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Abstract

It is well known that CNNs tend to overfit to the training
data. Test-time adaptation is an extreme approach to deal
with overfitting: given a test image, the aim is to adapt the
trained model to that image. Indeed nothing can be closer to
the test data than the test image itself. The main difficulty of
test-time adaptation is that the ground truth is not available.
Thus test-time adaptation, while intriguing, applies to only
a few scenarios where one can design an effective loss func-
tion that does not require ground truth. We propose the first
approach for test-time Salient Object Detection (SOD) in
the context of weak supervision. Our approach is based on
a so called regularized loss function, which can be used for
training CNN when pixel precise ground truth is unavail-
able. Regularized loss tends to have lower values for the
more likely object segments, and thus it can be used to fine-
tune an already trained CNN to a given test image, adapting
to images unseen during training. We develop a regularized
loss function particularly suitable for test-time adaptation
and show that our approach significantly outperforms prior
work for weakly supervised SOD.

1. Introduction

A well known problem with CNNs is that they tend to
overfit to the training data. One approach to deal with over-
fitting is test-time adaptation [30]. A model is trained on
the training data, and then fine-tuned for a few epochs dur-
ing test time on a given test image. The main difficulty of
test-time adaptation is that there is no ground truth for the
test image. Thus test-time adaptation has been previously
used for only a few applications [11, 16, 22, 30, 45] where a
suitable loss function can be designed without ground truth.

We propose the first approach for test-time Salient Ob-
ject Detection (SOD). The goal of SOD is to find image
regions that attract human attention. Convolutional Neu-
ral Networks (CNNs) [14, 15] brought a significant break-
through for SOD [18, 28, 46, 47]. Traditional training of

CNNs for SOD requires pixel precise ground truth, but ob-
taining such annotations is a substantial effort. Therefore,
there is an increased interest in semi-supervised [20,23] and
weakly supervised SOD [17, 25, 33, 40, 41, 44]. Weak su-
pervision requires less annotation effort, compared to semi-
supervision. In this paper, we assume image level supervi-
sion, the weakest supervision type, where one provides only
images containing salient objects, with no other annotation.

Most image level weakly supervised SOD ap-
proaches [17, 25, 40, 41, 44] are based on noisy pseudo
labels, constructed from unsupervised SOD methods.
These approaches are hard to modify for test-time adapta-
tion, as at test time, one has only one image to create noisy
pseudo-ground truth samples, but combating noise requires
diverse samples.

Our test-time adaptation is based on the approach in [33].
Different from the other image level supervised SOD meth-
ods, the approach in [33] does not require pseudo labels.
They design a regularized loss1 to use for CNN training
without pixel precise annotations. Regularized loss models
class-independent properties of object shapes and is likely
to have lower values for segmentations that separate the ob-
ject from the background. This makes regularized loss ap-
proach particularly suitable for test time adaptation.

We design a regularized loss function tailored for test
time adaptation. The main problem with regularized loss
in [33] is that it may result in a trivial empty solution if hy-
perparameters of the loss function are not chosen correctly.
When training on a large dataset, an occasional empty result
is not a big problem, but when training on a single test im-
age, an empty result is disastrous, catastrophically worsen-
ing the performance. Thus we must develop a hyperparame-
ter setting method that avoids empty solutions. However, in
the absence of ground truth, setting hyperparameter weights
is not trivial. We propose a method for setting hyperparame-
ters specific for each test image such that an empty solution
is avoided. This method is crucial for obtaining good results

1In the context of CNNs, regularization is a term often used to refer to
the norm regularization on the network weights [8]. Here, regularized loss
refers to the loss function on the output of CNN.
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test image ground truth base CNN result
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Figure 1. Overview of our approach. Top: test image, ground truth, output of base CNN on the test image, and the result of dense CRF [13]
post-processing of the base CNN result. Bottom: test-time dataset, CNN output on the test image during several test time epochs, and the
final result of the adapted CNN.

during test-time adaptation.
Fig. 1 is an overview of our approach. First we train

CNN for SOD in weakly supervised setting with image
level labels using [33]. The result is called the base CNN.
The top row of Fig. 1 shows a test image, ground truth, and
the result of the base CNN. Given a test image, we create a
small training dataset by augmentation, see Fig. 1, bottom,
left. Then we fine tune the base CNN on the small dataset,
using our version of regularized loss, Fig. 1, bottom, mid-
dle. The resulting CNN is called the adapted CNN.

