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Abstract

We argue that there are many notions of ‘similarity’ and
that models, like humans, should be able to adapt to these
dynamically. This contrasts with most representation learn-
ing methods, supervised or self-supervised, which learn a
fixed embedding function and hence implicitly assume a sin-
gle notion of similarity. For instance, models trained on Im-
ageNet are biased towards object categories, while a user
might prefer the model to focus on colors, textures or spe-
cific elements in the scene. In this paper, we propose the
GeneClIS (‘genesis’) benchmark, which measures models’
ability to adapt to a range of similarity conditions. Ex-
tending prior work, our benchmark is designed for zero-
shot evaluation only, and hence considers an open-set of
similarity conditions. We find that baselines from powerful
CLIP models struggle on GeneClIS and that performance on
the benchmark is only weakly correlated with ImageNet ac-
curacy, suggesting that simply scaling existing methods is
not fruitful. We further propose a simple, scalable solution
based on automatically mining information from existing
image-caption datasets. We find our method offers a sub-
stantial boost over the baselines on GeneCIS, and further
improves zero-shot performance on related image retrieval
benchmarks. In fact, though evaluated zero-shot, our model
surpasses state-of-the-art supervised models on MIT-States.

We, the architects of the machine, must decide a-priori
what constitutes its ‘world’; what things are to be taken
as ‘similar’ or ‘equal’ — Karl Popper, 1963

1. Introduction

Humans understand many notions of similarity and
choose specific ones depending on the task at hand [21,58].
Consider the task of finding ‘similar’ images illustrated
in Figure 1. Which of the rightmost images should be con-
sidered ‘most similar’ to the reference? Given different con-
ditions, each image could be a valid answer. For instance,
we may be interested in a specific object in the scene, focus-
ing on either the ‘car’ or ‘bridge’. One could even indicate
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Figure 1. Given different conditions (shown as blue text), differ-
ent images on the right can be considered most ‘similar’ to the
reference on the left. We present a general way to train and evalu-
ate models which can adapt to different notions of similarity.

a ‘negative’ similarity condition, specifying a change in the
image to identify the bottom image as most similar.
Learning such similarity functions is a central goal in
discriminative deep learning [11-13, 34, 63, 68, 75]. Dis-
criminative models, either supervised [30, 75] or self-
supervised [9, 10], learn embedding functions such that
‘similar’ images are closer in feature space than ‘dissimilar’
images. However, since there are infinitely many notions of
image similarity, how do we allow our models to choose?

Almost all current approaches assume a single notion of
similarity, either by explicitly training on a specific concept
[68,75] or through an implicit assumption in the underlying
data distribution [9, 12]. Meanwhile, prior works tackling
the conditional problem have focused on constrained do-
mains such as fashion [69,73] or birds [46], with a restricted
set of similarity conditions. This is because developing and
evaluating models that can adapt to generic notions of sim-
ilarity is extremely challenging. Specifically, curating data
to train and evaluate such models is difficult, as collecting
annotations for all concepts of similarity is impossible.
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In this work we study the problem of general conditional
image similarity, training on an open-set of similarity con-
ditions, and evaluating on diverse similarity notions in a
‘zero-shot’ manner. We first design a benchmark compris-
ing of four evaluation datasets for conditional image simi-
larity, setting up conditional retrieval tasks. We define these
tasks under a unified framework which spans practical use
cases, and propose the benchmark as a sparse but broad
coverage of the conditional similarity space. We propose
these datasets for zero-shot evaluation only, and suggest
that models which can perform well without fine-tuning can
flexibly adapt to general notions of similarity, as desired.
We name this benchmark GeneCIS (‘genesis’) for General
Conditional Image Similarity. On GeneCIS, we find that
baselines built from powerful CLIP backbones struggle and,
moreover, that performance on it is only weakly correlated
with the backbones’ ImageNet accuracy [17]. This is in
contrast to popular vision tasks such as segmentation [39]
and detection [45], underlining the benchmark’s utility.

