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Abstract

Existing instance segmentation models learn task-

specific information using manual mask annotations from

base (training) categories. These mask annotations re-

quire tremendous human effort, limiting the scalability to

annotate novel (new) categories. To alleviate this prob-

lem, Open-Vocabulary (OV) methods leverage large-scale

image-caption pairs and vision-language models to learn

novel categories. In summary, an OV method learns task-

specific information using strong supervision from base an-

notations and novel category information using weak su-

pervision from image-captions pairs. This difference be-

tween strong and weak supervision leads to overfitting on

base categories, resulting in poor generalization towards

novel categories. In this work, we overcome this issue

by learning both base and novel categories from pseudo-

mask annotations generated by the vision-language model

in a weakly supervised manner using our proposed Mask-

free OVIS pipeline. Our method automatically generates

pseudo-mask annotations by leveraging the localization

ability of a pre-trained vision-language model for objects

present in image-caption pairs. The generated pseudo-

mask annotations are then used to supervise an instance

segmentation model, freeing the entire pipeline from any

labour-expensive instance-level annotations and overfitting.

Our extensive experiments show that our method trained

with just pseudo-masks significantly improves the mAP

scores on the MS-COCO dataset and OpenImages dataset

compared to the recent state-of-the-art methods trained

with manual masks. Codes and models are provided in

https://vibashan.github.io/ovis-web/.

1. Introduction

Instance segmentation is a challenging task as it requires

models to detect objects in an image while also precisely

*This work was done when Vibashan VS interned at Salesforce Re-

search. Primary contact: vvishnu2@jhu.com
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Figure 1. A) Previous Methods: Learn task-specific information

(detection/segmentation) in a fully-supervised manner and novel

category information with weak supervision. During training, this

difference in strong and weak supervision signals leads to overfit-

ting and requires expensive base annotations. B) Our method:

Given image-caption pairs, we generate pseudo-annotations for

both base and novel categories under weak supervision, solving

the problems of labour-expensive annotation and overfitting.

segment each object at the pixel-level. Although the rise of

deep neural networks has significantly boosted the state-of-

the-art instance segmentation performance [7,15,42], these

methods are still trained for a pre-defined set of object cat-

egories and are data-hungry [33]. Particularly, one needs

to manually annotate thousands of instance-level masks for

each object category, which takes around 78 seconds per in-

stance mask [3]. If we look at this quantitatively on Open

Images [21], a large-scale dataset with 2.1M instance-level

mask annotations requires around 5 years of human labour.

Even after extensive annotation, these training datasets are

still limited to a small number of categories and segmenting

objects from a novel category requires further annotation.

Therefore, it is difficult to scale up existing methods to seg-

ment a large number of categories due to intensive labour.

Recently, Open-Vocabulary (OV) methods have gained

much attention due to their success in detecting [11, 14,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. RPN is supervised using bounding box annotations from COCO base and WSPN is supervised using image-labels from COCO

base. A) WSPN produces better quality proposals for novel object categories compared to fully-supervised RPN. B) WSPN consistently

produces better recall for all COCO novel categories than RPN.

46, 52] and segmenting [17] novel categories beyond base

(training) categories. An OV method learns task-specific

information (detection/segmentation) from base categories

that have manual instance-level bounding boxes or masks

and learns novel category information from the pre-trained

Vision-Language Model (VLM) [19, 34] (see Fig. 1). All

these methods produce promising results on novel cate-

gories by leveraging different forms of weak supervision

such as caption pretaining [46, 50], knowledge distillation

[14, 52] and pseudo-labelling [17, 28]. However, all above-

mentioned OV methods still rely on the manually-annotated

base categories to improve their performances on novel cat-

egories. Without fine-tuning on base categories, existing

OV methods lack task/domain specific knowledge and the

performances on novel categories will be affected [14, 46].

Although manual instance-level annotations of base cat-

egories are critical to open-vocabulary segmentation meth-

ods, we find empirically that such fully-supervised informa-

tion causes OV methods to overfit to base categories, lead-

ing to a higher failure rate when evaluated on novel cate-

gories. Specifically, OV methods utilize a region proposal

network (RPN) [37] supervised with bounding box annota-

tions obtained from the base categories to generate a set of

bounding box proposals for all objects categories in a given

image [46]. The feature representation from these object

proposals is later matched with text embedding to learn the

visual-semantic space for base and novel categories [46].