The result of base CNN (Fig. 1, top, third image) has
many erroneous regions. Sometimes dense CRF [13] is
used for post processing to improve performance. We apply
dense CRF to the output of base CNN (Fig. 1, top, right).
Dense CRF removes small spurious regions but is unable to
remove the large erroneous regions as these are salient with
high confidence according to the base CNN.

In contrast, our approach is able to produce much better
results, Fig. 1, bottom, right. This is because the base CNN
has a high value of regularized loss for this test image. As
the fine tuning proceeds, CNN is forced to find alternative
segmentations with better loss values, resulting in increas-
ingly better segmentations. Unlike CRF post processing,
our adapted CNN is able to remove the large erroneous re-
gions, as their high confidence values according to the base
CNN are ignored, and these regions give higher values of
regularized loss. Both dense CRF and our approach use
CRF models. However, as opposed to post-processing, we
use CRF for CNN supervision, enabling CNN to learn a
better segmentation.

Our experiments on the standard benchmarks show that
test time adaptation significantly improves performance,
achieving the new state-of-art in image level weakly super-
vised SOD.

This paper is organized as follows: Sec. 2 is related

work, Sec. 3 explains the approach in [33], Sec. 4 describes
our approach, and Sec. 5 presents experiments.

2. Related Work

Weakly Supervised Salient Object Detection
Most prior work on image level weak supervision con-

sists of two stages. In the first stage, pseudo labels for SOD
task are generated, and in the second stage, CNN is trained
on the pseudo labels.

One of the first methods to use image level weak supervi-
sion for SOD is in [34]. Their method generates pseudo la-
bels by training CNN for object category prediction. In their
setting, image level supervision consists of a large set of 200
object classes categories from Image net. After training for
object class prediction, they extract foreground heat maps
capturing potential object regions. These generalize to un-
seen categories, and provide initial pseudo labels. Next,
they have a self-training stage which alternates between es-
timating pseudo labels and training CNN on them. For more
accurate pseudo-labels, the predicted pseudo-labels are re-
fined with dense CRF [13].

Later image level SOD approaches [17,25,27,40,41,44]
use one or more conventional weak (i.e. unsupervised)
saliency methods [4, 9, 10, 19] for pseudo labels. In [40],
they use multiple weak saliency methods and fuse their re-
sults in pseudo-ground truth. During the fusion process,
based on the difficulty of training data, they estimate the
corresponding confidence measure and utilize it for training
with their pseudo ground truth to better handle label noise.

In [44] they develop a noise modeling module, which
enables them to deal with noisy saliency maps obtained
from multiple weak saliency methods in a probabilistic way.
They later extend their method to rely only on a single weak
saliency method [41].
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In [17], they approach the noise in pseudo labels by ex-
ploiting dense CRF [13]. Initial pseudo labels are gener-
ated by a weak saliency method. Then they alternate ap-
plying dense CRF and CNN training. Dense CRF corrects
the noisy labels through spatial consistency and structure
preservation, while CNN is trained on the current version
of pseudo labels to update and improve the current model.

In [25], they develop a curriculum framework to incre-
mentally refine the pseudo-labels. Instead of directly using
the saliency maps produced by weak saliency methods for
training, they first train CNNs to generate pseudo labels for
each weak saliency method. This improves the pseudo la-
bels as CNNs are forced to learn representations across a
broad set images. Then pseudo labels are further refined via
an iterative self-supervision technique.

In [27] they utilize multiple pseudo labels to achieve ro-
bustness to noise. They design a multi-filter directive CNN
which uses multiple directive filters and a multi-guidance
loss to integrate multiple pseudo labels.

In [42] they propose a noise-aware encoder-decoder to
deal with noisy pseudo labels. Their method has a saliency
predictor that maps input images to clean saliency maps,
and a noise generator. The model that represents noisy la-
bels is a sum of these two models. They train their model to
simultaneously infer the corresponding latent vector of each
noisy label and the saliency predictor.

