)

∂Θs

, (2)

Θt ← αΘt + (1− α)Θs, (3)

where Lst
SL is the student loss computed using the pseudo-

labels generated by the teacher network. The hyperparame-

ters γ and α are student learning rate and teacher EMA rate,

respectively. Although the student-teacher framework en-

ables target knowledge distillation into the source-trained

model, it is still not sufficient to learn high-quality target

features. Hence, to enhance the features in the target do-

main, we utilize contrastive representation learning.

3.2. Graph­guided contrastive learning

The Contrastive Representation Learning framework as-

sumes one category per image and relies on large batch

sizes for generating positive/negative pairs [5, 6]. How-

ever, this approach fails in object detection tasks as detec-

tion models are computationally expensive for large batch

sizes, and images contain multiple object instances. To

overcome the challenges discussed earlier, we exploit the

architecture of Faster-RCNN to design a novel contrastive

learning strategy as shown in Fig. 4. As we discussed in

Sec. 1, RPN by default, provides augmentation for each

instance in an image. As shown in Fig. 3, cropping out

the RPN proposals will provide multiple different views

around each instance in an image. This property can be

exploited to learn contrastive representation by maximizing

the agreement between proposal features for the same in-

stance and disagreement of the proposal features for differ-

ent instances. However, RPN predictions are class agnos-

tic and the unavailability of ground truth boxes for target

domain makes it difficult to know which proposals belong

to which instance. Consequently, for a given proposal as

an anchor, sampling positive/ negative pairs become a chal-

lenging task. To this end, we introduce an Instance Relation
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Figure 5. (a) Instance Graph Relation Network: Given pro-

posal RoI features, the IRG models and improves the similarity

relations between proposals. Thresholding the learned relation

matrix generates instance pairwise labels used to obtain positive

(white)/negative (black) pairs for computing the contrastive loss.

(b) Graph Contrastive Loss: Projecting RoI features as keys and

queries and performing transpose multiplication provides instance

pair wise logits. The generated instance pairwise logits and in-

stance pairwise labels are used to compute the contrastive loss.

Graph (IRG) network that models inter-instance relations

between the RPN proposals. IRG then provides pairwise

labels by inspecting similarities between two proposals to

identify positive/negative proposal pairs.

3.2.1 Instance Relation Graph (IRG):

Graph Convolution Network (GCN) is an effective way to

understand the relationship and propagate information be-

tween the nodes [1, 68, 74]. The proposed IRG network

utilizes GCN to learn the relationship between the RPN

proposals by considering each RPN proposal features as a

node. Let us denote IRG as G : G = ⟨V, E⟩, where V is

nodes and E is edges of the graph network. The nodes in V
corresponds to RoI features extracted from RPN proposals

and edges ei,j ∈ E encodes relationship between the ith and

the jth proposals. We then aim to learn relation matrix E ,

to find the relationship between the RPN proposals. Both

the student and teacher networks share the IRG network for

modeling relationships between object proposals.

Nodes. The nodes in IRG represent features of the RPN

proposals obtained from RoI feature extractor. The nodes

in G are denoted as V = {v1, v2, ..., vm}, where vm is the

feature of the mth instance. Here, m is the total number

of RPN proposals. We set m to 300 for both teacher and

student. The teacher pipeline has input with weak augmen-

tations; thus, the teacher RPN proposals are better and more

consistent than strongly augmented student RPN. Hence,

we use teacher RPN proposals to extract RoI features and

construct IRG for both student and teacher networks.

Edges. The edges in the graph G are denoted as E =
[eij ]m×m, where eij is the edge of the vthi and vthj nodes,

denoting the relation of corresponding instances in the fea-

ture space and can be formally represented as:

eij =
exp(Sij)

∑

exp(Sij)
, where Sij = f(vi) · g(vj)

T , (4)

where, f and g are learnable function.

