
MobileOne: An Improved One millisecond Mobile Backbone

Pavan Kumar Anasosalu Vasu James Gabriel Jeff Zhu Oncel Tuzel Anurag Ranjan

Apple

Abstract

Efficient neural network backbones for mobile devices
are often optimized for metrics such as FLOPs or param-
eter count. However, these metrics may not correlate well
with latency of the network when deployed on a mobile de-
vice. Therefore, we perform extensive analysis of different
metrics by deploying several mobile-friendly networks on a
mobile device. We identify and analyze architectural and
optimization bottlenecks in recent efficient neural networks
and provide ways to mitigate these bottlenecks. To this end,
we design an efficient backbone MobileOne, with variants
achieving an inference time under 1 ms on an iPhone12
with 75.9% top-1 accuracy on ImageNet. We show that Mo-
bileOne achieves state-of-the-art performance within the ef-
ficient architectures while being many times faster on mo-
bile. Our best model obtains similar performance on Ima-
geNet as MobileFormer while being 38× faster. Our model
obtains 2.3% better top-1 accuracy on ImageNet than Ef-
ficientNet at similar latency. Furthermore, we show that
our model generalizes to multiple tasks – image classifi-
cation, object detection, and semantic segmentation with
significant improvements in latency and accuracy as com-
pared to existing efficient architectures when deployed on a
mobile device. Code and models are available at https:
//github.com/apple/ml-mobileone

1. Introduction
Design and deployment of efficient deep learning archi-

tectures for mobile devices has seen a lot of progress [5,
30,31,42,44,46] with consistently decreasing floating-point
operations (FLOPs) and parameter count while improving
accuracy. However, these metrics may not correlate well
with the efficiency [9] of the models in terms of latency. Ef-
ficiency metric like FLOPs do not account for memory ac-
cess cost and degree of parallelism, which can have a non-
trivial effect on latency during inference [42]. Parameter
count is also not well correlated with latency. For exam-
ple, sharing parameters leads to higher FLOPS but smaller
model size. Furthermore, parameter-less operations like

skip-connections [24] or branching [33,49] can incur signif-
icant memory access costs. This disconnect can get exacer-
bated when custom accelerators are available in the regime
of efficient architectures.

Our goal is to improve the latency cost of efficient archi-
tectures while improving their accuracy by identifying key
architectural and optimization bottlenecks that affect on-
device latency. To identify architectural bottlenecks, we de-
ploy neural networks on an iPhone12 by using CoreML [56]
and benchmark their latency costs. To alleviate optimiza-
tion bottlenecks, we decouple train-time and inference-
time architectures, i.e. using a linearly over-parameterized
model at train-time and re-parameterizing the linear struc-
tures at inference [11–13]. We further alleviate optimization
bottleneck by dynamically relaxing regularization through-
out training to prevent the already small models from being
over-regularized.

Based on our findings on the key bottlenecks, we de-
sign a novel architecture MobileOne, variants of which run
under 1 ms on an iPhone12 achieving state-of-the-art accu-
racy within efficient architecture family while being signif-
icantly faster on the device. Like prior works on structural
re-parameterization [11–13], MobileOne introduces linear
branches at train-time which get re-parameterized at infer-
ence. However, a key difference between our model and
prior structural re-parameterization works is the introduc-
tion of trivial over-parameterization branches, which pro-
vides further improvements in low parameter regime and
model scaling strategy. At inference, our model has sim-
ple feed-forward structure without any branches or skip-
connections. Since this structure incurs lower memory
access cost, we can incorporate wider layers in our net-
work which boosts representation capacity as demonstrated
empirically in Table 9. For example, MobileOne-S1 has
4.8M parameters and incurs a latency of 0.89ms, while
MobileNet-V2 [46] has 3.4M (29.2% less than MobileOne-
S1) parameters and incurs a latency of 0.98ms. At this oper-
ating point, MobileOne attains 3.9% better top-1 accuracy
than MobileNet-V2.

MobileOne achieves significant improvements in latency
compared to efficient models in literature while maintain-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7907



(a) Top 1 accuracy vs Latency on iPhone 12.

(b) Zoomed out (a)

(c) Top-1 accuracy vs mAP.

Figure 1. We show comparisons of Top-1 accuracy on image classification vs latency on an iPhone 12 (a), and zoomed out area (b) to
include recent transformer architectures. We show mAP on object detection vs Top-1 accuracy on image classification in (c) with size of
the marker indicating latency of the backbone on iPhone 12. Our models have significantly smaller latency compared to related works.
Please refer to supp. mat. for higher resolution figures.

ing the accuracy on several tasks – image classification, ob-
ject detection, and semantic segmentation. As shown in
Figure 1b, MobileOne performs better than MobileViT-
S [44] while being 5 × faster on image classification. As
compared to EfficientNet-B0 [53], we achieve 2.3% bet-
ter top-1 accuracy on ImageNet [10] with similar latency
costs (see Figure 1a). Furthermore, as seen in Figure 1c,
MobileOne models not only perform well on ImageNet,
they also generalize to other tasks like object detection.
Models like MobileNetV3-L [30] and MixNet-S [54] im-
prove over MobileNetV2 on ImageNet, but those improve-
ments do not translate to object detection task. As shown
in Figure 1c, MobileOne shows better generalization across
tasks. For object detection on MS-COCO [37], best vari-
ant of MobileOne outperforms best variant MobileViT by
6.1% and MNASNet by 27.8%. For semantic segmen-
tation, on PascalVOC [16] dataset, best variant of Mo-
bileOne outperforms best variant MobileViT by 1.3% and
on ADE20K [64] dataset, best variant of MobileOne out-
performs MobileNetV2 by 12.0%. In summary, our contri-
butions are as follows:

• We introduce MobileOne, a novel architecture that
runs within 1 ms on a mobile device and achieves state-

of-the-art accuracy on image classification within ef-
ficient model architectures. The performance of our
model also generalizes to a desktop CPU and GPU.