Therefore, the quality of proposals generated for novel ob-

ject categories plays a key role in determining the perfor-

mance in later stages. However, from our experiments, we

find that many objects of novel categories wouldn’t be in-

cluded in such proposals due to the RPN’s overfitting to

base categories. Fig. 2 (A) - Top gives some examples

where the RPN trained with COCO base categories fails to

generate high-quality region proposals for novel categories

such as elephant, cat and skateboard. Therefore, a fully-

supervised proposal network is a bottleneck in OV pipeline

due to its poor generalization towards novel categories.

Given the aforementioned observations of poor general-

ization, we raise the question of whether we can improve the

generalization by using weak supervision instead of relying

on strong supervision from manual base annotations. If so,

we can reduce overfitting to the base categories and the re-

quirement for costly instance-level human annotations can

be entirely removed from the pipeline. Our preliminary ex-

periments give us some hope. Our experiments show that

if we train a weakly-supervised proposal network (WSPN)

with image-level annotations instead of box-level annota-

tions, the region proposals it generates can better generalize

to novel objects. As shown in Fig. 2 A), the novel objects

that the RPN proposals miss are covered by WSPN. Fig. 2

B) shows WSPN proposals have consistently better average

recall than RPN for all COCO novel categories, indicating

that WSPN proposals are more likely to cover the ground-

truth bounding boxes of novel objects.

Inspired by these observations, we propose open-

vocabulary segmentation without manual mask annotations.

We do not use any human-provided box-level or pixel-level

annotations during the training of our method. We first

train a simple WSPN model with image-level annotations

on base categories as a proposal generator to generate pro-

posals for all objects given an image. Then, we adopt

pre-trained vision-language models to select proposals as

pseudo bounding boxes for novel objects. Given a novel

object’s text name, we can utilize the name as a text prompt

to localize this object in an image with a pre-trained vision-

language model. To obtain a more accurate pseudo-mask

that covers the entire object, we conduct iterative mask-

ing with GradCAM [39] given the vision-language model.

Finally, we train a weakly-supervised segmentation (WSS)

[20] network with previously generated bounding box and

GradCAM activation map to obtain pixel-level annotation.
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Our contributions are summarized as follows: (1) We

propose a Mask-free OVIS pipleline where we produce

manual-effort-free pseudo-mask annotations for base and

novel instance segmentation using open-vocabulary and

weakly supervised techniques. (2) We propose a novel

pseudo-mask generation pipeline leveraging a pre-trained

vision-language model to generate instance-level annota-

tions. (3) Benefiting from pseudo-labels, our method sets up

SOTA’s for both detection and instance segmentation tasks

compared to recent methods trained with manual masks on

MS-COCO and OpenImages datasets.

2. Related Work

Weakly-supervised learning (WSL) methods require less

manual annotation effort and only rely on partial informa-

tion about the task compared to fully-supervised methods.

WSL applications include object detection [1, 16, 44, 47],

segmentation [22,23,40], action recognition, etc [26,41,48].

The class activation map (CAM) [53] and grad-CAM [39]

are popular approaches which exploits pre-trained network

to generate saliency or activation map for target classes. Li

et al. [26] enables weakly-supervised semantic segmenta-

tion via CAM-guided attention.

Vision-Language Models. With the rise of large-scale

text-pretraining with attention-based models [9,49], vision-

language models (VLM) have caught increasing attention

due to their strong performance in downstream visual un-

derstanding tasks [27, 31, 34]. Early VLM models [27, 31]

applied the pre-trained models with constraints of the class

set. With the help of contrastive learning, CLIP [34] has en-

abled VLM in the wild with large-scale multimodal learn-

ing upon the 400M noisy data crawled from the web. Sev-

eral methods have extended CLIP for high efficiency model

training and cycle consistency [13,24,25]. ALBEF [25] uti-

lizes cross-modal attention between image patches and text,

leading to more grounded vision and language representa-

tion learning. Compared to CLIP, ALBEF excels in object

localization, while CLIP performs better at zero-shot clas-

sification due to its larger training dataset.