3.2.2 Graph Distillation Loss (GDL).

Let us denote the input features to IRG as F ∈ R
m×d where

m denoting the number of proposal instances and d denot-

ing the feature dimension of the RoI features. The features

F are then passed through graph convolution layers of IRG

to model the inter-instance relations. The output features F̃

are calculated as:

F̃ = ReLU(EFW ), (5)

where W is a learnable weight matrix. Subsequently, both

features F and F̃ are fed into the RCNN classification layer

to obtain class logits for each proposal. Let us denote the

student and the teacher class logits corresponding to fea-

tures F as Zst and Zte, respectively. Similarly, let us de-

note student and teacher class logits corresponding to IRG

output features F̃ as Z̃st and Z̃te, respectively. To supervise

the IRG network parameters, we minimize the discrepancy

between class logits Z and Z̃ for both student and teacher

pipeline in an end-to-end manner. In addition, we also min-

imize the discrepancy between student and teacher class

logits Zst and Zte to maintain consistency between both

pipelines. We denote this discrepancy as GDL which can

be formally written as:

LGDL = KL(σ(Zst), σ(Z̃st))

+ KL(σ(Zte), σ(Z̃te)) + KL(σ(Zst), σ(Zte)),

where KL denotes the Kullback–Leibler divergence, σ de-

notes softmax operator. Therefore, minimizing LGDL su-

pervises the IRG network which inturn learns the instance

relation matrix (E).

3.2.3 Graph Contrastive Loss (GCL)

Instance pairwise labels. In order to utilize the con-

trastive loss, we need to understand the relation of the given

anchor proposal with other RPN proposals to form posi-

tive/negative pairs. As mentioned earlier, this relation ma-

trix (E) is obtained from the IRG network, which learns how

proposals are related to each other. For instance pairwise la-

bel generation, let us consider proposal instances i and j and

it’s corresponding learned relation between them, eij ∈ E .

Now, one can obtain positive/negative pairs by simply set-

ting a threshold ϵ on normalized E where the eij > ϵ would

indicate that they are highly related, forming a positive pair

and vice versa for the negative pairs. The pairwise labels be-

tween ith and jth proposal instances, denoted as Mij , can

be given as:

Mij =

{

0, eij < ϵ

1, eij ≥ ϵ,
(6)

where ϵ is a hyper parameter. Thus, for a given anchor pro-

posal we obtain its corresponding positive and negative pro-

posal pairs from Mij .

Instance pairwise logits. As shown in Fig. 5, the RoI

features vi are projected as key ki and query qi inorder to

model better correlation among the RoI features [63]. For
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given ith RoI features, we obtain key, query and pairwise

logits as follows:

ki = Wk · vi,

qi = Wq · vi,

Rij = qi(kj)
T ,

where Wk and Wq are linear layer weights and ki, qi and

Rij are key, query and instance pairwise logits. To this end,

the contrastive loss can be computed from the instance pair-

wise logits (Rij) and instance pairwise labels (Mij).

Contrastive loss. Considering any ith proposal as an
anchor, where i ∈ I ≡ {1, 2, ...,m}, let us define a
set consisting of all the samples excluding the anchor
as A(i) ≡ I\ {i}. Further, using pairwise labels from
M , we can create a positive pair set defined as P (i) ≡
{p ∈ I : Mij = 1} \ {i}. For given ith proposal, the Graph
Contrastive Loss (GCL) can be calculated as:

LGCL =
∑

i∈I

− log







1

|P (i)|

∑

p∈P (i)

exp
(

qi(kp)
T
)

∑

a∈A(i) exp (qi(ka)
T )







,

(7)

By training with the proposed loss LGCL, the student net-

work is encouraged to learn high-quality feature represen-

tations on the target domain. We show that it improves the

detector’s performance by conducting experimental analy-

sis in Sec. 4. Note that GCL is used only to update the

student network parameters, whereas the teacher network

parameters are updated via EMA.

