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Abstract

Supervised neural networks are known to achieve excel-
lent results in various image restoration tasks. However,
such training requires datasets composed of pairs of cor-
rupted images and their corresponding ground truth tar-
gets. Unfortunately, such data is not available in many ap-
plications. For the task of image denoising in which the
noise statistics is unknown, several self-supervised training
methods have been proposed for overcoming this difficulty.
Some of these require knowledge of the noise model, while
others assume that the contaminating noise is uncorrelated,
both assumptions are too limiting for many practical needs.
This work proposes a novel self-supervised training tech-
nique suitable for the removal of unknown correlated noise.
The proposed approach neither requires knowledge of the
noise model nor access to ground truth targets. The in-
put to our algorithm consists of easily captured bursts of
noisy shots. Our algorithm constructs artificial patch-craft
images from these bursts by patch matching and stitching,
and the obtained crafted images are used as targets for the
training. Our method does not require registration of the
images within the burst. We evaluate the proposed frame-
work through extensive experiments with synthetic and real
image noise.

1. Introduction
Supervised neural networks have proven themselves

powerful, achieving impressive results in solving image
restoration problems (e.g., [14–16, 18, 33, 41–43]). In the
commonly deployed supervised training for such tasks, one
needs a dataset consisting of pairs of corrupted and ground
truth images. The degraded images are fed to the network
input, while the ground truth counterparts are used as guid-
ing targets. When the degradation model is known and easy
to implement, one can construct such a dataset by applying
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the degradation to clean images. However, a problem arises
when the degradation model is unknown. In such cases,
while it is relatively easy to acquire distorted images, ob-
taining their ground truth counterparts can be challenging.
For this reason, there is a need for self-supervised methods
that use corrupted images only in the training phase. More
on these methods is detailed in Section 2.

In this work we focus on the problem of image denoising
with an unknown noise model. More specifically, we as-
sume that the noise is additive, zero mean, but not necessar-
ily Gaussian, and one that could be cross-channel and short-
range spatially correlated1. We additionally assume that the
noise is (mostly) independent of the image and nearly ho-
mogeneous, i.e., having low to moderate spatially variant
statistics. Examples of such noise could be Gaussian corre-
lated noise or real image noise in digital cameras. Several
recent papers propose methods for self-supervised training
under similar such challenging conditions. However, they
all assume an uncorrelated noise or a noise with a known
model, thus limiting their coverage of the need posed.

This work proposes a novel self-supervised training
framework for addressing the problem of image denois-
ing of an unknown correlated noise. The proposed algo-
rithm gets as input bursts of shots, where each frame in
the burst captures nearly the same scene, up to moderate
movements of the camera and objects. Such sequences of
images are easily captured in many digital cameras. Our
algorithm uses one image from the burst as the input, utiliz-
ing the rest of the frames of the same burst for constructing
(noisy) targets for training. For creating these target images,
we harness the concept of patch-craft frames introduced in
PaCNet [35]. Similar to PaCNet, we split the input shot
into fully overlapping patches. For each patch, we find its
nearest neighbor within the rest of the burst images. Note
that, unlike PaCNet, we strictly omit the input shot from
the neighbor search. We proceed by building m patch-craft

1By short-term we refer to the case in which the auto-correlation func-
tion decays fast, implying that only nearby noise pixels may be highly cor-
related. The correlation range we consider is governed by the patch size in
our algorithm - see Section 3 for more details.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5795



images by stitching the found neighbor patches, where m
is the patch size, and use these frames as denoising targets.
The above can be easily extended by using more than one
nearest neighbor per patch, this way enriching dramatically
the number of patch-craft frames and their diversity.

The proposed technique for creating artificial target im-
ages is sensitive to the possibility of getting statistical de-
pendency between the input and the target noise. To com-
bat this flaw, we propose a method for statistical analysis
of the target noise. This analysis suggests simple actions
that reduce dependency between the target noise and the
denoiser’s input, leading to a significant boost in perfor-
mance. We evaluate the proposed framework through ex-
tensive experiments with synthetic and real image noise,
showing that the proposed framework outperforms leading
self-supervised methods. To summarize, the contributions
of this work are the following:

• We propose a novel self-supervised framework for
training an image denoiser, where the noise may
be cross-channel and short-range spatially correlated.
Our approach relies simply on the availability of bursts
of noisy images; the ground truth is unavailable, and
the noise model is unknown.