All approaches above develop elaborate techniques to
deal with noisy pseudo labels. In contrast to the above ap-
proaches, in [33] they develop a method for image level su-
pervised SOD which does not rely on pseudo labels from
conventional weak saliency methods. The main tool in [33]
is regularized loss, based on sparse CRF [2]. The approach
in [33] uses off-the-shelf Unet [29] architecture, consists
of a single stage, has an intuitive and easy to interpret
loss function, and outperforms other image level supervised
SOD methods. We review [33] in detail in Sec 3.

In addition to image level weakly supervised SOD meth-
ods, there are approaches that use additional sources of su-
pervision. They do not necessarily rely on conventional
weak saliency methods. In [39], they use additional weak
sources, such as captions, etc. In [38,43] they use scribbles,
and in [21] they use boxes, both much stronger forms of
weak supervision. We achieve comparable or better results
without additional weak sources.
Regularized Loss

Regularized loss for weak supervision was first used
in [31], for semantic segmentation supervised with scrib-
bles. It was subsequently generalized in [24, 32].
Test Time Adaptation

The idea of test time adaptation has been used before.
For example, in the context of traditional computer vision,
it was used in [30] for online updates in visual tracking and
in [11] for adapting detectors from images to videos. In the

context of deep learning, it was used in [45] for person re-
identification, in [16] for image inpainting, and in [22] for
enforcing consistency constraints in depth estimation. In all
these methods, the loss to perform test time adaptation is
application specific and is unrelated to our approach.

3. Regularized Loss for SOD
In this section, we review the approach in [33], which is

designed for image level weakly supervised segmentation
for datasets with a single object class. It naturally applies to
SOD, since there is only one class, the salient object. The
main idea is to design a regularized loss which incorporates
the likely properties of generic objects and to use this loss
to train CNN instead of cross entropy on ground truth.

Regularized loss is applied to the output of CNN, which
is the same size as the input image. Let x denote CNN out-
put, and xp denote the output for pixel p. The last layer of
CNN is sigmoid, so that xp ∈ [0, 1]. Background corre-
sponds to 0 and salient object to 1.

Regularized loss in [33] consists of a weighted combina-
tion of several components. The most important component
is sparse CRF loss [2].

Lcrf(x) =
1

|P|
∑

(p,q)∈N

e−
||Cp−Cq||2

2σ2 · |xp − xq|, (1)

where P is the set of all pixels in the image, N is the set of
neighboring pixel pairs on a 4-connected grid, and Cp ∈ R3

is the color of p. Parameter σ controls the edge strength and
is set to σ = 0.15 in all experiments.

Usually CNN produces a sharp distribution, i.e. most xp

are close either to 0 or 1. Thus if two neighboring pixels
are not assigned to the same class, there is a penalty which
depends on the strength of the edge between them. Sparse
CRF loss is low when segment boundary aligns with im-
age intensity edges. Salient objects are likely to cause im-
age intensity edges, and thus sparse CRF is the main driv-
ing tool for salient object discovery. The lowest value of
sparse-CRF is zero, achieved at trivial solutions: empty, ev-
erything classified as object, or full, everything classified as
background. Thus one cannot train with sparse CRF alone.

Another component of regularized loss is batch volumet-
ric loss. It encourages the average object size in a batch
of images to be half of the image size. This loss is useful
to prevent both empty and full trivial solutions. Averaging
over a batch makes the loss less strict: some batch objects
can be significantly smaller or larger than half of the image.

The next component of regularized loss is minimum vol-
ume loss. It encourages the object to be of at least a certain
size. It is more likely to be valid in practice, compared to
volumetric batch loss, as objects can be expected to be at
least a certain minimum size. The last two components of
regularized loss are border and center losses. The border
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loss encourage the image border to be the background, and
the center loss encourages image center be the object. This
is a realistic assumption for many, but not all, images con-
taining a salient object.

Training CNN with regularized loss is difficult and tends
to get stuck in a bad local minimum. In [33] they devise a
two-stage strategy for training. For our approach, we start
with base CNN trained with the method developed in [33].