3.3. Overall loss function

So far, we have introduced an Instance Relation Graph

(IRG), Graph Distillation Loss (GDL), and Graph Con-

trastive Loss (GCL) to effectively tackle the source free do-

main adaptation problem for detection. Then overall objec-

tive of our proposed SFDA method is formulated as:

LSFDA = Lst
SL + LGDL + LGCL, (8)

4. Experiments and Results

To validate the effectiveness of our method, we compare

our model performance with existing state-of-the-art UDA

and SFDA methods on four different domain shift scenar-

ios; 1) Adaptation to adverse weather, 2) Real to artistic, 3)

Synthetic to real, and 4) Cross-camera. Note that in UDA

we have access to both source and target domain data. How-

ever, in SFDA, we have access only to source-trained model

and not the source domain data for adaptation.

Implementation details: Following the SFDA setting [34,

40], we adopt Faster-RCNN [54] with ImageNet [36] pre-

trained ResNet50 [18] as the backbone. In all of our ex-

periments, the input images are resized with a shorter side

to be 600 while maintaining the aspect ratio and the batch

size to 1. The source model is trained using SGD optimizer

with a learning rate of 0.001 and momentum of 0.9 for 10

Table 1. Quantitative results (mAP) for Cityscapes → FoggyCi-

tyscapes. S: Source only, O: Oracle, UDA: Unsupervised Domain

Adaptation, SFDA: Source-Free Domain Adaptation.

Type Method prsn rider car truck bus train mcycle bicycle mAP

S Source Only 29.3 34.1 35.8 15.4 26.0 9.09 22.4 29.7 25.2

DA Faster [8] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

D&Match [33] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

MTOR [2] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1

UDA SWDA [56] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3

CDN [60] 35.8 45.7 50.9 30.1 42.5 29.8 30.8 36.5 36.6

Collaborative DA [75] 32.7 44.4 50.1 21.7 45.6 25.4 30.1 36.8 35.9

iFAN DA [78] 32.6 48.5 22.8 40.0 33.0 45.5 31.7 27.9 35.3

Instance DA [78] 33.1 43.4 49.6 21.9 45.7 32.0 29.5 37.0 36.5

Progressive DA [26] 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9

Categorical DA [71] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4

MeGA CDA [26] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8

Unbiased DA [11] 33.8 47.3 49.8 30.0 48.2 42.1 33.0 37.3 40.4

SFOD [40] 21.7 44.0 40.4 32.2 11.8 25.3 34.5 34.3 30.6

SFOD-Mosaic [40] 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5

SFDA HCL [27] 26.9 46.0 41.3 33.0 25.0 28.1 35.9 40.7 34.6

LODS [39] 34.0 45.7 48.8 27.3 39.7 19.6 33.2 37.8 35.8

Mean-Teacher [61] 33.9 43.0 45.0 29.2 37.2 25.1 25.6 38.2 34.3

IRG (Ours) 37.4 45.2 51.9 24.4 39.6 25.2 31.5 41.6 37.1

O Oracle 38.7 46.9 56.7 35.5 49.4 44.7 35.9 38.8 43.1

epochs. For the proposed framework, the teacher network

EMA momentum rate α is set equal to 0.9. In addition, the

pseudo-labels generated by the teacher network with confi-

dence greater than the threshold T=0.9 are selected for stu-

dent training. We utilize the SGD optimizer to train the stu-

dent network with a learning rate of 0.001 and momentum

of 0.9 for 10 epochs. We report the mean Average Precision

(mAP) with an IoU threshold of 0.5 for the teacher network

on the target domain during the evaluation.

4.1. Quantitative comparison

4.1.1 Adaptation to adverse weather:

Given a model trained on clear weather condition, we aim

to perform adaptation to images in adverse weather con-

ditions like fog/haze etc. The Cityscapes [10] consist of

2,975 training and 500 validation images with 8 object cat-

egories: person, rider, car, truck, bus, train, motorcycle and

bicycle. The FoggyCityscapes [58] consist of images that

are rendered from the Cityscapes dataset by integrating fog

and depth information. To this end, a model trained on

Cityscapes is adapted to FoggyCityscapes without having

access to the Cityscapes.