We also propose a solution to training general condi-
tional similarity models, based on parsing large-scale cap-
tion datasets [64,66]. Rather than requiring exhaustive sim-
ilarity annotations, we find that we can automatically mine
this information from already abundant image-caption data.
We show that training in this way offers substantial gains
over the baselines, approaching (and in some cases sur-
passing) carefully designed specific solutions for each of
the GeneCIS tasks. In addition, we demonstrate that our
method scales with increasing amounts of caption data, sug-
gesting promising directions for future work. Finally, on
related benchmarks from the ‘Composed Image Retrieval’
(CIR) field [44,74], we find our method provides gains over
zero-shot baselines. In fact, our model outperforms state-
of-the-art on the MIT-States benchmark [28], despite being
evaluated zero-shot and never seeing the training data.
Contributions. (i) We present a framework for considering
conditional image similarity, an important but understudied
problem; (ii) We propose the GeneCIS benchmark to test
models’ abilities to dynamically adapt to different notions
of similarity; (iii) We show that current vision-language
models like CLIP struggle on GeneCIS, and that perfor-
mance on it is only weakly correlated with ImageNet accu-
racy; (iv) We design a scalable solution to the conditional
similarity problem based on automatically parsing large-
scale image-caption data; (v) We show our models provide
substantial gains over zero-shot CLIP baselines; (vi) We
validate our models on related CIR benchmarks, surpassing
state-of-the-art on MIT-States despite zero-shot evaluation.

2. Related Work

Our thesis that the similarity between two images should
be conditional is generally relevant to the representation

learning literature, which aims to learn embedding func-
tions based on a single (often implicit) notion of similarity.

For instance, deep metric learning [30, 34, 63] aims to
learn visual representations such that images from the same
category are projected nearby in feature space. This idea is
used in practical domains such as image retrieval [7,59,61],
face verification [11, 67, 68] and vehicle re-identification
[25,31,42]. The key limitation here is that networks are
trained to encode a single notion of similarity, namely
category-level similarity. While some work considered no-
tions of similarity at different visual granularities [4,15,70],
we posit that there exist concepts of similarity (e.g. shape
and color) which are orthogonal to categories.

Meanwhile, contrastive learning [9, 10, 12, 13] defines
notions of similarity by specifying a set of transforma-
tions to which the representation should be invariant (e.g.
color jitter or random cropping), encouraging augmenta-
tions of the same instance to be embedded together. Sim-
ilarly, vision-language contrastive training [29, 60] learns
joint embedding spaces, where images’ representations are
aligned with their paired captions. Though the precise no-
tions of similarity are difficult to define in this case, we note
that the embeddings are fundamentally unconditional, with
a single deterministic embedding of a given image.

Finally, we highlight three relevant sub-fields in the lit-
erature: conditional similarity networks (CSNs); composi-
tional learning (CL); and composed image retrieval (CIR).
CSNs are networks with multiple subspaces for different
notions of similarity [73]. Though their motivation is highly
related to our work, CSNs are trained in a supervised
manner with pre-defined similarity conditions [41,46, 73],
and/or are evaluated in constrained domains such as fash-
ion [32,69]. In contrast, we aim to train on an open-set
of similarity conditions and evaluate zero-shot on natural
images. Meanwhile, our work is related to CL research in
that we seek to compose information from images and con-
ditions to establish similarities. However, again, CL mod-
els are often assessed on their ability to recognize unseen
combinations of a finite set of visual primitives [47,54,56].
Lastly, the most similar setup to GeneCIS is proposed in
the recent CIR [74]. It tackles the problem of composing
an image and text prompt to retrieve relevant images from
a gallery [1,3, 16]. This is typically posed in the context of
fashion [23,76], with the text prompt acting as an image edit
instruction (e.g. ‘the same dress but in white’ [1]). As such,
CIR tackles a subset of the conditional similarity problem,
by presenting models with a ‘negative’ similarity condition.
Key similarities and differences with prior work: In this
work, we leverage CIRR [44] and MIT-States [28] (natu-
ral image CIR datasets) for additional evaluations, and fur-
ther leverage the ‘Combiner’ architecture [3] to compose
text conditions and image features. Broadly speaking, our
work differs from CSNs, CL and CIR in that we do not
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Figure 2. The GeneCIS benchmark contains four evaluation tasks for conditional similarity, where the goal is to retrieve the most similar
image from a gallery (right, green squares), given a reference (left, yellow squares), and condition (blue ovals). Each task explores one
combination of ‘focus’/‘change’ an ‘attribute’/‘object’. All galleries contain ‘distractors’ (dashed, dark-red squares) which are implicitly
similar to the reference or condition. Thus, given a reference and explicit condition, GeneCIS evaluates models’ ability to select the most
conditionally similar gallery image. Note: We show three gallery images for clarity, though all GeneCIS galleries have 10-15 images.

train on a finite, closed-set of similarity conditions or vi-
sual primitives. Instead, we train models on open-world
image-caption data, and demonstrate a flexible understand-
ing of conditional similarity through zero-shot evaluation
on a range of similarity conditions in natural images.