Open-Vocabulary. Open-Vocabulary methods [6, 10, 32,

36, 46, 50] scale up their vocabulary size for object detec-

tion or instance segmentation tasks by transferring knowl-

edge from pre-trained vision-language models. Zareian

et al. [46] proposed an open-vocabulary object detection

method where a visual encoder is trained on image-caption

pair to model object semantics and then transfer to zero-

shot object detection. ViLD [14] and RegionCLIP [52] use

pre-trained CLIP [34] to distill knowledge and enhance the

vision-text embedding space effectively. Similarly, Huynh

et al. [17] proposes a robust pseudo-labelling, for instance

segmentation where a teacher model generates pseudo-label

for novel categories and is later used to supervise a stu-

dent model. Therefore, all these methods require manually-

annotated base categories to improve their performance on

novel categories. In contrast, our method generates pseudo-

labels for both base and novel categories by leveraging a

pre-trained VLM, freeing the entire pipeline from human-

provided instance-level annotations. Similar to our method,

Gao et al. [11] generates pseudo-labels using pre-trained

VLM, but their approach still uses a proposal generator that

relies on human-provided bounding boxes for the base cat-

egories. Our method, on the other hand, requires no such

annotations, making it completely free from any human-

provided box-level or pixel-level annotations.

3. Mask-free OVIS
Our pipeline consists of two stages: (I) Pseudo-mask

generation, and (II) Open-vocabulary instance segmenta-

tion. The goal of (I) is to generate box-level and pixel-level

annotations by leveraging the region-text alignment prop-

erty of a pre-trained vision-language model as illustarted in

Fig. 3. In (II), we train a Mask-RCNN using the generated

pseudo annotations.

3.1. Pseudo­Mask Generation

Region-Text Attention Scores. The inputs to the
vision-language model are image I and caption C =
{c1, c2, ..., cNc

} pair, where Nc is the number of words
in the caption (including [CLS] and [SEP]) [9, 25]. In a
VLM, a text encoder is utilized to get text representations
T ∈ R

NC×d and an image encoder is utilized to extract
region representation R ∈ R

NR×d, where NR is the num-
ber of regions in the image. To fuse the information from
both image and text encoders, a multi-modal encoder with
M consecutive cross-attention layers is utilized [19, 25].
These cross-attention layers learn a good region-text align-
ment [25, 34] and are utilized to obtain regions correspond-
ing to the object of interest ct from the caption. In particular,
for the m-th cross-attention layer, the visual region attention
scores Xm

t for the object of interest ct is calculated as:

X
m
t = Softmax(

hm−1

t RT

√
d

), (1)

h
n
t = X

m
t ·R. (2)

where d is a scalar and hm−1

t is the hidden representation

obtained from the previous (m−1)-th cross-attention layer.
GradCAM Activation Map. After obtaining attention
scores Xm

t , we employ Grad-CAM [39] to visualize the
activated regions. As in [39], we take the image-caption
similarity (S) output from the multi-modal encoder’s final
layer and calculate the gradient with respect to the attention
scores. The activation map φt for object ct is:

φt = X
m
t ·max

(

∂S

∂Xm
t

, 0

)

. (3)

Iterative Masking. During VLM training, an object’s most

discriminative regions easily get aligned towards object text

representation [25, 34]. As a result, φt is localized towards
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Figure 3. Illustrative overview of our pseudo-mask generation pipeline. Given an image-caption pair and pre-trained VLM, we generate an

activation map for the object of interest (”umbrella”) and enhance it using iterative masking strategy. We generate box-level annotations

using an activation map as a guidance function to select the best WSPN proposals covering the object. We crop the image corresponding

to the generated pseduo bounding box and perform weakly-supervised segmentation to obtain pixel-level annotations.

the most discriminative region and fails to cover the object

completely [39]. However, when we mask out the most dis-

criminative regions, GradCAM activations are shifted to-

wards other discriminative regions (see Fig. 4). We propose

a simple iterative masking strategy to obtain better activa-

tion where the most activated part of the object is replaced

with image mean and the new activation map is computed

following Eq. 1 and 3. The final activation map is:

Φt =
G
⋃

i=1

IM(φi
t) (4)

where G is a hyper-parameter indicating the number of

masking iterations and IM(·) normalize and threshold φt

by 0.5. We utilize the activation map Φt as a guidance func-

tion to generate box-level and pixel-level annotations.