• We analyze performance bottlenecks in activations and
branching that incur high latency costs on mobile in
recent efficient networks.

• We analyze the effects of train-time re-parameterizable
branches and dynamic relaxation of regularization in
training. In combination, they help alleviating opti-
mization bottlenecks encountered when training small
models.

• We show that our model generalizes well to other tasks
– object detection and semantic segmentation while
outperforming recent state-of-the-art efficient models.

We will release our trained networks and code for research
purposes. We will also release the code for iOS application
to enable benchmarking of networks on iPhone.

2. Related Work
Designing a real-time efficient neural network involves

a trade-off between accuracy and performance. Earlier

7908



methods like SqueezeNet [34] and more recently Mobile-
ViT [44], optimize for parameter count and a vast major-
ity of methods like MobileNets [31, 46], MobileNeXt [65],
ShuffleNet-V1 [63], GhostNet [20], MixNet [54] focus
on optimizing for the number of floating-point operations
(FLOPs). EfficientNet [53] and TinyNet [21] study the
compound scaling of depth, width and resolution while op-
timizing FLOPs. Few methods like MNASNet [52], Mo-
bileNetV3 [30] and ShuffleNet-V2 [42] optimize directly
for latency. Dehghani et al. [9] show that FLOPs and param-
eter count are not well correlated with latency. Therefore,
our work focuses on improving on-device latency while im-
proving the accuracy.

Recently, ViT [14] and ViT-like architectures [57] have
shown state-of-the-art performance on ImageNet dataset.
Different designs like ViT-C [61], CvT [60], BoTNet [48],
ConViT [8] and PiT [29] have been explored to incorpo-
rate biases using convolutions in ViT. More recently, Mo-
bileFormer [5] and MobileViT [44] were introduced to get
ViT-like performance on a mobile platform. MobileViT op-
timizes for parameter count and MobileFormer optimizes
for FLOPs and outperforms efficient CNNs in low FLOP
regime. However, as we show in subsequent sections that
low FLOPs does not necessarily result in low latency. We
study key design choices made by these methods and their
impact on latency.

Recent methods also introduce new architecture designs
and custom layers to improve accuracy for mobile back-
bones. MobileNet-V3 [30], introduces an optimized acti-
vation function – Hard-Swish for a specific platform. How-
ever, scaling such functions to different platforms may be
difficult.

Therefore, our design uses basic operators that are
already available across different platforms. Expand-
Nets [19], ACNet [11] and DBBNet [12], propose a drop-
in replacement for a regular convolution layer in recent
CNN architectures and show improvements in accuracy.
RepVGG [13] introduces re-parameterizable skip connec-
tions which is beneficial to train VGG-like model to better
performance. These architectures have linear branches at
train-time that get re-parameterized to simpler blocks at in-
ference. We build on these re-parametrization works and in-
troduce trivial over-parameterization branches thereby pro-
viding further improvements in accuracy.

3. Method

In this section, we analyse the correlation of popular
metrics – FLOPs and parameter count – with latency on
a mobile device. We also evaluate how different design
choices in architectures effect the latency on the phone.
Based on the evaluation, we describe our architecture and
training algorithm.

FLOPs Parameters
Type corr. p-value corr. p-value

Mobile Latency 0.47 0.03 0.30 0.18
CPU Latency 0.06 0.80 0.07 0.77

Table 1. Spearman rank correlation coeff. between latency-flops.

3.1. Metric Correlations

The most commonly used cost indicators for comparing
the size of two or more models are parameter count and
FLOPs [9]. However, they may not be well correlated with
latency in real-world mobile applications. Therefore, we
study the correlation of latency with FLOPS and parameter
count for benchmarking efficient neural networks. We con-
sider recent models and use their Pytorch implementation
to convert them into ONNX format [2]. We convert each of
these models to coreml packages using Core ML Tools [56].
We then develop an iOS application to measure the latency
of the models on an iPhone12.

We plot latency vs. FLOPs and latency vs. parame-
ter count as shown in Figure 2. We observe that many
models with higher parameter count can have lower la-
tency. We observe a similar plot between FLOPs and la-
tency. Furthermore, we note the convolutional models such
as MobileNets [42, 46, 55] have lower latency for similar
FLOPs and parameter count than their transformer counter-
parts [5,44,57]. We also estimate the Spearman rank corre-
lation [62] in Table 1a. We find that latency is moderately
correlated with FLOPs and weakly correlated with param-
eter counts for efficient architectures on a mobile device.
This correlation is even lower on a desktop CPU.