3. Conditional Similarity

We now describe our setup for the conditional similarity

problem and its associated challenges — both with bench-
marking models and acquiring data to train them. In § 4 we
introduce the GeneCIS benchmark which measures impor-
tant aspects of the problem. In § 5, we present a scalable
solution to automatically acquire training data from widely
available image-caption datasets.
Problem Definition: We define the problem of conditional
similarity as learning a similarity function between two im-
ages given an explicit condition: f(I7;I% c) yields the
scalar similarity between a target image, I”, and a refer-
ence image, 1'%, given some external condition, c. We use
the scalar f(-) to find the most conditionally similar image
from a target set, i.e., to solve a retrieval task. In this work
we consider the condition to be a user-specified text prompt,
although other types of condition are possible. We highlight
that standard image similarity, framed as f (17, I'®), implic-
itly assumes a similarity condition, often incorporated into
the model or dataset (see § 2). We refer to the case where
images are similar under an unspecified condition as the im-
ages being implicitly similar.

3.1. Challenges in training and evaluation

Challenges in evaluation: The key difficulty in evaluating
conditional similarity is that there are infinitely many pos-
sible conditions: from ‘images with the same top-left pixel

value are similar’ to ‘the same image but upside down is
similar’. Thus, it is impossible to evaluate models’ ability
to adapt to every similarity condition. Instead, in § 4, we
introduce the GeneCIS benchmark which consists of a sub-
set of such conditions, and covers a broad range of practical
use cases. We suggest that models which produce zero-shot
gains across GeneClIS, without finetuning, are more capable
of flexibly adapting to different notions of similarity.
Challenges in acquiring training data: Since the space
and diversity of similarity conditions is huge, acquiring hu-
man annotations to train for every type of conditional simi-
larity is not feasible. For instance, to train a function which
is sensitive to object category given some conditions (e.g.,
‘car’ or ‘bridge’ objects in Figure 1), and ‘color’ given oth-
ers (e.g. ‘blue’ or ‘black’ car in Figure 1), we need training
data containing both features. Prior work addresses this by
dramatically restricting the space of conditions and training
on human annotations for pre-defined notions of similar-
ity [46,73]. In § 5, we describe an automatic method which
leverages existing large-scale image-text datasets to learn an
open-set of similarity conditions. The resulting model can
be evaluated in a zero-shot manner across different types of
conditional similarity task.

4. The GeneCIS Benchmark

GeneCIS considers two important dimensions of the
conditional similarity problem. Firstly, a user may be in-
terested in an object in the scene (‘with the same car’) or
an attribute of a given object (‘the same color as the car’).
Secondly, the condition could either focus on a particular
aspect of the image (‘the same color as the car’) or specify
the ‘negative’ space of a similarity condition, by defining a
change in the image (‘this car but in black’).
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We propose four evaluation tasks in GeneCIS, that
covers the combination of the above dimensions and hence
a diverse range of conditional similarities. For each of the
tasks, we construct retrieval problems with: a reference im-
age, | R. 4 text condition, ¢; and a retrieval gallery of M
target images, {1}, of which only one is ‘correct’ or
‘positive’. The task is to identify which of the target images
is most similar to the reference, given the condition. The
retrieval tasks, illustrated in Figure 2 with more examples
in Appendix G.1, are:

* Focus on an Attribute: This task evaluates a model’s
ability to focus on a specific attribute type (e.g ‘color’ or
‘material’). For instance, in Figure 2, we see a white
laptop and the condition ‘color’, with the task being to
select the laptop with the same color from the gallery.

* Change an Attribute: This task contains ‘negative’ sim-
ilarity conditions, considering target images with a spe-
cific attribute changed to be most similar. In Figure 2,
the aim is to retrieve the same object (‘train’) but with the
color changed from ‘green’ to ‘olive green’.