In our test-time adaptation, we only use sparse CRF loss
in Eq. (1), minimum volume loss, and border loss. We now
describe minimum volume and border loss in detail. Let
x̄ = 1

|P|
∑

p∈P xp, i.e. the normalized object size. Min-
imum volume loss Lm penalizes segmentations if the nor-
malized object size is less than objmin

Lm(x) = ReLU2(objmin − x̄). (2)

Following [33], we set objmin = 0.15.
Let B be the set of pixels on the image border of width

w = 3.2 The border loss Lb(x) is

Lb(x) =
( 1

|B|
∑
p∈B

xp

)2
. (3)

4. Test Time Adaptation
We now describe our approach. We start with an

overview in Sec. 4.1. We describe our regularized loss in
Sec. 4.2, and our hyperparameter setting method in Sec. 4.3.

4.1. Overview

The overview of our approach is in Fig. 1. Given a test
image I , we first construct a small training dataset D(I)
from I by data augmentation. There are various forms of
augmentation. However, since we are training without pixel
precise ground truth, we need to avoid augmentations which
make the salient object more difficult to detect in an im-
age. For example, large crops can remove the salient object.
Similarly, adding random image noise changes the distribu-
tion of intensity edges, and sparse CRF in Eq. (1) may be-
come less useful for object discovery. We use small random
vertical and horizontal image shifts, and random additive
shift to color channels (while keeping the shift the same for
all image pixels). We found random vertical and horizontal
shifts to be the most effective.

Next, we take the base CNN trained for SOD task in
image level weakly supervised setting, according to the
method proposed in [33], and train it on D(I) for a small
number of epochs using the regularized loss approach de-
scribed in Sec. 4.3. The resulting CNN is called the adapted
CNN. Training for a small number of iterations ensures that
the adapted CNN retains most of the information useful for

2The width of the border can be adjusted relative to the image size, but
we train on fixed size images, 256× 256.

SOD learned from the large training dataset, as well as en-
suring efficiency. In practice, we train for 10 epochs.

4.2. Regularized Loss

We now describe our loss function. For test-time adapta-
tion, we only use some of the regularized loss components
from [33]. We do not use batch volumetric loss as it encour-
ages the salient segment to be half of the image size and is
far from realistic for most test images. We also do not use
center loss. It assumes that the image center belongs to the
salient object and is likely not true for many specific test
images we wish to adapt CNN for.

In our regularized loss, we use sparse CRF, minimum
volume, and border losses, Eq. (1, 2, 3). Sparse CRF is the
most important loss component for discovering salient ob-
jects, as it favours segments that align with image intensity
edges. Minimum volume loss is necessary to prevent col-
lapse to an empty solution favoured by sparse CRF. Border
loss encourages image border to be assigned to the back-
ground, and is a realistic assumption for most test images.
The complete regularized loss for test time adaptation is

Lreg(x) = λcrfLcrf(x) + λmLm(x) + λbLb(x). (4)

4.3. Hyperparameter Setting Method

Consider the loss components in Eq. (4). To get the best
performance during test-time adaptation, it is important to
chose a good setting of their relative weights. Each test
image has its own best setting, however, we cannot find this
setting as the ground truth is not available. Thus we must
develop a hyperparameter setting method that does not rely
on ground truth.

Out of three components in Eq. (4), the border loss is the
least important as it contributes the least to the salient object
discovery. Indeed, if our only knowledge about a segmenta-
tion is that the image border is assigned to the background,
then this gives us almost no information to judge whether
this segmentation corresponds to the salient object. There-
fore, we set λb to a low value of 1. Out of the two remaining
components, sparse CRF is more important for object dis-
covery. Since objects tend to cause intensity edges in an
image, a segment that aligns to image edges is more likely
to correspond to a salient object, compared to a segment that
just obeys the minimum size constraints. Thus sparse CRF
weight λcrf should be much higher compared to the mini-
mum volume weight λm. At the same time, the minimum
volume weight should be sufficiently large to prevent the
collapse to a trivial empty solution. We can compute this
sufficiently large weight from the solution obtained from
our base CNN.

We now explain how to set λm relative to λcrf so that a
trivial solution is avoided. Let xi be the output of the base
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CNN on input image I . Assuming that xi is not empty,
we set the weight of minimum volume loss large enough to
make the loss on xi smaller than the loss of an empty solu-
tion. Then switching to an empty solution from the initial
xi is too costly.