Results. Table 1 provides the quantitative compar-

ison with the existing UDA and SFDA methods for

Cityscape→FoggyCityscapes adaptation scenario. From

Table 1, we can infer that the proposed method outperforms

most of the existing UDA methods such as SWDA [56],

InstanceDA [67], and CategoricalDA [71]. However, com-

pared MeGA-CDA [65] and Unbiased DA [11] methods,

our proposed method produces a competitive performance

with a drop of 2.5-3.5 mAP. But it is worth noting that,

these method make use of labelled source data during adap-

tation whereas our proposed method only has access to

source-trained model. Furthermore, compared with exist-

ing SFDA methods, SFOD [40] and HCL [27], the pro-

posed method provides improvement of 3.5 mAP and 2.4

mAP, respectively. We also compared with mean-teacher
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Table 2. Quantitative results for Sim10K → Cityscapes and KITTI

→ Cityscapes. S: Source only, UDA: Unsupervised Domain

Adaptation, SFDA: Source-Free domain adaptation.

Type Method Sim10k→ City Kitti→ City

AP of Car AP of Car

S Source Only 32.0 33.9

DA Faster [8] 38.9 38.5

Selective DA [77] 43.0 42.5

MAF [19] 41.1 41.0

Robust DA [30] 42.5 42.9

UDA Strong-Weak [56] 40.1 37.9

ATF [20] 42.8 42.1

Harmonizing [3] 42.5 -

Cycle DA [75] 41.5 41.7

MeGA CDA [65] 44.8 43.0

Unbiased DA [11] 43.1 -

SFOD [40] 42.3 43.6

SFOD-Mosaic [40] 42.9 44.6

SFDA Mean-teacher [61] 39.7 41.2

IRG (Ours) 45.2 46.9

self-training baseline to show that adding the proposed GCL

loss is able to enhance the features representation on the tar-

get domain, providing an improvement of 3.5 mAP.

4.1.2 Realistic to artistic data adaptation:

Here, we consider adaptation to dissimilar domains [56],

where a model trained on the real-world images is aimed

to perform adaptation towards artistic domain. We con-

sider the model trained on the Pascal-VOC dataset [13] and

adapt to two target domains, namely, Clipart [28] and Wa-

tercolor [28]. The Clipart dataset contains 1K unlabeled

images and has the same 20 categories as Pascal-VOC. The

Watercolor consists of 1K training and 1K testing images

with six categories.

Results. The PASCAL-VOC→Clipart adaptation results

are reported in Table 4. Our method outperforms the ex-

isting UDA methods such as ADDA [28] and DANN [14]

by a margin of 4.7 mAP and 0.3 mAP, respectively. More-

over, the PASCAL-VOC→Watercolor adaptation results are

reported in Table 3. Even in this case, our method out-

performs the state-of-the-art UDA methods such as SWDA

[56] and I3Net [4] by 2.6 mAP and 1.5 mAP, respectively.

Furthermore, for both Clipart and Watercolor adaptation

scenarios, our method consistently outperforms in every

category compared with pseudo-label self-training (PL) and

mean-teacher baseline.

4.1.3 Synthetic to real-world adaptation

The cost of generating and labeling synthetic data is low

compared to real-world data. Hence, it makes sense to train

a detector on synthetic images and transfer the knowledge to

real-world data. However, the style shift between synthetic

Table 3. Quantitative results for PASCAL-VOC → Watercolor.

S: Source only, UDA: Unsupervised Domain Adaptation, SFDA:

Source-Free domain adaptation.