3.2. Key Bottlenecks

Activation Functions To analyze the effect of activation
functions on latency, we construct a 30 layer convolutional
neural network and benchmark it on iPhone12 using differ-
ent activation functions, commonly used in efficient CNN
backbones. All models in Table 2 have the same architec-
ture except for activations, but their latencies are drastically
different. This can be attributed to synchronization costs
mostly incurred by recently introduced activation functions
like SE-ReLU [32], Dynamic Shift-Max [36] and Dynami-
cReLUs [6]. DynamicReLU and Dynamic Shift-Max have
shown significant accuracy improvement in extremely low
FLOP models like MicroNet [36], but, the latency cost of
using these activations can be significant. Therefore we use
only ReLU activations in MobileOne.

Architectural Blocks Two of the key factors that affect
runtime performance are memory access cost and degree
of parallelism [42]. Memory access cost increases sig-
nificantly in multi-branch architectures as activations from
each branch have to be stored to compute the next tensor

7909



1 2 3 4
MobileNetV1 EfficientNet-B0 ShuffleNetV2-2.0 ShuffleNetV2-1.0

5 6 7 8
MobileNext-1.4 MobileNetV2 MobileNetV3-S MobileNetV3-L

9 10 11 12
MixNet-S MNASNet-A1 MobileOne-S1 MobileOne-S0

Figure 2. Top: FLOPs vs Latency on iPhone12. Bottom: Param-
eter Count vs Latency on iPhone 12. We indicate some networks
using numbers as shown in the table above.

Activation Function Latency (ms)

ReLU [1] 1.53
GELU [27] 1.63
SE-ReLU [32] 2.10
SiLU [15] 2.54
Dynamic Shift-Max [36] 57.04
DynamicReLU-A [6] 273.49
DynamicReLU-B [6] 242.14

Table 2. Comparison of latency on mobile device of different ac-
tivation functions in a 30-layer convolutional neural network.

in the graph. Such memory bottlenecks can be avoided if
the network has smaller number of branches. Architectural
blocks that force synchronization like global pooling oper-
ations used in Squeeze-Excite block [32] also affect overall
run-time due to synchronization costs. To demonstrate the
hidden costs like memory access cost and synchronization
cost, we ablate over using skip connections and squeeze-

Architectural Baseline + Squeeze + Skip
Blocks Excite [32] Connections [23]

Latency (ms) 1.53 2.10 2.62

Table 3. Ablation on latency of different architectural blocks in a
30-layer convolutional neural network.

excite blocks in a 30 layer convolutional neural network. In
Table 3b, we show how each of these choices contribute to-
wards latency. Therefore we adopt an architecture with no
branches at inference, which results in smaller memory ac-
cess cost. In addition, we limit the use of Squeeze-Excite
blocks to our biggest variant in order to improve accuracy.

3.3. MobileOne Architecture

Based on the our evaluations of different design choices,
we develop the architecture of MobileOne. Like prior works
on structural re-parameterization [11–13,19], the train-time
and inference time architecture of MobileOne is different.
In this section, we introduce the basic block of MobileOne
and the model scaling strategy used to build the network.

MobileOne Block MobileOne blocks are similar to
blocks introduced in [11–13, 19], except that our blocks
are designed for convolutional layers that are factorized
into depthwise and pointwise layers. Furthermore, we in-
troduce trivial over-parameterization branches which pro-
vide further accuracy gains. Our basic block builds on the
MobileNet-V1 [31] block of 3x3 depthwise convolution fol-
lowed by 1x1 pointwise convolutions. We then introduce re-
parameterizable skip connection [13] with batchnorm along
with branches that replicate the structure as shown in Fig-
ure 3. The trivial over-parameterization factor k is a hyper-
parameter which is varied from 1 to 5. We ablate over the
choice for k in Table 4. At inference, MobileOne model
does not have any branches. They are removed using the
re-parameterization process described in [12, 13].

For a convolutional layer of kernel size K, input chan-
nel dimension Cin and output channel dimension Cout, the
weight matrix is denoted as W′ ∈ RCout×Cin×K×K and
bias is denoted as b′ ∈ RD. A batchnorm layer contains
accumulated mean µ, accumulated standard deviation σ,
scale γ and bias β. Since convolution and batchnorm at
inference are linear operations, they can be folded into a
single convolution layer with weights Ŵ = W′ ∗ γ

σ and
bias b̂ = (b′ − µ) ∗ γ

σ + β. Batchnorm is folded into
preceding convolutional layer in all the branches. For skip
connection the batchnorm is folded to a convolutional layer
with identity 1x1 kernel, which is then padded by K − 1
zeros as described in [13]. After obtaining the batchnorm
folded weights in each branch, the weights W =

∑M
i Ŵi

and bias b =
∑M

i b̂i for convolution layer at inference is

7910



3x3d 
Conv

BN

k Blocks

1x1d 
Conv

BN

Act.

+

BN

+
Act.

Reparameterize3x3d 
Conv

BN

3x3d 
Conv

BN
BN

3x3d 
Conv

BN

k Blocks

3x3d 
Conv

BN

1x1 
Conv

BN

3x3d 
Conv

BN

Act.

1x1 
Conv

BN

Act.

Training Inference

Reparameterize

Figure 3. MobileOne block has two different structures at train
time and test time. Left: Train time MobileOne block with repa-
rameterizable branches. Right: MobileOne block at inference
where the branches are reparameterized. Either ReLU or SE-
ReLU is used as activation. The trivial over-parameterization fac-
tor k is a hyperparameter which is tuned for every variant.