Weakly-Supervised Proposal Network. To generate box-
level annotations, we require bounding box proposals cov-
ering the activated region Φt. As explained in the intro-
duction, the fully-supervised RPN network produces poor
proposals for novel categories, making it less preferable.
To overcome this, we propose a weakly-supervised pro-
posal network (WSPN), which generates object propos-
als trained in a weakly-supervised manner. Given an Im-
age I, the WSPN is supervised with image-labels Y =
{y1, y2, ..., yC}, where yc = 0 or 1 indicates the absence
or presence of class c in I and C denotes total number of
classes [5]. First, we utilize Selective Search to generate a
set of unsupervised proposal U = {u1, u2, ..., uN} where
N is the total number of bounding box proposals. Then,
the Image I and proposal U are fed into a CNN backbone

Combined 

Map (     )

G
-0

G
-1

Masked 

Image

Activation 

Map (     )

Binary 

Map (              )

Figure 4. Comparison between activation map Φt generated at G

0 and 1. For G=0, the most discriminative parts of an object (bird’s

head) gets activated (bird’s head). After masking, for G=1 we can

observe that the activation map has shifted to less discriminative

part (bird’s body). Thus, by combining activation from both steps,

we obtain a better activation map trying to cover entire object Φt.

to extract features and RoI pooling layer [37] to obtain RoI
pooled feature vectors. Following [5], the pooled feature
vectors are passed to a classification and detection branch
to generate two matrices Wcls,Wdet ∈ R

C×N . Then,
Wcls and Wdet matrices are normalized along the category
direction (column-wise) and proposal direction (row-wise)
by the softmax layers σ(·) respectively. From Wcls and
Wdet, the instance-level classification scores for object pro-
posals are computed by the element-wise product WC =
σ(Wcls)⊙ σ(Wdet). and image-level classification score

for the cth class is computed as pc =
∑N

i=1
wi,c. Follow-

ing [38], we select the high-scoring proposals are used as

23542



pseudo-regression targets ( T̂ = {t̂(u1), t̂(u2), ..., t̂(uN )})
for low-scoring proposals to make sure objects can be more
tightly captured. To this end, the classification loss and re-
gression loss for WSPN are calculated as:

Lwspn = −
C
∑

c=1

yc log pc + (1− yc) log(1− pc)+

1

N

N
∑

u=1

LsmoothL1(t̂(ui), ui).

(5)

WSPN is trained to localize and classify objects by mini-

mizing Eq. 5. The trained WSPN model is used to generate

object proposals and top K proposal candidates over all the

classes B = {b1,b2, ...,bK} are selected by sorting pro-

posal confidence scores obtained from Wdet. Finally, from

the top proposal candidates B, we select the proposal which

overlaps the most with Φt as pseudo box-bounding:

b∗ = argmax
b∈B

∑

b
Φt

√

|b|
, (6)

where b∗ is the pseudo box-level annotation and
∑

b
Φt

indicates the summation of the activation map values within

a box proposal b, and |b| indicates the proposal area.

Weakly-Supervised Segmentation. Once we obtain the

pseudo bounding box b∗, we crop image I to obtain the cor-

responding image patch. The cropped patch is then fed into

a simple three-layer CNN network to perform pixel-level

segmentation. To supervise the CNN network, we generate

pseudo ground-truth Θ using Φt and b∗, where we sam-

ple Z points as foreground Fz = {fi}i=1,.,Z and back-

ground Bz = {bi}i=1,.,Z and each point is set to 1 or 0,

respectively. Specifically, the foreground and background

points are sampled from the most and least activated part

of Φt inside b∗. The pseudo ground-truth Θ is of size b∗

and we supervise the network predictions only at sampled

points. Thus, the segmentation loss obtained from these

weak points is computed as follows:

Lwss =

G
∑

i=1

Lce(s
∗(fi),Θ(fi)) +

G
∑

i=1

Lce(s
∗(bi),Θ(bi)),

(7)

where s∗ is the pseudo pixel-level annotation of size P and

Lce indicates cross-entropy loss.

To this end, given an image I and caption C pair, we gen-

erate pseudo box-level b∗ and pixel-level s∗ annotation for

the object of interest ct. In practice, the pseduo-mask an-

notations are generated for a pre-defined set of object cat-

egories obtained from training vocabulary. Fig. 5 visual-

izes the generated pseduo-mask annotations for various cat-

egories. Activated regions correspond well with objects of

interest and the generated pseduo-mask are of good quality.