• We suggest a method for statistical analysis of the tar-
get noise that leads to a boost in performance.

• We demonstrate superior denoising performance com-
pared to leading alternative self-supervised denoising
methods.

2. Related Work
This paper focuses on denoising of images when the

noise model is unknown. However, there are various levels
in this lack of knowledge, and accordingly, different levels
of corresponding solutions. The most simple case is when
the noise is known to be zero-mean Gaussian i.i.d (inde-
pendent and identically distributed), and the only unknown
parameter is the standard deviation σ. In this case, training
a single model for handling a range of σ values can be an
efficient and elegant solution [12,19,34,41]. This approach
is known as blind denoising [19]. Unfortunately, such a net-
work is likely to perform very poorly when applied to im-
ages contaminated by a correlative or a non-Gaussian noise.

An approach known as Noise2noise [13] assumes that
ground truth images are not available, but the training
dataset consists of pairs of noisy images created by adding
independent noise realizations to the same clean image.
Noise2noise suggests to train on such image pairs, both be-
ing noisy but with independent noise realizations. Work re-
ported in [17] adopts a similar yet different approach by
utilizing pairs of noisy images to estimate a noise model,
which is then employed for supervised training. These

methods have been shown to be quite effective, however,
the missing ingredient is the lack of an accessible way for
acquiring such perfectly aligned noisy pairs, rendering these
methods as challenging in real circumstances.

A more common assumption is that the noise model is
known, but ground truth images are not available. Several
works (e.g., [21,23,38]) utilize the idea of Noise2noise [13]
for handling these cases as well. They propose, each in its
own way, to create noisy image pairs. For instance, the
work in [21, 38] suggests adding independent realizations
of synthetic noise that follows the known model to the input
images, then training a network using the noisier images
as inputs and the original noisy ones as targets. Alterna-
tively, [23] adds two different realizations of synthetic noise
to the input images for training the denoising network.

A different idea proposed in [26, 27] is harnessing a
variational auto-encoder (VAE) [7] to solve the denoising
task. These techniques assume that the noise distribution
is known, either as a formula or as a histogram. These al-
gorithms construct a VAE that gets noisy images at the in-
put and produces reconstructed ones at the output. In the
training stage, they maximize the log-likelihood probabil-
ity of the noisy image given the reconstructed one when
the probability is calculated using the provided noise dis-
tribution formula or the histogram. In the inference stage,
they use the VAE to generate many candidate outputs and
then obtain the reconstructed image by approximating the
MMSE or MAP estimate.

Another self-supervised technique suitable for these as-
sumptions was introduced in [34] for lightweight architec-
tures, and extended in [20] for more general networks. This
technique, referred to as noise resampling, suggests the fol-
lowing: First, train an initial denoiser somehow and apply
it to a set of corrupted images to obtain initial reconstruc-
tions. Then, for each reconstructed image, create its noisy
counterpart by adding a new synthetic noise. Finally, retrain
the network using pairs of re-corrupted and reconstructed
images. When the noise model is unknown, noise-to-noise
and noise resampling methods can be applied by assuming
Gaussianity and estimating the parameter σ. However, such
a strategy may lead to inferior performance when the noise
is correlated or strongly deviates from Gaussianity.

A less strict assumption is that the noise model is un-
known, but the noise is spatially independent. For such
a case, several papers in recent literature have proposed
to train networks that utilize the same noisy image both
as input and output while applying various regularizations.
For brevity of our discussion, we shall refer to these as
image2itself techniques. For instance, Noise2void [8, 9]
suggest using a blind-spot architecture in which the re-
ceptive field of each processed pixel excludes the pixel it-
self. Such a strategy constrains the network by avoiding
to learn the trivial identity operation. The work reported
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in [2, 10, 11, 28, 37] and other papers take this idea for-
ward by suggesting more sophisticated blind-spot methods,
sometimes combining them with additional regularization
terms.