Model # Params. Top-1

ExpandNet-CL MobileNetV1 [19] 4.2 69.4
RepVGG-A0 [13] 8.3 72.4
RepVGG-A1 [13] 12.8 74.5
RepVGG-B0 [13] 14.3 75.1
ACNet MobileNetV1 [11] 4.2 72.1
ACNet ResNet18 [11] 11.7 71.1
DBBNet MobileNetV1 [12] 4.2 72.9
DBBNet ResNet18 [12] 11.7 71.0

MobileOne-S0 2.1 71.4
MobileOne-S1 4.8 75.9
MobileOne-S2 7.8 77.4
MobileOne-S3 10.1 78.1
MobileOne-S4 14.8 79.4

Table 4. Comparison of Top-1 Accuracy on ImageNet against re-
cent train time over-parameterization works. Number of parame-
ters listed above is at inference.

Re-param. MobileOne-S0 MobileOne-S1 MobileOne-S3

with 71.4 75.9 78.1
without 69.6 74.6 77.2

Table 5. Effect re-parametrizable branches on Top-1 ImageNet
accuracy.

obtained, where M is the number of branches.
To better understand the improvements from using train

time re-parameterizable branches, we ablate over ver-
sions of MobileOne models by removing train-time re-
parameterizable branches (see Table 5), while keeping all
other training parameters the same as described in Sec-
tion 4. Using re-parameterizable branches significantly im-

Model Top-1

k=1 k=2 k=3 k=4 k-5

MobileOne-S0 70.9 70.7 71.3 71.4 71.1
MobileOne-S1 75.9 75.7 75.6 75.6 75.2

Table 6. Comparison of Top-1 on ImageNet for various values of
trivial over-parameterization factor k.

proves performance. To understand the importance of trivial
over-parameterization branches, we ablate over the choice
of over-parameterization factor k in Table 6. For larger
variants of MobileOne, the improvements from trivial over-
parameterization starts diminishing. For smaller variant like
MobileOne-S0, we see improvements of 0.5% by using triv-
ial over-parameterization branches. In Figure 4, we see that
adding re-parameterizable branches improves optimization
as both train and validation losses are further lowered.

Model Scaling Recent works scale model dimensions
like width, depth, and resolution to improve perfor-
mance [22, 53]. MobileOne has similar depth scaling as
MobileNet-V2, i.e. using shallower early stages where
input resolution is larger as these layers are significantly
slower compared to later stages which operate on smaller
input resolution. We introduce 5 different width scales as
seen in Table 7. Furthermore, we do not explore scaling up
of input resolution as both FLOPs and memory consump-
tion increase, which is detrimental to runtime performance
on a mobile device. As our model does not have a multi-
branched architecture at inference, it does not incur data
movement costs as discussed in previous sections. This en-
ables us to aggressively scale model parameters compared
to competing multi-branched architectures like MobileNet-
V2, EfficientNets, etc. without incurring significant la-
tency cost. The increased parameter count enables our
models to generalize well to other computer vision tasks
like object detection and semantic segmentation (see Sec-
tion 4). In Table 4, we compare against recent train time
over-parameterization works [11–13, 19] and show that
MobileOne-S1 variant outperforms RepVGG-B0 which is
∼3× bigger.

3.4. Training

As opposed to large models, small models need less reg-
ularization to combat overfitting. It is important to have
weight decay in early stages of training as demonstrated
empirically by [18]. Instead of completely removing weight
decay regularization as studied in [18], we find that anneal-
ing the loss incurred by weight decay regularization over the
course of training is more effective. In all our experiments,
we use cosine schedule [41] for learning rate. Further, we
use the same schedule to anneal weight decay coefficient.

7911



Stage Input # Blocks Stride Block Type # Channels MobileOne Block Parameters (α, k, act=ReLU)

S0 S1 S2 S3 S4

1 224× 224 1 2 MobileOne-Block 64×α (0.75, 4) (1.5, 1) (1.5, 1) (2.0, 1) (3.0, 1)
2 112× 112 2 2 MobileOne-Block 64×α (0.75, 4) (1.5, 1) (1.5, 1) (2.0, 1) (3.0, 1)
3 56× 56 8 2 MobileOne-Block 128×α (1.0, 4) (1.5, 1) (2.0, 1) (2.5, 1) (3.5, 1)
4 28× 28 5 2 MobileOne-Block 256×α (1.0, 4) (2.0, 1) (2.5, 1) (3.0, 1) (3.5, 1)
5 14× 14 5 1 MobileOne-Block 256×α (1.0, 4) (2.0, 1) (2.5, 1) (3.0, 1) (3.5, 1, SE-ReLU)
6 14× 14 1 2 MobileOne-Block 512×α (2.0, 4) (2.5, 1) (4.0, 1) (4.0, 1) (4.0, 1, SE-ReLU)
7 7× 7 1 1 AvgPool - - - - - -
8 1× 1 1 1 Linear 512×α 2.0 2.5 4.0 4.0 4.0

Table 7. MobileOne Network Specifications

Baseline + Progressive + Annealing + EMALearning Weight Decay

Top-1 76.4 76.8 77.3 77.4

Table 8. Ablation on various train settings for MobileOne-S2
showing Top-1 accuracy on ImageNet.

Tr
ai

n 
Lo

ss

Epochs

Va
lid

at
io

n 
Lo

ss

Epochs

Figure 4. Plot of train and validation losses of MobileOne-S0
model. From no branches to adding re-parameterizable branches
with k=1, leads to 3.4% lower train loss. Adding more branches
(k=4) lowers train loss by an additional ∼1%. From no branches
to the variant with re-parameterizable branches (k=4), validation
loss improves by 3.1%

We also use the progressive learning curriculum introduced
in [55]. In Table 8, we ablate over the various train settings
keeping all other parameters fixed. We see that annealing
the weight decay coefficient gives a 0.5% improvement.