3.2. Open­Vocabulary Instance Segmentation

After generating pseudo-mask annotations, we train an
open-vocabulary instance segmentation model. Following

[46], we employ a Mask-RCNN as the instance segmen-
tation model, where a class-agnostic mask head is utilized
to segment objects and the classification head is replaced
with embedding head hemb. Given a Image I, an encoder
network extracts image features and region embeddings,
R = {ri}i=1,...,Nr

, are obtained by RoI align [15] followed
by a fully connected layer, where Nr denotes the number of
regions. The similarity between the region and text embed-
ding pair is calculated as follows:

p(ri, cj) =
exp (hemb(ri) · cj)

exp(hemb(ri) · bg) +
∑

k
exp (hemb(ri) · ck)

,

(8)

where, C = {bg, c1, c2, ..., cNC
}, are object vocabulary

text representation obtained from pre-trained text encoder,

where NC is the training object vocabulary size. To learn

the semantic space, negative pairs are pushed away and pos-

itive pairs are pulled together using cross entropy loss ob-

tained from b∗. The class-agnostic mask head is super-

vised by minimizing standard segmentation loss [15] ob-

tained from s∗. During inference, the similarity between

the region proposals embedding and text embedding from a

group of object classes of interest is calculated. The region

is then assigned to a class with the highest similarity.

4. Experiments and Results

Datasets. Following [46], we conduct experiments on MS-

COCO [29] with data split of 48 base categories and 17

novel categories. The processed COCO dataset contains

107,761 training images and 4,836 test images. Follow-

ing [17], we conduct experiments on Open Images [21] to

verify the effectiveness of our method on the large-scale

dataset. The Open Images dataset consists of 300 categories

with a class split of 200 base categories (frequent objects)

and 100 novel categories (rare objects). Following [34],

we leverage image-labels obtained from MS-COCO and

Open Images to learn the novel category information. We

also experiment using image-caption datasets to show our

method’s effectiveness irrespective of training vocabulary.

Evaluation Metrics and Protocols. Following open-

vocabulary methods [17, 52], for both detection and seg-

mentation tasks, we report the mean Average Precision at

intersection-over-union (IoU) of 0.5 (mAP50). Following

zero-shot settings [46], we report novel category perfor-

mance for both constrained setting and generalized setting.

In constrained setting, the model is evaluated only on novel

class test images and in generalized setting, the model is

evaluated on both base and novel class test images.

Implementation Details. In pseudo-mask generation

framework, we use pre-trained ALBEF [25] as our vision-

language model. We conducted all our pseudo-mask gener-

ation experiments using ALBEF due to the good region-text

alignment when image and caption pair are present [25].

Following ALBEF, the cross-attention layer m used for
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Table 1. Object Detection (mAP) performances for MS-COCO under constrained and generalized setting. CB and CN are subset of CΩ,

where CΩ contains training vocabulary larger than COCO categories.

Method
Proposal

Generator
Language Supervision

Base

Annotation

Constrained

Novel

Generalized

Novel

WSDDN [5] - Image-labels in CB ∪ CN ✗ - 19.7

Cap2Det [45] - Image-labels in CB ∪ CN ✗ - 20.3

SB [2] RPN COCObase - ✓ 0.70 0.31

DELO [56] RPN COCObase - ✓ 7.60 3.41

PL [35] RPN COCObase - ✓ 10.0 4.12

OV-RCNN [46] RPN COCObase Image-caption in CB ∪ CN ✓ 27.5 22.8

CLIP-RPN [14] RPN COCObase CLIP image-text pair CΩ ✓ - 26.3

ViLD [14] RPN COCObase CLIP image-text pair CΩ ✓ - 27.6

Detic [54] RPN COCObase Image-caption in CB ∪ CN ✓ - 27.8

RegionCLIP [52] RPN LV ISbase Conceptual caption CΩ ✓ 30.8 26.8

PB-OVD [11] RCNN COCObase Image-caption in CB ∪ CN ✓ 32.3 30.7

XPM [17] RPN COCObase Image-caption in CB ∪ CN ✓ 29.9 27.0

Mask-free OVIS (Ours) WSPN COCObase Image-labels in CB ∪ CN ✗ 31.5 27.4

Mask-free OVIS (Ours) WSPN COCObase Image-labels in CB ∪ CN ✓ 35.9 31.5

Table 2. Instance Segmentation (mAP) performances for MS-COCO and Open Images under constrained and generalized setting.