The results produced by the base CNN tend to be sharp,
that is most pixels have values close to either 0 or 1. There-
fore we will assume that the trivial empty solution corre-
sponds to all pixels having value 0 in the output. Let x0 de-
note such a trivial empty solution, i.e. x0

p = 0 for all pixels
p. Suppose we wish to set sparse-CRF weight to λcrf. We
need to set λm to a value that makes collapse to an empty
solution too costly. For this, we need λm that satisfies

Lreg(x
i) = Lreg(x

0) + ϵ, (5)

where ϵ > 0 is a small constant, set in practice to 0.1.
Plugging x0 in Eqs.(1, 2, 3) we obtain

Lb(x
0) = 0, Lcrf(x

0) = 0, Lm(x
0) = obj2min. (6)

Plugging Eq. (6) into Eq. (5) and solving for λm, we get our
formula for setting λm

λm =
λcrfLcrf(x

i) + Lb(x
i)− ϵ

obj2min − Lm(xi)
. (7)

Eq. (7) applies when the output xi of the base CNN is
not a trivial empty solution. If xi is an empty solution, it
means that the base CNN fails to extract a salient object.
In this case, we set both CRF and minimum volume loss to
be of equal weight, λcrf = λm. This reflects the fact that
extracting a salient object from the current image is diffi-
cult and the penalty for not satisfying the minim object size
is increased. We do not set λm higher than λcrf as some
images may not contain a salient object, in which case an
empty solution is appropriate. In addition, while setting
λm high enough would result in some non-empty solution,
most likely it would be an erroneous solution, as minimum
volume loss is less useful for extracting object segments
and, therefore, should not have a weight higher than that
of sparse CRF. In practice, we set λcrf = 103 and compute
λm for each test image using Eq. (7).

In Table 1 we experimentally evaluate the effectiveness
of our method for setting λm. We randomly select 500 im-
ages from DUTO [37] dataset. We test our adaptive λm for
each image, and the same fixed setting of λm for all test im-
ages, in a range from 1 to 103, see Table 1. For this experi-
ment, we use a fixed λcrf = 103. The performance metric is
Fβ . The adaptive λm performs better than any fixed choice
of λm. As expected, the performance degrades significantly
for the larger values of λm as minimum volume loss starts
to play a bigger role in the regularized loss function, how-
ever, it is less discriminating of salient objects. For smaller
λm, the performance suffers as the results on some images
collapse to an empty solution.

5. Experimental Results
Our implementation is in Pytorch using RTX 2080 GPU.

For our base CNN, we use image level weakly supervised
SOD approach [33]. We use Unet [29] architecture with
ResNeXt [35] fixed features pretrained on Imagenet [5] and
train on 256 × 256 images. Unlike [33], we train on larger
images and on a larger training dataset, thus getting better
results for the base CNN than those reported in [33].

We train the base CNN on the training set of DUTS [34],
which contains 10,553 images. We then evaluate our test-
time CNN adaptation approach on the test set of DUTS
(5019 images), DUT-OMRON [37] (5168 images), EC-
SSD [36] (1000 images), THUR [3] (6233 images), Pas-
calS [19] (850 images), and HKU-IS [18] (4447 images).

For test time adaptation, given a test image I , we con-
struct a test time adaptation dataset D(I) that has 16 im-
ages. These images are constructed from I by shifting to
the left or right with probability 0.5, and, in addition, shift-
ing up or down with probability 0.5. Each shift is chosen
uniformly from the range [0, 15]. This creates a dataset of
images similar to I , and it is unlikely that the salient object
is removed out of the sample by these small shifts. We use
Adam optimizer [12], a fixed learning rate 0.001, and batch
size equal to the size of the test time adaptation dataset, set
to 16 images. We train for 10 epoch. The images are scaled
to resolution 256× 256. Test time adaptation takes 2.8 sec-
onds per image.

We use the standard metrics widely adopted for SOD.
Our first metric is Fβ score [1], with β2 = 0.3. We also
use mae [26], defined as the average absolute per pixel dif-
ference between the predicted saliency and ground truth. In
addition, we use two newer metrics, namely Sα [6], and
Es [7]. Sα evaluates the structural information for saliency
map and region-aware and object-aware structural similar-
ity between saliency maps and ground truth. Es is based on
unification of global and local information.