* Focus on an Object: This task considers reference im-
ages with many objects, and we refer to the set of objects
together as a proxy for the image ‘scene’. The condition
selects a single object from the reference as the most im-
portant (e.g. ‘refrigerator’ in Figure 2) and the ‘positive’
target contains the condition object as well as the same
‘scene’ (e.g. also contains ‘sky’, ‘chair’ efc. in Figure 2).

¢ Change an Object: This task considers ‘negative’ sim-
ilarity through conditions which specify an object to be
added to a scene. For instance, in Figure 2, ‘ceiling’ is
specified, with the aim being to retrieve the same scene (a
train station) but with a ceiling also present.

The tasks in GeneCIS are designed to be diverse and
challenging for a single model while remaining well-posed.
In Figure 2, given only the reference image, 1%, and text
condition, ¢, a human can readily identify which of the tar-
get images is most ‘similar’. We wish to benchmark vision
models’ competency at the same task.

For the benchmark to be challenging, we would want the
model to need both the image content and the text condition
to solve the problem. Thus, we include different forms of
‘distractor’ images in the galleries. For instance, for tasks
with objects in the condition, we include distractors which
have a similar ‘scene’ to the reference but do not contain
the condition object. Such distractors are likely to affect
models which are over-reliant on information from the ref-
erence image, without considering the condition. Similarly,
we include distractors which contain the object specified in
the condition, but not the reference scene, confusing mod-
els which solely rely on the condition. Meanwhile, for the
attribute-based tasks, we include distractors which contain
the reference object category, but not the correct attribute,

Table 1. Statistics of the four tasks in the GeneCIS benchmark.

Name Base Dataset ~ # Templates  # Gallery Images
Focus on an Attribute VAW [56] 2000 10
Change an Attribute VAW [56] 2112 15
Focus on an Object COCO [36] 1960 15
Change an Object COCO [36] 1960 15
Attributes Objects
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Figure 3. Distribution of conditions for attribute- and object-
based conditions. For ‘Focus on an Attribute’, we show the distri-
bution of the common attribute between the reference and positive
target image (the condition itself is an attribute type, e.g. ‘color’).

and vice-versa. As such, many targets are implicitly similar
to the reference (similar given some condition), but the pos-
itive image is the most similar given the provided condition.
Benchmark Details: We construct all tasks by re-
purposing existing public datasets. For the two tasks which
‘focus on’ and ‘change’ attributes, we leverage the VAW
dataset [56], which inherits from Visual Genome [37].
From VAW, we extract crops for individual objects and, for
each object, use annotations for: object category; positively
labelled attributes (which the object definitely possesses);
and negatively labelled attributes (which the object defi-
nitely does not possess). For the two tasks which ‘focus
on’ or ‘change’ objects, we use COCO Panoptic Segmenta-
tion data [36,40] containing dense category annotations for
every pixel in the image. We give full details of the template
construction process for each task in Appendix A.1.

We show statistics of the evaluations in Table 1, includ-
ing the number of retrieval templates and number of gallery
images. We note that we carefully construct the benchmarks
such that there is only one ‘positive’ image among the tar-
gets, with gallery sizes of between 10 and 15 images. This
is different to many ‘text-to-image’ or ‘image-to-text’ re-
trieval benchmarks [40, 57], which contain galleries with
thousands of targets. Though larger galleries increase the
tasks’ difficulty, the galleries inevitably contain some valid
targets which are treated as negative. We further show the
distribution of objects and attributes specified in the condi-
tions in Figure 3, noting that our space of conditions spans
a long-tail of over 400 attributes and 100 objects.
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Figure 4. Method overview. Our method for training general conditional similarity functions extracts information from large-scale image-
caption datasets (left). We extract ‘Subject” — ‘Predicate’ — ‘Object’ relationships from the caption data (middle), before using them to
construct training triplets where a reference and target image are related by a condition (right).

Noise and human verification: Though, in principle, our
benchmark should be error free, manual inspection of the
templates shows that noise is introduced through underly-
ing inconsistencies in Visual Genome [37], VAW [56] and
COCO [36]. We are currently in the process of collect-
ing manual annotations and human verification of the tem-
plates, and present the current version as ‘GeneCIS v0’.

5. Method

In § 5.1, we briefly describe preliminaries for our ap-
proach to learning general conditional similarity functions.
This includes the model architecture and optimization ob-
jective which we inherit from prior work [3]. In § 5.2,
we describe our main methodological contribution: an au-
tomatic and scalable way of mining conditional similarity
training data from widely available image-caption datasets.