Method
Proposal

Generator

(MS-COCO/OpenImages)

Base

Annotation

MS-COCO Open Images

Constrained

Novel

Generalized

Novel

Constrained

Novel

Generalized

Novel

OVR+OMP [4] - ✓ 14.1 8.3 24.9 16.8

SB [2] - ✓ 20.8 16.0 24.8 17.3

BA-RPN [51] - ✓ 20.1 15.4 25.3 16.9

Soft-Teacher [43] RPN COCObase/RPN OpenImgbase ✓ 14.8 9.6 25.9 17.6

Unbiased-Teacher [30] RPN COCObase/RPN OpenImgbase ✓ 15.1 9.8 22.2 14.5

OV-RCNN [46] RPN COCObase/RPN OpenImgbase ✓ 20.9 17.1 23.8 17.5

XPM [17] RPN COCObase/RPN OpenImgbase ✓ 24.0 21.6 31.6 22.7

Mask-free OVIS (Ours) WSPN COCObase/WSPN COCObase ✗ 27.4 25.0 35.9 25.8

Grad-CAM visualization is set to 8. For attention score,

we directly employ the original setting of ALBEF and no

additional modification is performed. Note that other pre-

trained vision-language models can also be integrated into

our pipeline without major modifications. For the proposal

generation pipeline, the WSPN network is trained using

COCO base image-labels and the top K proposals candi-

dates is set to 50. The WSPN network is trained for 40k

iterations with learn rate 0.001 and weight decay 0.0001.

For iterative masking, the hyper-parameter G is set to 3. In

the segmentation pipeline, for each patch, the segmentation

network is trained for 500 iterations with lr 0.25.

For fair-comparison [17, 46], we use Mask R-CNN with

a ResNet50 backbone as our open-vocabulary instance seg-

mentation model. During pseudo-mask training, we train

Mask-RCNN on MS-COCO and OpenImages using batch

size 8 on 8 A5000 GPUs for 90k iterations. Following

[11, 14], we use text embeddings obtained from a pre-

trained CLIP text encoder. During pseduo-mask training,

the initial learning rate is set 0.01 and the background class

weight is set to 0.2 to improve the recall of novel classes

[46]. For base fine-tuning, the initial learning rate is set to

0.0005 and the weight decay is set to 0.0001. We run fine-

tuning for 90k iterations where the learning rate is updated

by a decreasing factor of 0.1 at 60k and 80k iterations.

Object Detection: As shown in Table 1, we compare our

method with previous established open-vocabulary detec-

tion methods on the MS-COCO dataset. Compared to

weakly-supervised methods such as WSDDN [5] and zero-

shot methods such as SB [2], DELO [56], our method out-

performs them by a large margin. OV-RCNN [46], XPM

[17] are OVD methods based on caption pre-training and

our method trained with only pseudo-labels improves the

novel category performance by 20.2% and 2.4% in gener-

alized setting, respectively. Also, when compared to the

method which leverages pre-trained vision-language mod-

els such as ViLD [14], RegionCLIP [52], PB-OVD [11],

our method with just pseudo-labels produces similar per-

formance. However, with fine-tuning on base annotations,

our method outperforms ViLD [14], RegionCLIP [52], PB-

OVD [11] by 13.3%, 14.9% and 2.8% in generalized set-

ting, respectively. This is because with fine-tuning, the

model learns task/domain specific information from noise-

free annotations, boosting the novel category performance.

Even without base annotations, our method outperforms

most of the existing OVD methods supervised using base

annotations. This shows the effectiveness of our method for

learning quality representation for novel categories. Specif-
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Table 3. Object detection and Instance segmentation ablation analysis for GradCAM, Pseudo-label and Mask-RCNN training.