Blind-spotting is not the only regularization idea for
these circumstances. For example, Neighbor2neighbor [5]
proposes generating training pairs by random sub-sampling
the same noisy image. The sub-sampling is conducted such
that corresponding pixels of the same image pair are neigh-
bors in the sampled image, thus having a very similar ap-
pearance. Alternatively, the works reported in [31,44] use a
regularizer based on the SURE [32] estimator as a replace-
ment for the supervised targets.

Unfortunately, all these image-to-itself methods strongly
rely on a spatial independence property of the noise, and
therefore are doomed to overfit when the contaminating
noise is correlated. In such a case, the network may confuse
the noise for content, impairing the denoising performance.
Worth noting is the exception in which HDN [26] shows an
ability to recover microscopy images from structured noise.
However, as natural images are considerably more diverse
than microscopy ones, their approach may find a challenge
when applied to general denoising tasks.

3. Proposed Framework – Preliminaries
This paper proposes a self-supervised framework for

training denoisers using bursts of noisy images. Captured
objects do not have to be static, yet we recommend avoid-
ing bursts that contain sharp movements or severe lighting
changes. One can obtain such sequences using burst mode
in digital cameras or recording short videos.

We start by introducing some notations. Denote a noisy
burst as {y1, . . . ,yM}, where M is the burst length and
yi is the i’th image. The clean image and the input noise
corresponding to yi are denoted by xi and zi, respectively,
and thus zi = yi − xi. The symbol f(·) stands for a de-
noiser and x̂i for the reconstructed counterpart of yi, i.e.,
x̂i = f (yi). Finally, we denote the artificial target im-
age corresponding to yi by x̃i, and the target noise by wi,
wi = x̃i − xi. The proposed framework is shown schemat-
ically in Figure 1. Our algorithm harnesses the concept of
patch-craft frames introduced in [35]. Each input burst
{y1, . . . ,yM} is split into two subsets: The first is yi, con-
sisting of a single shot, and the the second, Γ, containing
the rest of the images, Γ = {y1, . . . ,yM} \yi. The image
yi is used as a denoiser’s input, while the set Γ is fed to the
patch-craft block for creating an artificial target, x̃i.

The patch-craft block operates as follows. We start from
splitting the input shot yi to fully overlapping patches of
size n×n, boundary pixels handled by mirror padding. As a
result, we get n2 sets of non-overlapping patches that cover
the full support of the image, {Υk,l}n−1

k,l=0, to which we re-
fer by their offsets from the left upper corner. Two examples

of such sets are shown in Figure 2. The offsets vary from
(0, 0), i.e., no offset, to (n− 1, n− 1). Each of the images
{Υk,l} can be converted to a patch-craft image {ỹk,l} by re-
placing each patch in Υk,l with its nearest neighbor from the
set Γ and cutting out pixels corresponding to the padding.
For finding the neighbors, we use an L2 distance while the
search in each image of Γ is restricted by a bounding box
of size B×B centered at the patch location. Finally, at any
iteration of the training, we randomly choose one of the n2

available patch-craft images {ỹk,l} to be a target x̃i. Fig-
ure 3 shows an example of a noisy image and one of the
corresponding patch-craft images.

Few notes are in order: Since the neighbor patches come
from different locations, all n2 patch-craft images con-
structed from the same burst are similar but not identical.
Each holds additional information enriching the training
process. Furthermore, the proposed technique can be ex-
tended by finding k nearest neighbors per patch and choos-
ing one of them (e.g. randomly) in the patch-craft construc-
tion. This extension may increase the number of possible
patch-craft images, substantially enriching their diversity.