5.1. Preliminaries

Training data. To learn a conditional similarity function
f(-), we train with triplets (I%,IT ¢), where I®and I”are
termed reference and target images, and c is the condition
defining a relationship between them.
Model Architecture We parametrize the conditional simi-
larity function f(-) with deep networks, first encoding fea-
tures for (1%, I, ¢) as (xf,xT, e) € RP. We learn sepa-
rate encoders, ®(I) and ¥(c), for the images and text con-
dition. Next, we train a ‘Combiner’ network [3], which
composes the reference image features with the condition
text features as g(x®,e) € RP. Finally, we consider
the scalar conditional similarity to be the dot product be-
tween the combined feature, and target image feature, as:
FUIT; IR ¢) = g(x, e) - xT. Details of the Combiner ar-
chitecture can be found in Appendix D and [3].

We initialize our image and text backbones, ®(-) and
U(-), with CLIP [60]. CLIP models are pre-trained on

400M image-text pairs containing a range of visual con-
cepts. Furthermore, the visual and text embeddings from
CLIP are aligned, making it easier to learn the composition
between reference image and conditioning text features.
Optimisation Objective Given a batch of triplets B =
{(IZR,IZT,Q)}z 1» we get features as {(xF, e,)}lB‘
Then, given a temperature 7, we optimise (<I>, \Il, g) with

a contrastive loss [50], as:

exp (9(x", e:)-x /7)
1Bl Z > cp e (g0F o) xT/) )

5.2. Scalable training for conditional similarity

To train for general conditional similarity, we Wish to cu-

rate triplets for training, Dyyain = {(IE, IT, c;)}N , with
diverse conditions and concepts of similarity. However, as
the space of conditions increases, the burden for exhaus-
tively annotating such a dataset increases exponentially. In-
stead, our method (illustrated in Figure 4) automatically
mines training triplets from existing data sources:
Image-caption Data: We begin with large-scale image-
caption data scraped from the internet, containing images
paired with descriptive captions [51, 66]. We hope that
the captions contain information about the objects and at-
tributes in the image, which we can utilize for the condi-
tional similarity task. We also hope that such a method can
scale with increasing data in the same way that conventional
representation learning algorithms do.
Extract relationships: We use an off-the-shelf text-to-
scene-graph parser [65, 77] to identify ‘Subject” — ‘Pred-
icate’ — ‘Object’ relationships within the caption [55]. For
instance, from the central image in Figure 4, we extract the
highlighted relationship ‘Horse’ — ‘on” — ‘Canvas’. Note
that one caption may contain many such relationships.

We find that many of the entities (‘Subjects’ or ‘Ob-
jects’) extracted by the parser are not visually grounded in
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the image, e.g., pronouns (‘I’, ‘you’) or time-based nouns
(‘today’, ‘yesterday’). To address this, we introduce an ad-
ditional filtering step, where every entity is scored for ‘vi-
sual concreteness’ based on a pre-existing database [8]. The
database contains human ratings between 1 and 5 for how
visually apparent a noun is. For each extracted relationship,
we average its ‘Subject’ and ‘Object’ concreteness scores,
discarding relationships if their value is below a threshold.
Construct triplets: We first randomly select a relationship,
taking the image it comes from as the ‘reference’, 1. Hav-
ing identified the subject of the relationship (e.g. ‘Horse’ in
the rightmost column of Figure 4) we identify all other re-
lationships in the dataset containing the same subject. From
this restricted pool of relationships, we randomly sample a
‘target’ relationship and image, I”, with the same subject
but a different object (e.g. a horse on a ‘canvas’ instead of
ina ‘meadow’ in Figure 4). Finally, we define the condition
of the triplet, ¢, as the concatenated ‘Predicate’ and ‘Object’
from the target relationship (‘on canvas’ in Figure 4).
Discussion: We note that our mined triplets exhibit a bias
towards the ‘Change an Object” GeneCIS task. However,
the triplets often involve abstract relationships between ref-
erence and target images (e.g. ‘Horse on canvas’ in Fig-
ure 4). As such, solving the training task requires the model
to use the condition to extract and modify diverse forms of
information from the reference, which is the central require-
ment of the broader conditional similarity problem.