3.5. Benchmarking

Getting accurate latency measurements on a mobile de-
vice can be difficult. On the iPhone 12, there is no com-
mand line access or functionality to reserve all of a com-
pute fabric for just the model execution. We also do not
have access to the breakdown of the round-trip-latency into
categories like the network initialization, data movement,
and network execution. To measure latency, we developed
an iOS application using swift [35]. The application runs
the models using Core ML [56]. To eliminate startup in-
consistencies, the model graph is loaded, the input tensor is
preallocated, and the model is run once before benchmark-
ing begins. During benchmarking, the app runs the model

many times (default is 1000) and statistic are accumulated.
To achieve lowest latency and highest consistency, all other
applications on the phone are closed. For the models la-
tency seen in Table 9, we report the full round-trip latency.
A large fraction of this time may be from platform processes
that are not model execution, but in a real application these
delays may be unavoidable. Therefore we chose to include
them in the reported latency. In order to filter out interrupts
from other processes, we report the minimum latency for
all the models. For CPU latency, we run the models on an
Ubuntu desktop with a 2.3 GHz – Intel Xeon Gold 5118
processor. For GPU latency, we compile the models using
NVIDIA TensorRT library (v8.0.1.6) and run on a single
RTX-2080Ti GPU with batch size set to 1. We report the
median latency value out of 100 runs.

4. Experiments
Image Classification on ImageNet-1K We evaluate Mo-
bileOne models on ImageNet [10] dataset, which consists
of 1.28 million training images and a validation set with
50,000 images from 1,000 classes. All models are trained
from scratch using PyTorch [45] library on a machine with
8 NVIDIA GPUs. All models are trained for 300 epochs
with an effective batch size of 256 using SGD with mo-
mentum [50] optimizer. We use label smoothing regular-
ization [51] with cross entropy loss with smoothing factor
set to 0.1 for all models. The initial learning rate is 0.1
and annealed using a cosine schedule [41]. Initial weight
decay coefficient is set to 10−4 and annealed to 10−5 us-
ing the same cosine schedule as described in [41]. We use
AutoAugment [7] to train only the bigger variants of Mo-
bileOne, i.e. S2, S3, and S4. The strength of autoaugmenta-
tion and image resolution is progressively increased during
training as introduced in [55]. We list the details in supple-
mentary material. For smaller variants of MobileOne, i.e.
S0 and S1 we use standard augmentation – random resized
cropping and horizontal flipping. We also use EMA (Expo-
nential Moving Average) weight averaging with decay con-
stant of 0.9995 for training all versions of MobileOne. At
test time, all MobileOne models are evaluated on images of
resolution 224 × 224. In Table 9, we compare against all

7912



Model Top-1 FLOPs Params Latency (ms)

(M) (M) CPU GPU Mobile

Transformer Architectures

Mobileformer-96 [5] 72.8 96 4.6 37.36 - 16.95
ConViT-tiny [8] 73.1 1000 5.7 28.95 - 10.99
MobileViT-S [44] 78.4 1792 5.6 30.76 - 9.21
Mobileformer-52 [5] 68.7 52 3.6 29.23 - 9.02
PiT-ti [29] 71.3 710 4.9 16.37 1.97 8.81
MobileViT-XS [44] 74.8 941 2.3 27.21 - 6.97
DeiT-tiny [57] 72.2 1300 5.9 16.68 1.78 4.78
MobileViT-XXS [44] 69.0 373 1.3 23.03 - 4.70

Convolutional Architectures

RepVGG-B1 [13] 78.4 11800 51.8 193.7 3.17 3.73
RepVGG-A2 [13] 76.5 5100 25.5 93.43 2.41 2.41
MobileOne-S4 79.4 2978 14.8 26.60 0.95 1.86

RepVGG-B0 [13] 75.1 3100 14.3 55.97 1.45 1.82
EfficientNet-B0 [53] 77.1 390 5.3 28.71 1.35 1.72
RepVGG-A1 [13] 74.5 2400 12.8 47.15 1.42 1.68
MobileOne-S3 78.1 1896 10.1 16.47 0.76 1.53

MobileNetV2-x1.4 [46] 74.7 585 6.9 15.67 0.80 1.36
RepVGG-A0 [13] 72.4 1400 8.3 43.61 1.23 1.28
MobileNeXt-x1.4 [65] 76.1 590 6.1 18.06 1.04 1.27
MobileOne-S2 77.4 1299 7.8 14.87 0.72 1.18

MixNet-S [54] 75.8 256 4.1 40.09 2.41 1.13
MobileNetV3-L [30] 75.2 219 5.4 17.09 3.8 1.09
ShuffleNetV2-2.0 [42] 74.9 591 7.4 20.85 4.76 1.08
MNASNet-A1 [52] 75.2 312 3.9 24.06 0.95 1.00
MobileNetV2-x1.0 [46] 72.0 300 3.4 13.65 0.69 0.98
MobileNetV1 [31] 70.6 575 4.2 10.65 0.58 0.95
MobileNeXt-x1.0 [65] 74.0 311 3.4 16.04 1.02 0.92
MobileOne-S1 75.9 825 4.8 13.04 0.66 0.89

MobileNetV3-S [30] 67.4 56 2.5 10.38 3.74 0.83
ShuffleNetV2-1.0 [42] 69.4 146 2.3 16.60 4.58 0.68
MobileOne-S0 71.4 275 2.1 10.55 0.56 0.79

Table 9. Performance of various models on ImageNet-1k valida-
tion set. Note: All results are without distillation for a fair com-
parison. Results are grouped based on latency on mobile device.
Models which could not be reliably exported either by TensorRT
or Core ML Tools are annotated by “-”.

recent efficient models that are evaluated on images of res-
olution 224×224 while having a parameter count <20 Mil-
lion and trained without distillation as done in prior works
like [5,44]. FLOP counts are reported using the fvcore [17]
library.