4. Proposed Framework - Analysis
Consider a denoiser fθ(·) parameterized by θ that gets

a noisy image y and produces it’s reconstructed image x̂,
i.e., x̂ = fθ(y). The desired (ground truth) image is de-
noted by x and the input noise is z, thus y = x+ z. In this
section we discuss a training procedure in which instead of
clean targets x, one uses noisy ones x̃ contaminated by a
target noise w, w = x̃−x. Generally, training a denoiser is
sensitive to the dependency between the input image y and
the target noise w. To illustrate this vulnerability, imagine
the extreme case where w is equal to z for all pairs in the
dataset. In such a case, the input and target images would
be identical, and the denoiser would learn the useless iden-
tity operation. This example aligns with the intuition that
lowering such dependency may result in better training and
eventual denoising performance. In this section we propose
a statistical analysis of the target noise and suggest a simple
way to reduce it’s dependency with the input noise.

4.1. Ideal Case

Results reported in Noise2Noise [13] suggest that if the
target noise is independent of the network’s input, using
these targets for training a denoiser may be almost as ef-
fective as using the ground truth images. We formalize this
hereafter, and start with few supporting notations.

Let l = 1
2 ∥fθ(y)− x∥22 be the supervised L2 loss of the

single image pair {fθ (y) ,x}. Denote by ∇θl the gra-
dient of l w.r.t. θ, ∇θl = ∇T

θ fθ(y) (fθ(y)− x) . Then
the supervised MSE loss and its full gradient are given
by L = E [l] and ∇θL = ∇θ (E [l]) = E [∇θl]. Similarly,
we denote the self-supervised L2 loss of {fθ (y) , x̃} by
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Figure 1. The proposed self-supervised training framework based on bursts of images and patch-craft created target images.

(a) Υ0,0 (b) Υk,l

Figure 2. Examples of sets of non-overlapping patches. The solid
part of the rectangle represents the input image support, while the
dashed part stands for the boundary effects. Figure 2a shows the
case of an offset (0, 0), while Figure 2b refers to an offset (k, l).

(a) Noisy image (b) Patch-craft image

Figure 3. An example of a noisy shot and one of the corresponding
patch-craft images.

l̃ = 1
2 ∥fθ(y)− x̃∥22. Correspondingly, the gradient of l̃ is

denoted by ∇θ l̃, being ∇θ l̃ = ∇T
θ fθ(y) (fθ(y)− x̃).

Lemma 1. If the target noise w is independent of the image
x and noise z, and admits a zero-mean E [w] = 0, then ∇θ l̃

is an unbiased estimator of ∇θL, i.e., E
[
∇θ l̃

]
= ∇θL.

The proof of the Lemma is given in appendix A. The
implication is that under appropriate assumptions, self-
supervised training with noisy targets is equivalent to a vari-
ation of the SGD [29] algorithm with the regular supervised
MSE loss. Thus, all guarantees and intuitions that are valid
for a supervised training with SGD and an MSE loss are
also correct for training with noisy targets.

Returning to the proposed scheme, a conclusion from
Lemma 1 is that statistical independence between the input

image yi and the target noise wi is desirable. Therefore,
as a first and simple step for reducing this dependency, we
omit yi from the set Γ. A further method for reducing this
dependency is discussed next.

4.2. Dependency Reduction

As mentioned above, the training procedure can be sensi-
tive to a statistical dependency between the target noise and
the network’s input, and thus we seek ways to reduce it. We
bring in this section the main points of the proposed method,
leaving formal proofs and other details to appendix B.

As the proposed method may seem counter-intuitive at
first glance, we start by building the reader’s intuition grad-
ually. Let us discuss the two most common types of depen-
dencies that may be introduced by patch matching: (I) over-
fitting input noise and (II) underfitting ground truth images.
Dependency of type (I) refers to cases when patch matching
does a “too good” job, bringing target noise w that mimics
the input noise, z. This dependency is characterized by a
positive correlation between w and z.

As for type (II) dependency, it happens when the patch-
craft, x̃, and ground truth, x, images tend to be dissimilar. It
is less intuitive, but this dependency is manifested in a neg-
ative correlation between w and x. Here is brief explana-
tion of this phenomenon: Consider the following scalar co-
variances computed over pairs of images: σx̃,x̃ σx,x̃, σx,w,
and σx,x. Clearly, σx,x̃ = σx,x + σx,w. Assuming that
σx̃,x̃ ≈ σx,x, the dissimilarity between x̃ and x reduces the
value of σx,x̃, which means that σx,w is necessarily nega-
tive (see more on this phenomenon in appendix B).