6. Main Experiments

We evaluate baselines, task-specific solutions, and our
method on the proposed GeneCIS benchmark. § 6.1 de-
scribes the baselines as well as specific solutions which we
design for each of the GeneCIS tasks. § 6.3 shows results
on GeneCIS and, in § 6.4, we evaluate on related bench-
marks from the Composed Image Retrieval (CIR) literature.

6.1. Baselines and Specific Solutions for GeneCIS

CLIP-Only Baselines: We provide three simple CLIP-only
[60] baselines for GeneCIS. Our Image Only baseline em-
beds all images with the CLIP image encoder and retrieves
the closest gallery image to the reference. The Text Only
baseline embeds the text condition with the CLIP text en-
coder, and the gallery images with the image encoder, and
finds the closest gallery image to the text embedding. Fi-
nally, our Image + Text baseline averages the reference im-
age with the condition text feature, before using the com-
bined vector to find the closest gallery image.

CIRR Combiner baseline: CIRR is a natural image
dataset [44] containing 28K curated retrieval templates. All
templates contain a human-specified text condition defining
the relationship between the reference and ‘positive’ target
image. Unlike our automatic and scalable triplet mining

method, CIRR is manually constructed with a lengthy anno-
tation process. We include a baseline from [3], which trains
a Combiner model with a CLIP backbone on CIRR. For fair
comparison with our method, we fine-tune both the image
and text backbones on CIRR before evaluating the model
zero-shot on GeneClIS, terming it Combiner (CIRR).
Specific Solutions: We also design specific solutions for
each of the proposed tasks in GeneCIS. These solutions
take into account the construction mechanisms of each task
and represent sensible approaches to tackling the tasks inde-
pendently. We design all solutions to respect the zero-shot
nature of the evaluations and hence they are all based on
‘open-vocabulary’ models; we use CLIP for the attribute-
based tasks and Detic [81] for the object-based ones. For
the attribute-based tasks, we use CLIP to predict attributes
or categories in the reference image, before using text em-
beddings of these predictions to search the gallery. For the
object-based tasks, we use Detic to detect the object cate-
gories present in all images, treating the detected categories
as bag-of-word descriptors of the target images. We give
full details of the specific solutions in Appendix B.

6.2. Implementation Details

We train our strongest model on 1.6M triplets mined
from Conceptual Captions 3 Million (CC3M) [66] which
contains 3M image-caption pairs. Each triplet has a visual
concreteness of at least 4.8 averaged over the ‘Subject’ and
‘Object’ entities in both the reference and target image. We
train the contrastive loss with temperature 7 = 0.01 and
batch size of 256, training for 28K gradient steps. We use
early stopping based on the Recall@1 on the CIRR valida-
tion set and, for fair comparison with [3], initialize the im-
age and text backbones with the ResNet50x4 CLIP model.
Further details are in Appendix E.

6.3. Analysis on GeneCIS

We report results for all methods on the GeneCIS bench-
mark in Table 2. Our evaluation metric is Recall@K:
the frequency with which the model ranks the ‘correct’
gallery image in its top-K predictions. We report results
at K = {1, 2, 3} to evaluate under different constraints, and
to account for any noise in the benchmark. We also report
the Average R@1 over all tasks to measure the overall per-
formance across different forms of conditional similarity.
Takeaways: From the baselines we find that both the ‘Im-
age Only’ and ‘Text Only’ models perform poorly as ex-
pected, since they only rely on either the reference image
content or the text condition. The ‘Image + Text’ and ‘Com-
biner (CIRR)’ models perform better, validating our claim
that both the reference and text condition are required to
solve the task. Phrased differently, this suggests the bench-
mark evaluates conditional similarity, as implicit similarity
functions (e.g. the ‘Image Only’ baseline) perform poorly
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Table 2. Evaluation on GeneCIS. We evaluate baselines and our method. We also evaluate specific solutions for each task (shown gray,
these are not general conditional similarity functions and hence cannot be evaluated on all tasks). Both across ten random seeds, and with
ten cross-validation splits, we find a standard deviation of &~ 0.2% in our model’s R@1 on each task, as well as on average over all tasks.