Type Method bike bird car cat dog prsn mAP

S Source only 68.8 46.8 37.2 32.7 21.3 60.7 44.6

DA Faster [8] 75.2 40.6 48.0 31.5 20.6 60.0 46.0

BDC Faster [56] 68.6 48.3 47.2 26.5 21.7 60.5 45.5

BSR [32] 82.8 43.2 49.8 29.6 27.6 58.4 48.6

UDA WST [32] 77.8 48.0 45.2 30.4 29.5 64.2 49.2

SWDA [56] 71.3 52.0 46.6 36.2 29.2 67.3 50.4

HTCN [3] 78.6 47.5 45.6 35.4 31.0 62.2 50.1

I3Net [4] 81.1 49.3 46.2 35.0 31.9 65.7 51.5

Unbiased DA [11] 88.2 55.3 51.7 39.8 43.6 69.9 55.6

PL [30] 74.6 46.5 45.1 27.3 25.9 54.4 46.1

SFOD [40] 76.2 44.9 49.3 31.6 30.6 55.2 47.9

SFDA Mean-teacher [61] 73.6 47.6 46.6 28.5 29.4 56.6 47.1

IRG (Ours) 75.9 52.5 50.8 30.8 38.7 69.2 53.0

to real domain makes it challenging. Here, we consider such

scenario where we adapt a model trained on the synthetic

data, Sim10K [29], to a real-world data, Cityscapes [10]

under SFDA condition, i.e., synthetic data are not available

while adapting the model to the real-world images. The

model is trained on 10,000 training images of Sim10k ren-

dered by the Grand Theft Auto gaming engine. The target

Cityscapes dataset consists of 2,975 training and 500 vali-

dation images.

Results. We report the results of Sim10K→Cityscapes in

Table 2. Note that even though we adapt for only the car

category, the proposed GCL training strategy is able to get

discriminative positive pairs for different cars and improve

the feature representations through contrastive training. Our

proposed method outperforms existing UDA method like

Cycle DA [75], Unbiased DA [11] etc. by considerable

margin. Under SFDA setting, the proposed method pro-

duces state-of-the-art performance by improving ∼2 mAP

compared to SFOD [40].

Cross-camera adaptation In real-world scenarios, the tar-

get domain data is captured by a camera with configura-

tions different from the source data. To emulate this cross-

camera conditions, we consider a model trained on source,

KITTI dataset [15], is adapted to target, Cityscapes [10].

The KITTI dataset consists of 7,481 training images, which

is used to get the source-trained detector model. The model

is then adapted to the target domain dataset, i.e., Cityscapes.

Results. KITTI→Cityscapes results are reported in Ta-

ble 2. Our method outperform existing state-of-the-art UDA

methods like Cycle DA [75], MeGA CDA [65] and Unbi-

ased DA [11] by considerable margin. Further in SFDA set-

ting, the proposed method produce state-of-the-art perfor-

mance by improving around 3.3 mAP compared to SFOD.
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(a) Proposal relation before IRG (b) Proposal relation after IRG (c) Masked relation after IRG

Figure 6. Relation matrix analysis for 25 proposal RoI features before and after passing through IRG network and corresponding masked

instance pairwise labels. We can observe the IRG network models the relationship between the proposal, which maximizes the similarity

between similar proposals and vice versa for dissimilar proposals.

Table 4. Quantitative results (mAP) for PASCAL-VOC → Clipart. S: Source only, UDA: Unsupervised Domain Adaptation, SFDA:

Source-Free domain adaptation.

Type Method aero bcycle bird boat bottle bus car cat chair cow table dog horse bike prsn plnt sheep sofa train tv mAP

S Source only 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8

DANN [14] 24.1 52.6 27.5 18.5 20.3 59.3 37.4 3.8 35.1 32.6 23.9 13.8 22.5 50.9 49.9 36.3 11.6 31.3 48.0 35.8 31.8

UDA DAF [8] 15.0 34.6 12.4 11.9 19.8 21.1 23.3 3.10 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.00 17.1 19.7 24.8 19.8

ADDA [28] 20.1 50.2 20.5 23.6 11.4 40.5 34.9 2.3 39.7 22.3 27.1 10.4 31.7 53.6 46.6 32.1 18.0 21.1 23.6 18.3 27.4

BDC Faster [56] 20.2 46.4 20.4 19.3 18.7 41.3 26.5 6.40 33.2 11.7 26.0 1.7 36.6 41.5 37.7 44.5 10.6 20.4 33.3 15.5 25.6