Method
Language

Supervision

Mask-RCNN

Training

Base

Annotation

Object Detection Instance Segmentation

Constrained Generalized Constrained Generalized

Novel/Base Novel/Base/All Novel/Base Novel/Base/All

GradCAM CN ✗ ✗ 8.6/0.0 - 5.2/0.0 -

PL CN ✗ ✗ 17.3/0.0 - 14.8/0.0 -

PL + Mask-RCNN CN ✓ ✗ 31.1/0.4 27.1/0.6/7.6 27.0/0.5 24.7/0.5/6.9

PL + Mask-RCNN CB ∪ CN ✓ ✗ 32.4/22.4 29.3/22.8/24.5 27.4/18.4 25.0/18.3/20.1

PL + Mask-RCNN CB ∪ CN ✓ ✓ 35.9/40.7 40.0/31.5/37.7 31.2/36.7 36.0/28.7/34.0

ically, the quality representation is learned due to the quality

proposal generated by WSPN compared to fully-supervised

RPN and RCNN proposal generators.

Instance Segmentation: Table 2 compares our method with

previous open-vocabulary instance segmentation methods

on the MS-COCO and Open Images datasets. SB [2] and

BA-RPN [51] are zero-shot methods which utilize different

background modelling strategies and caption pre-training to

learn novel categories. Compared to these, our method im-

proves the novel category performance by a large margin on

both datasets and settings. When compared against conven-

tional pseudo-labelling methods, such as soft-teacher [43]

and unbiased teacher [30], our method significantly im-

proves on MS-COCO and Open Images datasets. Finally,

when compared to open-vocabulary methods such as OV-

RCNN [46], XPM [17], our method outperforms by 4.6 and

3.1 mAP in COCO and Open Images in generalized setting,

respectively. All these comparisons are performed against

our method trained with just pseudo-labels and no base an-

notation is used during training. This shows the effective-

ness of our overall pseudo-mask generation pipeline.

4.1. Ablation Study

GradCAM vs Pseudo-Labels vs Mask-RCNN Training.

In Table 3, we analyze the quality of pseudo-labels gen-

erated from the GradCAM activation map and our method

(PL). After pseudo-label generation, we show how Mask-

RCNN training helps to improve the quality of prediction

compared to pseudo-labels. Finally, we show how fine-

tuning on base annotation improves our method. In the first

row, we evaluate the pseudo-mask for novel samples, where

the pseudo-mask is generated by normalizing and threshold

the GradCAM activation map. In the second row, we eval-

uate the pseudo-mask for novel samples, where the pseudo-

mask is generated by our method. From Table 3, we can

observe the quality of the pseudo-mask generated by our

method for novel samples is much better than the GradCAM

activation map as a pseudo-mask. From Table 3 third row,

we can observe training a Mask-RCNN on pseudo-labels

improves the performance on novel categories by modelling

fine-grained information. By including pseudo-labels from

base categories, we observe that the performance on novel

samples further improves. Finally, when fine-tuning on base

annotations, the performance on novel categories signifi-

Table 4. Ablation analysis for object detection and instance seg-

mentation under different language supervision.

Method
Language

Supervision

Object Detection Instance Segmentatn

Constrnd

Novel

Genrlzd

Novel

Constrnd

Novel

Genrlzd

Novel

OV-RCNN [46] Image-caption COCO 27.5 22.8 - -

PB-OVD [11] Image-caption COCO - 29.1 - -

PB-OVD [11] Img-Cap COCO, SBU, VG 32.3 30.8 - -

Ours Image-labels COCO 35.9 31.5 31.0 28.3

Ours Image-caption COCO 36.1 31.8 31.5 28.8

Table 5. Ablation analysis for object detection under different pro-

posal generator. All models are fined-tuned on COCO base.

Method Proposal Generator
Constrained

Novel

Generalized

Novel

OV-RCNN [46] RPN COCO Base 27.8 22.8

PB-OVD [11] RCNN COCO Base 32.3 30.8

Ours Selective Search 34.5 31.0

Ours WSPN COCO Base 35.9 31.5

cantly improves by learning task/domain specific informa-

tion from noise-free manual annotations.

Language supervision. Given an image and caption pair,

our method can generate a pseudo-mask leveraging a pre-

trained vision-language model. Thus to analyze the effect of

captions, we conduct experiments between human-provided

captions and pseudo-captions generated from image-labels.

As show in Table 4, human-provided captions and image-

labels based pseudo-caption produce similar performance

showing that irrespective of caption type, our method can

generate pseudo-mask for the object of interest (see sup-

plementary material for visual comparison). Therefore, our

method is more data efficient as it requires cheap image-

labels compared to human-provided captions. Table 4 com-

pares our method with other pseudo-label generation meth-

ods trained with extra language supervision [11]. Our

method, with lesser language supervision, outperforms [11]

by a considerable margin.