‘ Focus Attribute Change Attribute Focus Object Change Object

‘ R@l R@2 R@3 ‘ R@l R@2 R@3 ‘ R@l R@2 R@3 ‘ R@l R@2 R@3 ‘ Average R@1
Image Only 17.7 30.9 41.9 11.9 20.8 28.8 9.3 18.2 26.2 72 16.7 24.9 11.5
Text Only 10.2 20.5 29.6 9.5 17.6 26.4 6.5 16.8 22.4 6.2 13.9 21.4 8.1
Image + Text 15.6 26.3 37.1 12.6 229 32.0 10.8 21.0 31.2 11.3 21.5 30.3 12.6
Combiner (CIRR) 15.1 27.7 39.8 12.1 22.8 31.8 13.5 25.4 36.7 15.4 28.0 39.6 14.0
Combiner (CC3M, Ours) ‘ 19.0 31.0 41.5 ‘ 16.6 27.5 36.5 ‘ 14.7 259 36.1 ‘ 16.8 29.1 39.7 ‘ 16.8

Table 3. Results on MIT-States [28]. Zero-shot evaluation of our
model outperforms SoTA supervised methods on this dataset.

Table 4. Results on CIRR [44]. Our model substantially outper-
forms the comparable zero-shot baselines.

Zero-shot Recall @1 Recall @5  Recall @ 10 Zero-shot Recall @1 Recall @5  Recall @ 10
74 X 16 x
1 X 44 X
27 X 3 X
79 X X
19 X Image Only v 7.5 239 347
Image Only v/ 37 141 229 Text Only v 20.7 439 56.1
Text Only v 95 s 314 Image + Text v 21.8 50.9 63.7
Image + Text v/ 133 317 2.6 Combiner (CC3M, Ours) v 27.3 57.0 71.1
Combiner (CC3M, Ours) v 15.8 375 494

on average. We further find that our method, using automat-
ically mined data, substantially outperforms all baselines on
average across the tasks, as well as at Recall@1 on all tasks
individually. Notably, it outperforms the model trained on
manually collected data from CIRR.

As expected, most per-task specific solutions perform
better than our general method. However, the broad zero-
shot nature of GeneCIS makes all tasks independently chal-
lenging and the specific solutions do not work for all of
them. Broadly speaking, we found that CLIP [60] struggles
to predict object attributes, and that Detic [81] struggles on
the ‘stuff’ categories in COCO Panoptic [36].

Finally, caveats can be found in ‘Image Only’ results
on ‘Focus Attribute’, where the baseline performs slightly
better than our method at higher recalls. This is because
there are some similarity conditions (e.g. ‘color’) for which
standard image embeddings are well suited. We also find
that ‘Combiner (CIRR)’ performs better on tasks with ob-
ject conditions, as the multi-object image distribution of
CIRR is more closely aligned with these tasks, than with
the single-object images in the attribute-based tasks. We
note that good performance on all tasks collectively indi-
cates strong general conditional similarity models.

6.4. Comparisons to Prior Work

GeneCIS uses natural images with general conditions,
rather than being specialized to domains such as bird
species [46], faces [80] or fashion compatability [23, 24,
71,76]. As such, to find comparable existing benchmarks,
we turn to the Composed Image Retrieval (CIR) literature.
The CIR task is to retrieve images which best match a com-

posed reference image and editing text condition. This task
aligns with the ‘Change’ dimension of GeneCIS. We eval-
uate on both the MIT-States benchmark [28] as well as on
CIRR [44], with the former precisely reflecting the ‘Change
Attribute’ GeneCIS task.

Metrics: On both benchmarks, we evaluate our model zero-
shot on the test-sets and compare with prior work trained on
the datasets. These datasets are partially labeled and eval-
uate using a global retrieval setting, i.e., the entire test-set
is used as a gallery for each query. Thus, we follow prior
work and report Recall@K at multiple K = {1,5,10} to
fully capture the model’s performance. '

Results: We show results on MIT-States in Table 3. Prior
work on this benchmark trains models on the dataset from
scratch and thus is not zero-shot. Nonetheless, zero-shot
evaluation of our model surpasses state-of-the-art on this
task. However, we note that prior methods use smaller mod-
els compared to our pre-trained CLIP backbone.