We show that even the smallest variants of transformer
architectures have a latency upwards of 4ms on mobile
device. Current state-of-the-art MobileFormer [5] attains
top-1 accuracy of 79.3% with a latency of 70.76ms, while
MobileOne-S4 attains 79.4% with a latency of only 1.86ms
which is ∼38× faster on mobile. MobileOne-S3 has 1%
better top-1 accuracy than EfficientNet-B0 and is faster by
11% on mobile. Our models have a lower latency even on
CPU and GPU compared to competing methods.

Knowledge distillation Efficient models are often dis-
tilled from a bigger teacher model to further boost the
performance. We demonstrate the performance of Mo-
bileOne backbones using state-of-the-art distillation recipe
suggested in [47]. From Table 10, our models outperform
competing models of similar or higher parameter count.
Train-time overparameterization enables our models to dis-

Model Params Latency Top-1 Accuracy

(M) (ms) Baseline Distillation

MobileNet V3-Small x1.0 2.5 0.83 67.4 69.7
MobileOne-S0 2.1 0.79 71.4 72.5

MobileNet V3-Large 1.0 5.5 1.09 75.2 76.9
MobileOne-S1 4.8 0.89 75.9 77.4

EfficientNet-B0 5.3 1.72 77.1 78.3
MobileOne-S2 7.8 1.18 77.4 79.1

ResNet-18 11.7 2.10 69.8 73.2
MobileOne-S3 10.1 1.53 78.1 80.0

ResNet-50 25.6 2.69 79.0 81.0
MobileOne-S4 14.8 1.86 79.4 81.4

Table 10. Performance of various models on ImageNet-1k valida-
tion set using MEAL-V2 [47] distillation recipe. Results of com-
peting models are reported from [47]. Models grouped based on
parameter count.

Feature backbone mAP (↑)

MobileNetV3 [30] 22.0
MobileNetV2 [46] 22.1
MobileNetV1 [31] 22.2
MixNet [54] 22.3
MNASNet-A1 [52] 23.0
MobileVit-XS [44] 24.8
MobileViT-S [44] 27.7

MobileOne-S1 25.7
MobileOne-S2 26.6
MobileOne-S3 27.3
MobileOne-S4 29.4

(a)

Feature backbone mIoU (↑)

VOC ADE20k

MobileNetV2-x0.5 70.2 -
MobileNetV2-x1.0 75.7 34.1
MobileViT-XXS 73.6 -
MobileViT-XS 77.1 -
MobileViT-S 79.1 -

MobileOne-S0 73.7 33.1
MobileOne-S1 77.3 35.1
MobileOne-S2 77.9 35.7
MobileOne-S3 78.8 36.2
MobileOne-S4† 80.1 38.2

(b)

Table 11. (a) Quantitative performance of object detection on MS-
COCO. (b) Quantitative performance of semantic segmentation on
Pascal-VOC and ADE20k datasets. †This model was trained with-
out Squeeze-Excite layers.

till to better performance even though they have similar or
smaller parameter count than competing models. In fact,
MobileOne-S4 outperforms even ResNet-50 model which
has 72.9% more parameters. MobileOne-S0 has 0.4M less
parameters at inference than MobileNetV3-Small and ob-
tains 2.8% better top-1 accuracy on ImageNet-1k dataset.

Object detection on MS-COCO To demonstrate the ver-
satility of MobileOne, we use it as the backbone feature
extractor for a single shot object detector SSD [38]. Fol-
lowing [46], we replace standard convolutions in SSD head
with separable convolutions, resulting in a version of SSD
called SSDLite. The model is trained using the mmdetec-
tion library [3] on the MS COCO dataset [37]. The input
resolution is set to 320×320 and the model is trained for 200
epochs as described in [44]. For more detailed hyperparam-
eters please refer to the supplementary material. We report
mAP@IoU of 0.50:0.05:0.95 on the validation set of MS
COCO in Table 11. Our best model outperforms MNASNet
by 27.8% and best version of MobileViT [44] by 6.1%. We
show qualitative results in the supplementary material.

7913



Semantic Segmentation on Pascal VOC and ADE 20k
We use MobileOne as the backbone for a Deeplab V3 seg-
mentation network [4] using the cvnets library [44]. The
VOC models were trained on the augmented Pascal VOC
dataset [16] for 50 epochs following the training procedure
of [44]. The ADE 20k [64] models were trained using the
same hyperparameters and augmentations. For more de-
tailed hyperparameters, please refer to the supplementary
material. We report mean intersection-over-union (mIOU)
results in Table 11. For VOC, our model outperforms
Mobile ViT by 1.3% and MobileNetV2 by 5.8%. Using
the MobileOne-S1 backbone with a lower latency than the
MobileNetV2-1.0 backbone, we still outperform it by 2.1%.
For ADE 20k, our best variant outperforms MobileNetV2
by 12.0%. Using the smaller MobileOne-S1 backbone, we
still outperform it by 2.9%. We show qualitative results in
the supplementary material.