Proposal Generator Quality vs Performance. In general,

better quality of proposal provides better quality of pseudo-

labels. Therefore, we generated pseduo-labels using differ-

ent proposal generator and the results are reported in Table

5. As shown in Table 5, our method trained with WSPN

as proposal generator is produces better performance com-

pared to methods which rely on fully-supervised proposal

generator such as RPN and RCNN. Also when compared to

selective search as proposal generator, WSPN demonstrates

better performance for novel categories. This is because

WSPN refines selective search proposals and localizes them

23545



A woman holding 

an umbrella. A photo of Dog.

A) Visualization of activation map and pseudo-bbox (     )b* B) Pseudo-mask annotations

Figure 5. A) Pseduo bounding box selection guided by GradCAM activation. B) Visualization of pseudo-mask generated for Open Images.
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Figure 6. Ablation study for object detection and instance segmen-

tation by increase number of masking iteration during PL genera-

tion. As iteration increases, GradCAM activation becomes noisy

resulting in poor guidance and pseudo-mask generation.

towards objects producing better quality proposals.

Iterative Masking Steps vs Performance. Fig. 6 presents

ablation analysis for iterative masking hyper-parametr G.

We see that for initial few masking steps the performance

increase. Because, without any masking the GradCAM ac-

tivation map is towards most discriminative parts of an ob-

ject. As we mask out these region, the less discriminative

regions gets activated and combining activation from previ-

ous steps produce a strong guidance function Φt. How-

ever, performing too many mask iterations could com-

pletely mask out the object of interest and unrelated back-

ground regions might get activated resulting in a poor Φt.

Weakly-supervised Instance Segmentation. Weakly-

supervised Instance Segmentation (WSIS) methods per-

forms instance-segmentation using supervision from image-

labels. Similar to WSIS setting, our method performs

instance-segmentation using just image-labels. Following

this, we simply extended our method to WSIS setting by

comparing with VOC benchmark. PENet [12] is a recent

WSIS method, which relies on multiple downstream task

network such as segmentation, detection and multi-class

classification to perfrom segmentation. CL [18] and IAM

[57] are WSIS methods utilize advanced attention mecha-

nism to generate instance segmentation mask. As shown in

Table 6, our method outperform existing WSIS methods by

considerable margin. Thus, the proposed method is simple

and can be easily extended to OV setting or WSIS setting

producing SOTA performance. Note that, other OV meth-

ods cannot be extended to WSIS setting as they rely on base

Table 6. Instance segmentation(mAP) performance for VOC in

weakly-supervised instance segmentation setting.

Method Supervision mAP

Mask-RCNN [15] F 67.9

OCIS [8] I 26.8

PRM [55] I 28.3

IAM [57] I 30.2

CL [18] I+C 30.2

PENet [12] I 38.1

Ours I 38.6

annotation and similarly WSIS methods cannot be extended

to OV setting due to constrained vocabulary space.

Qualitative Analysis. Fig. 5 (A) presents a visualization of

activation maps generated for the object of interest (woman

and dog). As we can see, the generated activation map cov-

ers the entire object and it can be used as a guidance func-

tion to choose the best bounding box proposal. Note that

the activation are square-shaped because the original acti-

vation map is 1/16’th of the image size. We perform nearest

interpolation to obtain an activation map of image size. In

Fig 5 (B), we visualize the pseudo-mask for Open Images

generated from our pipeline. We can observe that the gen-

erated pseudo-mask is of good quality; still contains some

false positives. However, with Mask-RCNN training, the

model learns to filter the noise present in the pseudo-mask

producing better-quality predictions.

5. Conclusion

We propose a novel pipeline called Mask-free OVIS for

open-vocabulary instance segmentation, which eliminates

the need for costly and time-consuming manual mask an-

notations. We achieve this by generating pseudo-mask an-

notation for base and novel categories by leveraging a pre-

trained vision-language model and weakly supervised tech-

niques. The generated pseudo-mask annotations are then

used to supervise the Mask-RCNN model. Extensive ex-

periments are conducted to show the effectiveness of our

method on MS-COCO and Open Images datasets. Instead

of relying on labour-expensive instance-level annotations,

we hope our simple and effective pipeline provides an alter-

native to detect and segment long-tailed novel categories.
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