5.1. SOD results

In Table 2, we report the results of our approach and
compare to prior image level weakly supervised SOD meth-
ods. Our results with fixed hyperparameter settings in
Eq. (4) are in column “ours” (with λm = 20, which is the
best fixed setting according to Table 1). The results with
our method for hyperparameter setting for each image indi-
vidually, as described in Sec. 4.3, are in column ’ours+h’.
Except one case, all metrics for our approach with hyper-
parameter setting method are improved, often significantly.
This shows that our hyperparameter setting method is cru-
cial for obtaining a significantly improved performance.

Dense CRF [13] is often used to post-process CNN re-
sults. Therefore, we also post-process base CNN results
with dense CRF for comparison. The performance of the
base CNN is in column [33], and its performance after post-

57364



λm 1 5 10 20 50 100 200 500 1000 adaptive
Fβ .741 .738 .752 .755 .742 .732 .728 .718 .703 .765

Table 1. Performance in terms of Fβ score of fine tuning with a fixed value of λm vs. our adaptive λm computation according to Eq. (7).
For all experiments, λcrf = 103.

Metric [34] [17] [39] [44] [42] [27] [33] [33]+dCRF ours ours+h

D
U

T
S Fβ ↑ .654 .614 .684 .725 .747 .710 .753 .763 .771 .795

mae ↓ .100 .116 .091 .075 .060 .076 .056 .055 .054 .052
Es ↑ .795 .772 .814 .853 .859 .839 .833 .842 .855 .863
Sα ↑ .748 .697 .759 .813 .827 .775 .791 .798 .800 .817

E
C

SS
D Fβ ↑ .823 .797 .609 .810 .852 .854 .868 .873 .882 .911

mae ↓ .104 .110 .109 .092 .071 .084 .063 .060 .057 .046
Es ↑ .869 .853 .673 .836 .883 .885 .884 .886 .885 .909
Sα ↑ .811 .802 .756 .846 .860 .834 .845 .855 .859 .883

D
U

TO

Fβ ↑ .603 .622 .609 .597 .701 .646 .697 .710 .721 .752
mae ↓ .109 .101 .109 .103 .070 .087 .074 .069 .066 .057
Es ↑ .768 .776 .673 .712 .816 .803 .821 .827 .833 .842
Sα ↑ .725 .752 .756 .733 .791 .742 .763 .771 .782 .798

Pa
sc

al
S Fβ ↑ .715 .693 .713 - - .751 .796 .801 .801 .807

mae ↓ .139 .149 .135 - - .115 .083 .082 .082 .084
Es ↑ .791 .772 .790 - - .817 .827 .827 .826 .828
Sα ↑ .744 .717 .768 - - .770 .791 .793 .792 .796

H
K

U
IS Fβ ↑ - - .814 .820 .878 .851 .866 .871 .883 .899

mae ↓ - - .084 .065 .043 .059 .044 .040 .039 .037
Es ↑ - - .895 .858 .919 .921 .912 .925 .926 .931
Sα ↑ - - .818 .860 .890 .846 .857 .866 .871 .879

T
H

U
R Fβ ↑ - - - .694 .719 - .731 .749 .753 .760

mae ↓ - - - .086 .070 - .073 .069 .067 .064
Es ↑ - - - .807 .838 - .840 .842 .843 .844
Sα ↑ - - - .804 .810 - .794 .798 .806 .819

Table 2. Comparison to SOD methods that also use image level weak supervision using metrics Fβ , mae, Es, and Sα. We use ↑ to indicate
that the higher score is better, and ↓ to indicate the lower score is better. The best result is in bold, and the second best is underlined.

processing with dense CRF is in column [33]+dCRF. Our
approach is significantly better than [33] with dense CRF
post-processing. This illustrates that it is important to in-
clude CRF during training in the loss function, rather than
use CRF for just post-processing.

Our test time adaptation improves the performance
of [33] across all metrics, except one case. For easier
datasets (ECSSD, HKUIS), the performance gain is not as
large as the base CNN already performs well, but for harder
to fit datasets, the performance gain is significant.