Let us look at an empirical covariance between y and
r, denoted by sy,r, where r = x̃ − y. This covariance is
a scalar obtained for each possible image pair {y, r}. By
assessing many such pairs, we get a histogram of these co-
variance values, which we analyze next. Observe that these
covariance values are accessible, easily computed from the
data we have. Here are few facts regarding sy,r:

• If x, z, and w are mutually independent, sy,r con-
verges in distribution to a Gaussian centered at −σ2

z
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(a) Correlated Gaussian noise (b) Real image noise

Figure 4. Examples of sy,r histograms in experiments with corre-
lated Gaussian and real image noise. The yellow bar is located at
the histogram peak, while the black bar shows the location of the
mean. The red bar indicates the location of smin.

and thus E [sy,r] = −σ2
z .

• Type (I) dependency implies that z and w are heavily
correlated, thus E [sy,r] > −σ2

z . However, for large
enough patch-sizes, and when discarding yi from the
set Γ, this behavior is expected to be rare and can be
disregarded.

• We have seen that type (II) dependency leads to nega-
tive values of σx,w. Thus, we get that E [sy,r] < −σ2

z .

A formal proof of these statements is given in appendix B.
Let us now return to the sy,r histogram, while assuming

that the dependency of type (I) is low. Figure 4 presents
two examples of such histograms for two types of noise -
more details on these noise realizations is given in the next
section. One can easily spot the expression of type (II) de-
pendencies in both – the longer left tail. Note that the his-
tograms are cropped, and the tail is longer than shown in
the figures (especially in Figure 4a). As expected, due to
this dependency, the histogram mean is shifted left relative
to its peak. To reduce this dependency, we cut the left tail
by excluding from the training set all image pairs for which
sy,r < smin. The threshold smin is set such that the mean
of the resulting histogram coincides with its peak. As shown
in Figure 5, the dependency reduction substantially boosts
denoising performance.

5. Experimental Results
We turn to report the denoising performance of the pro-

posed framework and its comparison with leading self-
supervised methods. Our framework is referred to as
Patch-Craft (PC). We consider two experiments, one with
correlated Gaussian noise and the second with real-world
noise. In both experiments, we train networks in an adapta-
tion manner [34], beginning with bias-free networks [19]
pre-trained for blind i.i.d. Gaussian denoising task, and
retraining them using the proposed patch-craft method.
We consider two different architectures for our scheme:
DnCNN [41] and U-Net [30]. The first is similar to the one

(a) Correlated Gaussian noise (b) Real image noise

Figure 5. Validation PSNR before and after dependency reduc-
tion. The blue line shows validation PSNR vs. epoch number
during training on the full dataset, while the orange line indicates
the PSNR after excluding image pairs for which sy,r < smin.

used in [6], while U-Net is taken from [19]. We use bias-
free versions of both networks. We denote by PC-DnCNN
and PC-UNet the networks retrained using the PC frame-
work, where B-DnCNN and B-UNet stand for their initial
versions trained for blind i.i.d. Gaussian denoising.

For comparison, we choose three latest state-of-the-art
(SoTA) self-supervised training methods: Recorrupted-to-
recorrupted (R2R) [23], Neighbor2Neighbor (N2N) [5], and
Blind2Unblind (B2U) [36]. In addition, we show a compar-
ison with BM3D [3], which gets as input parameter the stan-
dard deviation, σ, of the noise. Since the noise is not i.i.d.
Gaussian, the actual standard deviation is not necessarily
the optimal parameter for BM3D. Thus we apply BM3D
with two configurations: a BM3D with the actual σ of the
noise, and a grid search to find the best performing parame-
ter. We call this configuration oracle BM3D (O-BM3D).

Our algorithm requires bursts of images for training.
Therefore, we use datasets containing short video sequences
in all experiments. Our analysis suggests that the patch
size, n, should be big. Moreover, it should grow with the
standard deviation of the noise, σ, and correlation range.
Following this, we increase the value of n accordingly.
For quantitative evaluation, we choose the commonly used
PSNR and SSIM metrics. For more technical details regard-
ing the training, we refer the reader to appendices H and I.