PL [61] 18.3 48.4 19.2 22.4 12.8 38.9 36.1 5.2 36.9 24.8 29.3 9.09 34.6 58.6 43.1 34.3 9.09 14.4 26.9 19.8 28.2

SFOD [40] 20.1 51.5 26.8 23.0 24.8 64.1 37.6 10.3 36.3 20.0 18.7 13.5 26.5 49.1 37.1 32.1 10.1 17.6 42.6 30.0 29.5

SFDA Mean-teacher [61] 22.3 42.3 23.8 21.7 23.5 60.7 33.2 9.1 24.7 16.7 12.2 13.1 26.8 73.6 43.9 34.5 9.09 24.3 37.9 42.2 29.1

IRG (Ours) 20.3 47.3 27.3 19.7 30.5 54.2 36.2 10.3 35.1 20.6 20.2 12.3 28.7 53.1 47.5 42.4 9.09 21.1 42.3 50.3 31.5

Table 5. Ablation study on FoggyCityscapes.
Method PL GDL GCL prsn rider car truc bus train mcycle bcycle mAP

Source Only ✗ ✗ ✗ 25.8 33.7 35.2 13.0 28.2 9.1 18.7 31.4 24.4

MT + WW ✓ ✗ ✗ 35.8 42.6 43.9 23.1 32.7 11.0 29.9 38.7 32.2

MT + SS ✓ ✗ ✗ 32.8 41.4 43.8 18.2 28.6 11.2 24.6 38.3 29.9

MT + SW ✓ ✗ ✗ 33.9 43.0 45.0 29.1 37.2 25.1 25.5 38.2 34.3

Ours ✓ ✓ ✗ 37.2 43.1 51.0 28.6 40.1 21.2 28.2 37.1 35.9

Ours ✓ ✓ ✓ 37.4 45.2 51.9 24.4 39.6 25.2 31.5 41.6 37.1

4.2. Ablation analysis

We study the impact of the proposed GCL and IRG

network by performing an in-depth ablation analysis on

Cityscapes→FoggyCityscapes adaptation scenario.

Quantitative analysis. The results for

Cityscapes→FoggyCityscapes ablation experiments are

reported in Table 5. In Table 5, the first three experiments

are performed to analyze the effect of various combinations

of weak and strong augmentation for a mean-teacher

framework in an SFDA setting. More precisely, we input

the student and teacher network with Weak-Weak (WW),

Strong-Strong (SS) and Strong-Weak (SW) augmented

images, respectively. These three experiments show that

strong-weak (SW) produces consistent and improved results

compared to other variations. This is due to mutual learning

between student and teacher networks, where student trains

on strong augmentation leading to robust prediction and

the teacher supervise the student by good pseudo-labels

predicted from the weak augmented images. Furthermore,

minimizing the discrepancy between instance relation

graph network of student and teacher framework ensures

consistency between student and teacher graph proposal

feature representations. Subsequently, addition of graph

distillation loss enhances the model performance from

34.3 mAP to 35.9 mAP. Finally, utilizing graph-guided

contrastive learning on the proposal features further helps

the model learn high-quality representations, resulting in an

increase in performance by 1.9 mAP on the target domain.

Qualitative analysis. In Fig. 6, we show the relation matrix

for the RoI features before and after it is processed by IRG.

For better visualizations, we consider 25 out of 300 RoI fea-

tures. It can be observed that relation between the proposals

are poorly defined and IRG network is able to improve these

relations through graph-based feature aggregation.

5. Conclusion

In this work, we presented a novel approach for source-

free domain adaptive detection using graph-guided con-

trastive learning. Specifically, we introduced a contrastive

graph loss to enhance the target domain representations

by exploiting instance relations. We propose an instance

relation graph network built on top of a graph convolu-

tion network to model the relation between proposal in-

stances. Subsequently, the learned instance relations are

used to get positive/negative proposal pairs to guide con-

trastive learning. We conducted experiments on multiple

detection benchmarks to show that the proposed method ef-

ficiently adapts a source-trained object detector to the tar-

get domain, outperforming the existing source-free domain

adaptation and unsupervised domain adaptation methods.
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