Comparing to other SOD methods, our method is bet-
ter in almost all cases except Sα metric for HKUIS and
DUTS. For most datasets, our approach significantly im-
proves Fβ metric over the second best method, notably by
roughly 7% for DUTO and DUTS datasets.

In Table 3, we compare our method to weakly supervised
SOD methods that use stronger form of weak supervision.
In [21], they use bounding box supervision, and in [38, 43],

they use scribbles. Our method is better than the bounding
box method [43] in all cases. Our method is almost always
better than [43], and better in about half of the cases com-
pared to [38]. If Fig. 2, we show qualitative comparisons
of our method to the scribble supervised methods of [43]
and [38]. For this illustration, we chose examples where
all methods work relatively well, in terms of the standard
metrics. However, our results have better detail preserva-
tion qualities, especially when the salient object has sharp
edges on the boundary. Observe the detail preservation in
the chair, in the last row. This is because CRF based loss
function is adapted to the particular test image, driving the
segmentation boundary to align with image edges.

5.2. Ablation Experiments

Hyperparameters in Regularized Loss
We first discuss and perform ablation for hyperparame-

ters of our regularized loss function, Eq. (4). The most im-
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DUTS ECSSD DUTO PascalS HKUIS THUR

boxes [21]

Fβ ↑ .736 .860 .686 - .853 -
mae ↓ .079 .072 .081 - .058 -
Es ↑ .831 .889 .810 - .897 -
Sα ↑ .789 .858 .776 - .852 -

scribbles [43]

Fβ ↑ .747 .865 .715 .788 .858 .718
mae ↓ .062 .061 .068 .140 .047 .077
Es ↑ .865 .908 .835 .798 .923 .873
Sα ↑ - - - - - -

scribbles [38]

Fβ ↑ .823 .900 .758 .823 .896 .755
mae ↓ .049 .049 .060 .078 .038 .069
Es ↑ .890 .908 .862 .847 .938 .843
Sα ↑ - - - - - -

ours

Fβ ↑ .795 .911 .752 .807 .899 .760
mae ↓ .052 .046 .057 .082 .037 .064
Es ↑ .863 .909 .842 .828 .931 .844
Sα ↑ .817 .883 .798 .796 .879 .819

Table 3. Comparison to prior SOD methods that use stronger forms of weak supervision using metrics Fβ , mae, Es, and Sα. In [21], they
use bounding box supervision, and in [38, 43], they use scribbles. We use ↑ to indicate that the higher score is better, and ↓ to indicate the
lower score is better. The best result is in bold, and second best is underlined.

Figure 2. Qualitative comparison. From left to right: input image,
ground truth, results of [43], [38], and our results, respectively.
Note that [43], [38] both use scribble supervision, a much stronger
supervision form compared to what we use.

portant parameter to set is λm in relation to λcrf, as the cor-
rect relative settings of these two parameters ensures there
is no collapse to a trivial solution. For this, we have de-

with border loss without border loss
DUTS .795 .789

ECSSD .911 .910
DUTO .752 .748
PascalS .807 .800
HKUIS .899 .892
THUR .760 .755

Table 4. Performance of our approach with border loss and without
border loss. Performance metric is Fβ score.

veloped an effective automatic approach, Sec. 4.3. Since
λm is computed in relation to λcrf, the setting of λcrf can
be arbitrary (up to the precision that can be handled by the
software), λm is adjusted accordingly: for larger λcrf, λm
will be automatically set larger according to Eq. (7).

The setting of λb, as long as it is much smaller than λcrf,
is not important. Parameter λb controls the border loss that
encourages border pixels to be assigned to the background.
While this loss is helpful, it is the least important regular-
ized loss component. To show that this loss is the least im-
portant, we perform an experiment where we remove border
loss from regularized loss (λb = 0). The results are sum-
marized in Table 4. Without border loss, the results worsen
only a little. On the other hand, omitting either CRF or
minimum volume losses from our loss function in Eq. (4)
results in a catastrophic performance collapse.