We report on CIRR in Table 4, evaluating through the of-
ficial test server and again comparing to methods that train
for this setting. We report results for the Combiner method
from the paper [3] as well as our improved implementation
(see § 6.1), which are both trained on CIRR. Our improved
implementation is a strong upper bound, surpassing previ-
ous fully supervised models. On zero-shot evaluation, our
method surpasses the comparable baselines by a signficant
margin across all the recall metrics. Compared to super-
vised methods, our model outperforms [16] and [44] zero-
shot, though we note [16] trains from scratch. Finally, our

ICIRR also has an evaluation on curated galleries, akin to GeneCIS. We
do not report on this as we found that the “Text Only’ baseline performed
comparably with SOTA models on this task, achieving over 60% Recall@]1.
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Table 5. Ablations of key design choices of our full model with
results reported on our GeneCIS benchmark.

Average Recall @ 1

Full Model 16.8
No filtering for visual concreteness 15.0
Freezing CLIP image backbone 14.7
Freezing CLIP text backbone 15.8
Freezing entire backbone 15.1
Training on SBU [51] instead of CC3M [66] caption data 16.5

model reduces the gap between the baselines and specialist
Combiner models trained on CIRR.

7. Analysis

Ablations: Table 5 shows the effect of our design choices
on the performance on GeneCIS. We find that filtering out
relationships which are not visually concrete, and finetuning
the entire backbone, both strongly affect the performance.
We verify the robustness of our triplet mining procedure
by training with SBU Captions [51], a smaller but differ-
ent source of image-caption data. We find that though the
larger CC3M [66] produces slightly better results, different
image-caption datasets are also suitable.
Comparing pretrained backbones: In Figure 6, we study
the effect of changing the CLIP initialization. We train
Combiner models with ResNet [26] and ViT [18] backbones
on CC3M, showing their performance as well as the ‘Image
+ Text’ baseline from § 6.1. 2

We plot the performance on GeneCIS against the CLIP
backbone’s zero-shot ImageNet accuracy [17]. We observe
that the performance on GeneCIS is weakly correlated
with the ImageNet performance of the backbone: a Top-1
gain of 10% on ImageNet leads to only 1% improvement on
GeneCIS. This suggests that improvements on ImageNet do
not directly transfer to GeneClIS and that GeneCIS measures
a different yet important capability of vision models. In ad-
dition, our method offers a substantial boost over the ‘Image
+ Text’ baseline, and a greater boost than scaling the under-
lying CLIP model. Both of these results are in stark contrast
to trends on popular vision tasks such as segmentation [39]
and detection [45], where gains on ImageNet directly trans-
fer to large gains on the downstream task, and often more
significantly so than gains from the underlying method.
Scaling the number of triplets: In Figure 5, we investigate
the effect of scaling the conditional similarity training data.
We successively decrease the number of mined triplets by
factors of four (from the 1.6M used to train our strongest
models) both with and without concreteness filtering. We
find results improve with increasing numbers of triplets and
that while our models are trained on a dataset of 3M image-
caption pairs [66], open-source caption datasets exist with
up to five billion images [64]. We emphasize the utility of

2For fair comparison with [3], we report with a ResNet50 x 4 backbone
in Table 2, and report on our strongest ViT-B/16 model in Appendix C.
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Figure 5. Scaling the number of mined triplets used for train-
ing our model improves the performance. This suggests that our
automatic mining strategy is a promising and scalable approach to
learning general similarity functions.
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Figure 6. Impact of different CLIP backbones on the perfor-
mance of our model and the ‘Image + Text’ baseline. We show the
Average Recall@1 on GeneCIS against the backbones’ zero-shot
ImageNet accuracy, showing the two have a weak correlation.

this finding, suggesting it is possible to train stronger condi-
tional similarity models by further scaling the training data.

8. Conclusion

In this paper we have proposed the GeneCIS benchmark
for General Conditional Image Similarity, an important but
understudied problem in computer vision. The benchmark
extends prior work and evaluates an open-set of similar-
ity conditions, by being designed for zero-shot testing only.
Furthermore, we propose a way forward for scalably train-
ing conditional similarity models, which mines information
from widely available image-caption datasets.

Our method not only boosts performance over all base-
lines on GeneCIS, but also provides substantial zero-shot
gains on related image retrieval tasks. Moreover, we find
that unlike for many popular vision tasks, the performance
of our models on GeneCIS is roughly decorrelated from
scaling the backbone network’s ImageNet accuracy, moti-
vating further study of the conditional similarity problem.
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