5.1. Correlated Gaussian Denoising

We start with additive correlated Gaussian noise, using
the DAVIS dataset [25] at 480p resolution. We train the
networks on 90 bursts of length 7 frames, each taken from a
different training video sequence at an arbitrary location. In
each training burst, the middle frame is used as the network
input, whereas the rest 6 are utilized for building the patch-
craft targets. For the test, we use frames taken from 30 test
video sequences. From each sequence we take 3 noncon-
secutive frames at arbitrary locations. Each of the obtained
90 test frames is denoised as a single image.

The correlated noise is created by convolving an i.i.d.
Gaussian noise with a rectangular flat kernel of size k × k.
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The competing methods are trained using the code pack-
ages and parameters supplied by the authors. For R2R, we
choose α = 2 among the three options listed in the original
paper (0.5, 2, 20) since it leads to the best denoising results.

Table 1 summarizes the denoising performance for vari-
ous σ and k values. Figure 6 and Figures 11, 12, and 13 in
appendix I show visual comparisons between the denoised
images. As can be seen from the table and figures, the cur-
rent SoTA self-supervised methods with which we compare
face difficulties 2 in train networks when the noise is cor-
related, when the difficulty increases with the correlation
range and the intensity of the noise. The classical, signal
processing oriented, O-BM3D method achieves relatively
high PSNR (typically 1-3 dB below networks trained using
our framework). However, as can be seen from the figures,
in the case of moderate to severe noise, the visual quality
of the O-BM3D outputs leaves much to be desired since the
method tends to produce blurred images or leave a notice-
able amount of low-frequency noise unfiltered. Not to men-
tion that finding the optimal parameter σ for BM3D when
the ground truth targets are unavailable may not be easy.

5.2. Real-World Noise Removal

Real-world noise refers to a particular sensor whose
model is unknown, and it’s distribution may vary with sen-
sor parameters such as ISO, aperture, exposure time, etc..
Finding a dataset for this evaluation is a challenging task.
To the best of our knowledge, there are no burst or video
datasets with such noise that include ground truth images.
For example, it is impossible to use the popular SIDD [1],
DND [24], CC [22], and PolyU [39] datasets, as they only
contain single images and not bursts.

For conducting a real-world image denoising experi-
ment, we use the CRVD [40] dataset, which consists of
11 groups of noisy pictures taken in a photo laboratory and
their ground truth counterparts. Each group captures a dif-
ferent scene, each scene is captured 7 times, there is some
movement between each capture. Each of these groups of
7 images can be considered as an artificial video sequence.
However, the movements of objects and changes in light-
ing captured in these artificial sequences are incomparably
sharper than in a typical video or an image burst. Examples
of such artificial video sequences are presented in figure 10
in Appendix Appendix I.

When applying the patch-craft framework, it is better to
avoid sequences with sharp movements and severe light-
ing changes since the latter makes patch matching diffi-
cult. With that in mind, it is interesting that our framework
achieves favorable results even when trained on a small and
challenging dataset. Thus, among other things, this experi-
ment indicates the robustness of the proposed method.

2B2U [36] training sometimes loses stability, getting extremely low
PSNR/SSIM on images contaminated with spatially correlated noise.

Since the CRVD dataset is small, we augment it by repli-
cating each sequence 7 times, where in each replica a dif-
ferent image is used as a middle frame. Then, similarly to
the correlated Gaussian denoising experiment, we use the
middle frames as network inputs, and use the 6 surrounding
frames for building the patch-craft targets. We test the net-
work using the same 77 CRVD frames by comparing their
output with the ground truth images. Note that the network
can not overfit the ground truth images, as they are not avail-
able during training.

Since the competing methods are not designed for train-
ing on CRVD, we adapt the CRVD dataset in such a way
that each method trains in the conditions close to the ones
described in its paper. R2R uses a set containing 400 im-
ages of size 180 × 180 pixels, augmenting it with scaling
by 4 factors (1, 0.9, 0.8, 0.7). Thus, for training R2R, we
use 4 × 400 random crops of CRVD images, each crop of
size 180 × 180. Note that we disable the scaling augmen-
tation since scaling may affect the noise statistics. Also, we
choose α = 2 which leads to the best denoising results. Un-
like R2R, N2N and B2U methods train their networks using
44, 328 images from ImageNet [4]. For N2N and B2U we
create 44, 328 random crops of the CRVD images, each of
size 256× 256.