In Eq. (1), we set σ = 0.15 as in [33]. Since the training
images are normalized, this setting works well across all
datasets. We also experimented with other values of σ, see
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σ = 0.1 σ = 0.15 σ = 0.20

DUTS .789 .795 .797
ECSSD .894 .911 .915
DUTO .751 .752 .743
PascalS .803 .807 .803
HKUIS .902 .899 .895
THUR .763 .760 .757

Table 5. Performance of our approach for different σ values. Per-
formance metric is Fβ score.

|D(I)| 2 4 8 16 32 64
Fβ ↑ .879 .887 .890 .910 .915 .913
mae ↓ .058 .055 .049 .046 .045 .046

Table 6. Different choice of test time dataset size for ECSSD
dataset.

# epoch 2 5 10 20 30 50
Fβ ↑ .873 .883 .910 .915 .915 .912
mae ↓ .062 .053 .047 .045 .046 .047

Table 7. Different number of test time adaptation iterations for
ECSSD dataset.

Table 5. The performance is stable for a range of σ values.

5.3. Other Hyperparameters

We now perform ablation experiments for various hyper-
parameter settings (other than those in the regularized loss
function) of our approach. We perform experiments on EC-
SSD dataset, and evaluate the sensitivity of our approach to
the size of the test time adaptation dataset D(I), the number
of epoch performed for test time adaptation, and different
data augmentation strategies. For all the experiments, the
performance metric is Fβ and mae.

In Table 6, we show how performance depends on vary-
ing the size of the test time dataset D(I). Our standard
setting for the size of D(I) is 16. Decreasing it to 8 slightly
degrades the performance, increasing it to 64 results in al-
most no change, but the running time is twice longer.

In Table 7, we show how performance depends on in-
creasing the number of epoch for test time adaptation. Our
standard setting for the number of epoch is 10. Decreasing
it to 2 noticeably degrades the performance, increasing it
to 50 results in only a slight improvement but significantly
increases the running time.

In Table 8, we show the effect of different augmentation
strategies. Our main experiments use small random shifts in
the vertical and horizontal directions. We also tested adding
random Gaussian noise to images, a standard data augmen-
tation technique, but it significantly degrades the perfor-
mance. Adding Gaussian noise decreases the effectiveness
of our sparse CRF loss as neighboring pixels become less

type shifts Gauss noise color perturbation shifts+color
Fβ ↑ .911 .854 .897 .909
mae ↓ .046 .060 .050 .049

Table 8. Different augmentation strategies when fine tuning on
ECSSD dataset.

DUTS ECSSD DUTO PascalS HKUIS THUR
% improved 79.3 83.7 85.3 81.2 76.7 75.0
mean Fβ increase .048 .053 .064 .17 .037 .036
mean Fβ decrease .021 .009 .011 .08 .019 .015

Table 9. Percentage of images for which performance improves as
the result of test-time adaptation. For the improved (and degraded)
images, we also show the mean increase (and the decrease) in Fβ

score.

strongly connected. We also tested random color perturba-
tion where all pixels change the value of a color channel by
the same random value. This works much better than Gaus-
sian noise, but not as well as random shifts. Shifts and color
pertubation work as well as shifts alone.

5.4. Additional Experiments

During test-time adaptation, the majority, but not all im-
ages, improve. In Table 9, we show the percentage of im-
ages that improve, in terms of their Fβ score, for each of the
test datasets. In addition, we show the mean improvement
of Fβ score, averaged over the images that improve, and the
mean decline of Fβ score, averaged over the images that de-
cline in performance. As can be seen from the table, for all
dataset, over 75% of images improve during test-time adap-
tation. Also, the average improvement is significantly larger
than the average decline of the results. Thus overall, test-
time adaptation significantly improves the performance. In
the supplementary materials, we show the most improved
and the most degraded images during test time adaptation.

6. Conclusions

We propose the first approach to test time adaptation for
SOD with image level weak supervision. We develop a
regularized loss function particularly effective for test time
adaptation, and a method to find an appropriate setting of
the hyperparameters in our loss function. Our approach uses
a standard CNN architecture and a loss function that is intu-
itive and simple to interpret. We achieve a new state of the
art in image level supervised SOD, and a better or compet-
itive result with the prior work that uses stronger forms of
weak supervision. The drawback of our approach is that the
running time for testing is more expensive, since the base
CNN needs to be fine-tuned for each test image.
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