Robustness to corruption We evaluate MobileOne and
competing models on the following benchmarks, ImageNet-
A [28], a dataset that contains naturally occuring exam-
ples that are misclassified by resnets. ImageNet-R [25],
a dataset that contains natural renditions of ImageNet ob-
ject classes with different textures and local image statis-
tics. ImageNet-Sketch [58], a dataset that contains black
and white sketches of all ImageNet classes, obtained using
google image queries. ImageNet-C [26], a dataset that con-
sists of algorithmically generated corruptions (blur, noise)
applied to the ImageNet test-set. We follow the proto-
col set by [43] for all the evaluations. We use pretrained
weights provided by Timm Library [59] for the evaluations.
From Table 12, MobileOne outperforms other efficient ar-
chitectures significantly on out-of-distribution benchmarks
like ImageNet-R and ImageNet-Sketch. Our model is
less robust to corruption when compared to MobileNetV3-
L, but outperforms MobileNetV3-L on out-of-distribution
benchmarks. Our model outperforms MobileNetV3-S, Mo-
bileNetV2 variants and EfficientNet-B0 on both corruption
and out-of-distribution benchmarks as seen in Table 12.

Comparison with Micro Architectures Recently [22,
36] introduced architectures that were extremely efficient
in terms of FLOPS and parameter count. But architectural
choices introduced in these micro architectures like [36],
do not always result in lower latency models. MicroNet
uses dynamic activations which are extremely inefficient as
demonstrated in Table 2. In fact, smaller variants of Mo-
bileOne can easily outperform previous state-of-the-art mi-
cro architectures. Please see supplementary materials for
more details on MobileOne micro architectures. In Ta-
ble 13, our models have similar latency as TinyNets, but
have significantly lower parameter count and better top-1
accuracy. MobileOne-µ1, is 2× smaller and has 6.3% better
top-1 accuracy while having similar latency as TinyNet-E.

Model Latency(ms) Clean IN-C (↓) IN-A IN-R IN-SK

MobileNetV3-S 0.83 67.9 86.5 2.0 27.3 16.2
MobileOne-S0 0.79 71.4 86.4 2.3 32.9 19.3

MixNet-S 1.13 75.7 77.7 3.8 32.2 20.5
MobileNetV3-L 1.09 75.6 77.1 3.5 33.9 22.6
MobileNetV2-x1.0 0.98 73.0 84.1 2.1 32.5 20.8
MobileOne-S1 0.89 75.9 80.4 2.7 36.7 22.6

MobileNetV2-x1.4 1.36 76.5 78.9 3.7 36.0 23.7
MobileOne-S2 1.18 77.4 73.6 4.8 40.0 26.4

EfficientNet-B0 1.72 77.6 72.2 7.2 36.6 25.0
MobileOne-S3 1.53 78.1 71.6 7.1 42.1 28.5
MobileOne-S4 1.86 79.4 68.1 10.8 41.8 29.2

Table 12. Results on robustness benchmark datasets following
protocol set by [43]. For ImageNet-C mean corruption error is
reported (lower is better) and for other datasets Top-1 accuracy is
reported (higher is better). Results are grouped following Table 9

Model Top-1 FLOPs Params Mobile
(M) (M) Latency (ms)

TinyNet-D [22] 67.0 52 2.3 0.51
MobileOne-µ2 69.0 214 1.3 0.50

MicroNet-M3 [36] 62.5 20 2.6 12.02
MicroNet-M2 [36] 59.4 12 2.4 9.49
TinyNet-E [22] 59.9 24 2.0 0.49
MobileOne-µ1 66.2 139 0.98 0.47

MicroNet-M1 [36] 51.4 6 1.8 3.33
MobileOne-µ0 58.5 68 0.57 0.45

Table 13. Performance of various micro-architecture models on
ImageNet-1k validation set. Note, we replace swish activations
with ReLU in TinyNets for a fair comparison.

5. Discussion

We have proposed an efficient, general-purpose back-
bone for mobile devices. Our backbone is suitable for
general tasks such as image classification, object detection
and semantic segmentation. We show that in the efficient
regime, latency may not correlate well with other metrics
like parameter count and FLOPs. Furthermore, we analyze
the efficiency bottlenecks for various architectural compo-
nents used in modern efficient CNNs by measuring their la-
tency directly on a mobile device. We empirically show the
improvement in optimization bottlenecks with the use of re-
parameterizable structures. Our model scaling strategy with
the use of re-parameterizable structures attains state-of-the-
art performance while being efficient both on a mobile de-
vice and a desktop CPU.

Limitations and Future Work Although, our models are
state-of-the-art within the regime of efficient architectures,
the accuracy lags large models [39, 40]. Future work will
aim at improving the accuracy of these lightweight models.
We will also explore the use of our backbone for faster in-
ference on other computer vision applications not explored
in this work such as optical flow, depth estimation, 3D re-
construction, etc.