Table 2 summarizes the denoising performance for dif-
ferent ISO values. A visual comparison of the denoised im-
ages is shown in Figure 6 and Figures 14, 15, and 16 in
Appendix I. These results lead to a similar conclusion as
in the correlated Gaussian denoising experiment: The cur-
rent SoTA self-supervised methods that we compare with
face difficulties in training when the contaminating noise
is correlated, and this difficulty strengthens with ISO. For
high ISO values, our framework outperforms the O-BM3D
in terms of PSNR and SSIM, where the latter tends to leave
a noticeable amount of low-frequency noise unfiltered.

6. Conclusion
Recent literature pays relatively little attention to the

problem of correlated noise reduction in images, proba-
bly due to its toughness. Such methods can be used,
for instance, for real-world noise reduction in sRGB color
space3, since such noise is usually correlated. This pa-
per proposes a novel self-supervised framework for train-
ing a denoiser where the contaminating noise is spatially
and cross-channel correlated. The proposed framework re-
lies on the availability of bursts or short video sequences of
noisy frames. Our method applies patch matching for build-
ing patch-craft images and employs them as training tar-
gets. We present a statistical analysis of the target noise that

3Note that some self-supervised learning methods, including R2R,
B2U, and N2N, do succeed and show good denoising performance in raw-
RGB color space, since the noise in this space has lower spatial and cross-
channel correlations [22, 40]. However, this is not the case in sRGB.
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σ k Noisy R2R N2N B2U BM3D O-BM3D B-DnCNN B-UNet PC-UNet PC-DnCNN

5

2 34.15 38.88 35.20 29.30 38.28 39.69 37.83 36.73 39.27 39.57
0.852 0.960 0.886 0.720 0.951 0.969 0.945 0.923 0.967 0.969

3 34.15 37.29 34.64 28.74 36.50 38.19 36.02 35.25 38.67 38.81
0.859 0.943 0.879 0.719 0.926 0.957 0.916 0.896 0.964 0.965

4 34.16 36.22 34.48 30.46 35.83 37.13 35.33 34.83 38.06 38.31
0.868 0.930 0.885 0.765 0.920 0.948 0.908 0.894 0.961 0.964

10

2 28.13 34.55 29.55 23.65 33.25 35.37 32.82 31.57 35.89 36.10
0.639 0.902 0.707 0.441 0.867 0.927 0.850 0.799 0.937 0.939

3 28.13 32.5 28.85 23.85 30.96 33.56 30.44 29.64 35.16 35.32
0.653 0.849 0.693 0.454 0.796 0.897 0.774 0.736 0.932 0.934

4 28.13 31.21 28.67 23.45 30.16 32.3 29.58 29.07 34.69 34.79
0.670 0.818 0.705 0.433 0.782 0.872 0.756 0.730 0.931 0.932

15

2 24.61 31.81 26.27 22.31 30.28 32.99 29.72 28.56 33.77 33.96
0.489 0.828 0.567 0.374 0.776 0.886 0.747 0.688 0.907 0.909

3 24.61 29.59 25.43 24.44 27.71 31.11 27.12 26.41 32.98 33.16
0.503 0.747 0.547 0.491 0.671 0.842 0.645 0.606 0.900 0.902

4 24.61 28.26 25.26 22.26 26.83 29.79 26.22 25.75 32.4 32.57
0.521 0.709 0.562 0.398 0.653 0.806 0.623 0.596 0.897 0.899

20

2 22.11 30.1 23.82 20.53 28.17 31.41 27.48 26.41 32.28 32.43
0.387 0.765 0.46 0.304 0.691 0.851 0.655 0.594 0.876 0.879

3 22.11 27.57 23.02 7.74 25.39 29.49 24.76 24.14 31.44 31.63
0.400 0.655 0.443 0.088 0.568 0.796 0.541 0.508 0.869 0.872

