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Figure 1. We report (left) memory and FLOPs for upsampling an 256 × 256 image by different scale factors (2×,3×,4×) using integer

scale upsamplers (Sub-Pixel Convolution [31] and CUF-instantiated) and arbitrary-scale upsamplers (Meta-SR [16], LIIF [6], LTE [19]

and CUF), but the same encoder backbone (EDSR-baseline [21]); and (right) the relationship between each upsampler FLOPS and PSNR

performance on DIV2k dataset. Our arbitrary scale model is significantly lighter than other methods in the same class (i.e. continuous

super-res). Further, when instantiated for integer scale factors, our upsampler is even-more efficient than sub-pixel convolutions [31].

Abstract

Neural fields have rapidly been adopted for represent-

ing 3D signals, but their application to more classical 2D

image-processing has been relatively limited. In this pa-

per, we consider one of the most important operations in

image processing: upsampling. In deep learning, learnable

upsampling layers have extensively been used for single im-

age super-resolution. We propose to parameterize upsam-

pling kernels as neural fields. This parameterization leads

to a compact architecture that obtains a 40-fold reduction in

the number of parameters when compared with competing

arbitrary-scale super-resolution architectures. When up-

sampling images of size 256x256 we show that our archi-

tecture is 2x-10x more efficient than competing arbitrary-

scale super-resolution architectures, and more efficient than

sub-pixel convolutions when instantiated to a single-scale

model. In the general setting, these gains grow polynomi-

ally with the square of the target scale. We validate our

method on standard benchmarks showing such efficiency

gains can be achieved without sacrifices in super-resolution

performance. https://cuf-paper.github.io

1. Introduction

Neural-fields represent signals with coordinate-based

neural-networks. They have found application in a multi-

tude of areas including 3D reconstruction [24], novel-view

synthesis [32], convolutions [14], and many others [37].

Recent research has investigated the use of neural fields

in the context of single image super-resolution [6, 19].1

These models are based on multi-layer perceptrons con-

ditioned on latent representation produced by encoders2.

While such architectures allow for continuous-scale super-

resolution, they require the execution of a conditional neural

field for every pixel at the target resolution, making them

unsuitable in applications with limited computational re-

sources. Further, such a large use of resources is not justi-

fied by a increase in performance compared to classical con-

volutional architectures such as sub-pixel convolutions [31].

In summary, neural fields have not yet found widespread

adoption as classical solutions are 1© trivial to implement

and 2© more efficient. As they generally perform compa-

1Thereon we assume single image when talking about super-resolution.
2These encoders were originally proposed for classical super-resolution

applications, and include both convolutional [8, 21, 40] as well as atten-

tional [7, 20, 39] architectures.
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reduce the number of layers that operate at the target spa-

tial resolution and at the encoder’s channel resolution. At

the same time, our upsampler head is considerably lighter

than previous arbitrary scale methods, not only by the use

of a depth-wise convolution but also by keeping the same

number of channels produced by the features encoder in the

main network (Ce = 64, which results in dense layers 16×

cheaper than its LIIF and LTE counterparts using 256 neu-

rons). When performing non-integer upsampling, the costs

with processing the hyper-network layers are proportional

to the target image resolution, but still smaller than a single

dense layer of LIFF and LTE heads, due to the adoption of

a reduced number of channels (as Ch = 32, each of CUF’s

hypernetwork dense layers is 64× cheaper than LIIF and

LTE layers using 256 neurons).

Instantiating CUFs. At inference time, when targeting

an integer upscaling factor s, the hyper-network represent-

ing K can be queried to retrieve the weights correspond-

ing to s2 relative subpixel positions as an initialization step

during pre-processing. The retrieved weights are re-used

across all pixels taking advantage of the existent periodic-

ity. Thus, in the CUF-instantiated architecture the contin-

uous kernel is replaced at test time with a discrete depth-

wise convolution, followed by a pixel shuffling operation,

in contrast with the unfolding operator used in the regular,

fully continuous CUF described in this paper. Otherwise,

the architecture remains the same. The costs associated

with the hyper network at initialization can be neglected as

s2 << sH × sW . In this setting, our model becomes as

efficient as a sub-pixel-convolution architecture, while re-

taining the aforementioned continuous modeling properties

at training time.

4. Results

In this section we describe our experimental setup in

terms of backbone encoders and training/validation dataset,

perform careful comparisons to the state-of-the-art (Sec-

tion 4.1), and additional evaluation towards the implementa-

tion of lightweight super-res architectures (Section 4.2). We

conclude by performing a thorough ablation (Section 4.3).

Encoders.

We apply CUFs to a variety of encoders, to both show

its generality, as well as its performance gains in a variety

of settings.

• A state-of-the-art encoder for super-res named SwinIR

[20] based on Swin-transformers [22].

• Well-known convolution-based encoders, namely EDSR-

baseline [21] and Residual Dense Networks (RDN) [40].

• Architectures for lightweight and extremely lightweight

inference, respectively SwinT-lightweight [20] and

ABPN [10].

Table 4 contrasts the ablated encoders’ composition and

Method Composition Parameters (in M)

encoder spc. 4×

RDN Convolutions 22.00 0.30

SwinT Conv. and Self-Attention 11.60 0.30

EDSR-baseline Convolutions 1.20 0.30

SwinT-lightweight Conv. and Self-Attention 0.90 0.03

ABPN Convolutions 0.03 0.03

Table 4. Encoders – Our experiments use CUF layers in com-

bination with various encoders differing in composition and size.

Parameter counts reflect the encoder size and the upsampling head

using a Sub-Pixel Convolution (spc) targeting 4× upsampling.

size. Hyperparameter settings can be found in the appendix.

Datasets. All models are trained using the DIV2K

dataset training subset (800k images), introduced at

the NTIRE 2017 Super Resolution Challenge [25]. Simi-

larly to previous works, each image is randomly cropped

20 times per epoch and augmented with random flips, and

90 degrees rotations. We report peak signal-to-noise ra-

tio (PSNR) results on the DIV2K validation set (100 im-

ages)4, in the RGB space. To understand the generalizabil-

ity of our experimental results, we test our models on addi-

tional well known datasets (Set5 [4] – 5 images; Set14 [38]

– 14 images; B100 [23] – 100 images; and Urban100 [17] –

100 images), in which, following previous works, PSNR is

measured in the YCbCr luminance channel.

Ensembling. Whenever demarked by ‘+geo’, results

incorporate the (commonly adopted) Geometric Self-

ensemble [21], where the results of rotated versions of the

input images are averaged at test time. LIIF and LTE re-

sults adopt Local Self-ensemble (‘+loc’), where the result

of applying the upsampler at 4 shifted grid points is aver-

aged, resulting in a ×4 increase in computational complex-

ity at training/test time. It may also introduce confound-

ing factors to the optimization process that invalidate direct

comparison to the fixed-scale upsamplers, as during back-

propagation the encoder gradients are averaged. In Ap-

pendix B we combine these models.

4.1. Stateoftheart comparisons

Table 2 and Table 3 show the quantitative comparisons,

while qualitative results can be observed in Figure 4, Fig-

ure 7 and Appendix F as well as on our supplementary

website https://cuf-paper.github.io/. Table 3

contains in-domain results: models trained on DIV2k and

tested on DIV2k (train/test split), while Table 2 presents

out-of-domain results: models are trained on DIV2k, but

tested on different datasets. Note that upsampling ratios

larger than ×4 are not provided at training time. The mod-

els adopting sub-pixel convolutions are fixed-scale models,

that is, one model is trained per target scale and thus do not

4The models we compare to also do not report results on the test-set,

which is no longer publicly available.
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