7914



References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(relu). Neural and Evolutionary Computing, 2018. 4
[2] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open neu-

ral network exchange. https://github.com/onnx/
onnx, 2019. 3

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 7

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 8

[5] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1, 3, 7

[6] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic relu. In 16th
European Conference Computer Vision (ECCV 2020), 2020.
3, 4

[7] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation policies from data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 6

[8] Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari
Morcos, Giulio Biroli, and Levent Sagun. Convit: Improving
vision transformers with soft convolutional inductive biases.
In Proceedings of the 38th International Conference on Ma-
chine Learning (ICML), 2021. 3, 7

[9] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish
Vaswani, and Yi Tay. The efficiency misnomer. arXiv
preprint arXiv:2110.12894, 2021. 1, 3

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2, 6

[11] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong
Han. Acnet: Strengthening the kernel skeletons for powerful
cnn via asymmetric convolution blocks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 1, 3, 4, 5

[12] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Diverse branch block: Building a convolution as an
inception-like unit. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021.
1, 3, 4, 5

[13] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. 1, 3, 4, 5, 7

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[15] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approxima-
tion in reinforcement learning. Neural Networks, 107:3–11,
2018. 4

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision, 88(2):303–
338, June 2010. 2, 8

[17] fvcore. Light-weight core library that provides the most com-
mon and essential functionality shared in various computer
vision frameworks developed in fair. https://github.
com/facebookresearch/fvcore, 2019. 7

[18] Aditya Sharad Golatkar, Alessandro Achille, and Stefano
Soatto. Time matters in regularizing deep networks: Weight
decay and data augmentation affect early learning dynamics,
matter little near convergence. In Advances in Neural Infor-
mation Processing Systems, 2019. 5

[19] Shuxuan Guo, Jose M. Alvarez, and Mathieu Salzmann.
Expandnets: Linear over-parameterization to train compact
convolutional networks. In Advances in Neural Information
Processing Systems, 2020. 3, 4, 5

[20] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu,
and Chang Xu. Ghostnet: More features from cheap opera-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 3

[21] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing
Xu, and Tong Zhang. Model rubik’s cube: Twisting resolu-
tion, depth and width for tinynets. In NeurIPS, 2020. 3

[22] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing
Xu, and Tong Zhang. Model rubik’s cube: Twisting reso-
lution, depth and width for tinynets. In NeurIPS, 2020. 5,
8

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 4

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1

[25] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,
and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization. 2021. 8

[26] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2019. 8

[27] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[28] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. 2021.
8

7915



[29] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk
Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spatial
dimensions of vision transformers. In International Confer-
ence on Computer Vision (ICCV), 2021. 3, 7

[30] Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 1314–
1324, 2019. 1, 2, 3, 7

[31] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. ArXiv,
abs/1704.04861, 2017. 1, 3, 4, 7

[32] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 3, 4

[33] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 1

[34] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,
Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and ¡1mb
model size. CoRR, 2016. 3

[35] Apple inc. Swift programming language. https://www.
swift.org, 2016. 6

[36] Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen,
Mengchen Liu, Lu Yuan, Zicheng Liu, Lei Zhang, and Nuno
Vasconcelos. Micronet: Improving image recognition with
extremely low flops. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2021. 3,
4, 8

[37] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2014. 2,
7

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. SSD: Single shot MultiBox detector. In Proceedings
of the European Conference on Computer Vision (ECCV),
2016. 7

[39] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 8

[40] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. arXiv preprint arXiv:2201.03545, 2022. 8

[41] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations (ICLR), 2017. 5, 6

[42] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018. 1, 3, 7

[43] Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie
Duan, Shaokai Ye, Yuan He, and Hui Xue. Towards robust
vision transformer. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 8

[44] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In ICLR, 2022. 1, 2, 3, 7, 8

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32.
2019. 6

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1, 3, 7

[47] Zhiqiang Shen and Marios Savvides. Meal v2: Boosting
vanilla resnet-50 to 80%+ top-1 accuracy on imagenet with-
out tricks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 7

[48] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck
transformers for visual recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 3

[49] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[50] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In Proceedings of the 30th International
Conference on Machine Learning, 2013. 6

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 6

[52] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 3, 7

[53] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Proceedings
of the 36th International Conference on Machine Learning
(PMLR), 2019. 2, 3, 5, 7

[54] Mingxing Tan and Quoc V. Le. Mixconv: Mixed depthwise
convolutional kernels. In 30th British Machine Vision Con-
ference 2019, BMVC 2019, Cardiff, UK, September 9-12,
2019, 2019. 2, 3, 7

7916



[55] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller mod-
els and faster training. In Proceedings of the 38th Interna-
tional Conference on Machine Learning (ICML), 2021. 3,
6

[56] Core ML Tools. Use Core ML Tools to convert mod-
els from third-party libraries to Core ML. https://
coremltools.readme.io/docs, 2017. 1, 3, 6

[57] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021. 3, 7

[58] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information
Processing Systems, 2019. 8

[59] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 8

[60] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 22–31, 2021. 3

[61] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Pi-
otr Dollár, and Ross B. Girshick. Early convolutions help
transformers see better. CoRR, abs/2106.14881, 2021. 3

[62] Jerrold H Zar. Spearman rank correlation. Encyclopedia of
biostatistics, 7, 2005. 3

[63] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2018.
3

[64] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 2, 8

[65] Daquan Zhou, Qibin Hou, Yunpeng Chen, Jiashi Feng, and
Shuicheng Yan. Rethinking bottleneck structure for efficient
mobile network design. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020. 3, 7

7917