4 22.11 25.93 22.91 22.33 24.48 28.15 23.84 23.41 30.78 30.97
0.417 0.599 0.461 0.417 0.548 0.752 0.52 0.496 0.863 0.866

Average 27.25 31.99 28.18 23.26 30.65 33.27 30.10 29.31 34.62 34.80
0.605 0.809 0.650 0.467 0.762 0.875 0.740 0.706 0.917 0.919

Table 1. Denoising performance with correlated Gaussian noise. PC-UNet and PC-DnCNN are trained using the proposed patch-craft
framework. The best PSNR and SSIM results are marked Red. The second-best results are marked blue.

ISO σ Noisy R2R N2N B2U BM3D O-BM3D B-UNet B-DnCNN PC-UNet PC-DnCNN

1600 3.3 37.67 39.58 37.71 36.88 38.61 41.12 37.71 37.71 41.25 41.33
0.925 0.962 0.925 0.915 0.946 0.979 0.926 0.926 0.981 0.981

3200 4.5 35.03 37.18 35.10 4.94 36.08 38.99 35.08 35.10 39.50 39.64
0.874 0.937 0.876 0.011 0.910 0.969 0.876 0.877 0.975 0.974

6400 6.3 32.10 34.67 32.19 4.98 33.20 36.57 32.14 32.17 37.18 37.32
0.794 0.892 0.798 0.002 0.851 0.956 0.795 0.797 0.964 0.965

12800 8.8 29.25 31.71 29.33 23.79 30.46 34.30 29.28 29.33 34.89 35.15
0.690 0.833 0.695 0.451 0.771 0.939 0.691 0.694 0.951 0.952

25600 13.1 25.77 28.26 25.86 20.11 27.10 31.35 25.80 25.85 32.45 32.38
0.506 0.701 0.512 0.326 0.620 0.910 0.507 0.511 0.933 0.932

Average 31.96 34.28 32.04 18.14 33.09 36.47 32.00 32.03 37.05 37.16
0.758 0.865 0.761 0.341 0.820 0.951 0.759 0.761 0.961 0.961

Table 2. Denoising performance with real-world image noise. PC-UNet and PC-DnCNN are trained with the proposed patch-craft frame-
work (σ is the STD using ground truth images). The best PSNR and SSIM results are marked red, and the second-best marked blue.

leads to excluding of faulty image pairs from the training
set, thereby boosting the obtained denoising performance.
The proposed framework shows outstanding denoising re-
sults compared with the recent SoTA self-supervised train-

ing algorithms.4

4The code reproducing the results of this paper is available at
https://github.com/grishavak/pcst.
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(a) Noisy
22.13 / 0.623

(b) N2N
23.05 / 0.657

(c) B2U
9.55 / 0.242

(d) BM3D
24.70 / 0.711

(e) B-DnCNN
24.37 / 0.720

(f) R2R
25.53 / 0.712

(g) BM3D-O
25.13 / 0.703

(h) PC-UNet
28.80 / 0.880

(i) PC-DnCNN
29.01 / 0.884

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
26.84 / 0.633

(v) N2N
26.94 / 0.637

(w) B2U
19.27 / 0.387

(x) BM3D
28.40 / 0.756

(y) B-DnCNN
26.93 / 0.637

(z) R2R
29.64 / 0.820

(aa) BM3D-O
31.18 / 0.902

(ab) PC-UNet
32.20 / 0.928

(ac) PC-DnCNN
32.04 / 0.927

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 6. Denoising examples with two types of noise. The first four rows show frame 13 of the sequence salsa in the DAVIS dataset with
correlated Gaussian noise with σ = 20 and k = 3. The last four rows present frame 4 of scene 10 in the CRVD dataset with IS0 25600.
As can be seen, in both experiments, oracle BM3D leaves a substantial amount of low-frequency noise unfiltered. In addition, it produces
blurred output for the DAVIS frame. Other algorithms, except ours (PC-UNet and PC-DnCNN), fail to remove the noise, while B2U loses
stability during the training.
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