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Abstract

Autonomous robotic systems operating in human envi-

ronments must understand their surroundings to make ac-

curate and safe decisions. In crowded human scenes with

close-up human-robot interaction and robot navigation, a

deep understanding of surrounding people requires reason-

ing about human motion and body dynamics over time with

human body pose estimation and tracking. However, ex-

isting datasets captured from robot platforms either do not

provide pose annotations or do not reflect the scene distri-

bution of social robots. In this paper, we introduce JRDB-

Pose, a large-scale dataset and benchmark for multi-person

pose estimation and tracking. JRDB-Pose extends the ex-

isting JRDB which includes videos captured from a social

navigation robot in a university campus environment, con-

taining challenging scenes with crowded indoor and out-

door locations and a diverse range of scales and occlu-

sion types. JRDB-Pose provides human pose annotations

with per-keypoint occlusion labels and track IDs consistent

across the scene and with existing annotations in JRDB.

We conduct a thorough experimental study of state-of-the-

art multi-person pose estimation and tracking methods on

JRDB-Pose, showing that our dataset imposes new chal-

lenges for the existing methods. JRDB-Pose is available at

https://jrdb.erc.monash.edu/.

1. Introduction
Visual scene understanding of human environments is a

difficult and crucial task for autonomous driving, human-
robot interaction, safe robotic navigation, and human action
recognition. Although rough predictions of human location
are sufficient for some applications, a deep understanding
of crowded human scenes and close-up human-robot inter-
action requires reasoning about human motion and body
dynamics with human body pose estimation and tracking.
Developing an AI model to predict human body pose is

*Equal contribution

Figure 1. JRDB-Pose provides high frequency annotations of
tracks and body joints in long scenes of crowded indoor and out-
door locations featuring dynamic motion and occlusion.

made more difficult by the varied and highly imbalanced
range of human motion found in daily living environments,
including a variety of scales, occlusions, and overlapping
humans, representing a long-tailed distribution of human
poses which is difficult for existing methods.

Human pose estimation and tracking is an active research
area with many new large-scale datasets [13, 16, 26, 46]
contributing to significant recent progress; however, these
datasets do not primarily target robotic perception tasks in
social navigation environments, and thus rarely reflect spe-
cific challenges found in human-robot interaction and robot
navigation in crowded human environments, e.g. shopping
malls, university campus, etc.

JRDB [28] previously introduced a large-scale dataset
and a benchmark for research in perception tasks related to
robotics in human environments. The dataset was captured
using a social manipulator robot with a multi-modal sensor
suite including a stereo RGB 360° cylindrical video stream,
3D point clouds from two LiDAR sensors, audio and GPS
positions. JRDB [28] additionally introduced annotations
for 2D bounding boxes and 3D oriented cuboids. Recently,
JRDB-Act [15] further introduced new annotations on the
JRDB videos for individual actions, human social group
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Dataset # Poses # Boxes Tracks Crowd ppF Occlusion Action Indoor +
Outdoor

Robot
Navigation

Multi-
Modal

Multi-
Task

MPII [3] 40K 1-17 X
Penn Action [54] 160k 160k 1 X X

COCO [26] 250k 500k 1-20 X X X
KITTI [18] 80k X X X X X
H3D [35] 460k X X X

MOT20 [12] 1.65M X X X X
THÖR [41] 2.5M X X X

PoseTrack21 [13] 177k 429k X X 1-13 X X
Waymo [46] 173K 9.9M X X unk X X X
JRDB-Pose 636k 2.8M X X 1-36 X X X X X X
JTA† [16] 10M X 0-60 X X

MotSynth† [16] 40M X X 0-125 X X

Table 1. Comparison of existing public datasets related to 2D pose estimation and tracking. For each dataset we report the numbers of
poses, boxes, as well as the availability of tracking information, crowd data, people per frame (ppF), occlusion labels, action labels, scene
type, and if the data comes from robot navigation in human environments. We mark if a dataset has data modalities besides RGB frames,
and if it contains annotations for multi-task types. Note that JRDB-Pose is a multi-modal dataset captured from a social navigation robot,
addressing different research challenges than many existing works. †

Synthetic dataset. unk: Unknown.

formation, and social activity of each social group.
JRDB was collected from a robotic navigation platform

in crowded human environments, diversely capturing both
indoor and outdoor scenes. Additionally since the robot’s
camera is located at person-level, and moves around, the
data is not just collected from a far-off view but captures
close-up scenes.

For robotic systems to safely navigate dynamic human
environments and perform collision risk prediction, they
must be able to accurately track and forecast motion of
people in their surroundings. Human motion is often fast
and requires high frame rate data for accurate prediction
and tracking, making high-frequency annotated human pose
data crucial for the development and evaluation of robotic
perception systems in human environments. Complex so-
cial interactions add difficulty and similarly benefit from
high-frequency data. In crowded scenes with high levels
of occlusions or overlap with other humans, tracking may
be also difficult.

We introduce JRDB-Pose, a large-scale dataset captured
from a mobile robot platform containing human pose and
head box annotations. JRDB-Pose provides 600k pose an-
notations and 600k head box annotations, each with an as-
sociated tracking ID. JRDB-Pose includes a wide distri-
bution of pose scales and occlusion levels, each with per-
keypoint occlusion labels and consistent tracking IDs across
periods of occlusion. The combination of JRDB-Pose with
JRDB and JRDB-Act forms a valuable multi-modal dataset
providing a comprehensive suite of annotations suited for
robotic interaction and navigation tasks.
Our contributions are:

• We introduce JRDB-Pose, a large-scale pose estima-
tion and tracking dataset providing pose annotations
and head boxes with tracking IDs and per-keypoint oc-
clusion labels.

• In addition to adopting the popular metrics, we intro-

duce new metrics, OSPA-Pose and OSPA(2)-Pose for
pose estimation and tracking, respectively.

• We conduct a comprehensive evaluation of state-
of-the-art methods on JRDB-Pose and discuss the
strengths and weaknesses of existing methods.

2. Related Datasets
We summarize the commonly used public datasets for

pose estimation [3,26,26,47,54], pose tracking [13,46] and
multi-object tracking [12, 18, 35, 41] in Tab. 1.
Single and Multi-person Pose Estimation Datasets: The
task of 2D pose estimation involves predicting the pixel lo-
cations of human skeleton keypoints on an image. The MPII
Human Pose Dataset [3] is a popular multi-person pose es-
timation dataset and benchmark including videos from ev-
eryday human activities, and the larger Penn Action dataset
[54] provides both pose and action annotations in sports set-
tings with a single pose per frame. MS COCO Keypoints
Challenge [26] proposed a large-scale dataset including a
diverse set of scenes and occlusion labels. All of these
datasets label individual frames, limiting them to single-
frame pose estimation. Human3.6M [20] annotates videos
and single-person 3D poses from a controlled indoor scene,
while 3DPW [47] provides estimated 3D human meshes in-
the-wild with up to 2 people per frames. In comparison,
JRDB-Pose is captured from a robotic platform in-the-wild
with crowded and manually-annotated indoor and outdoor
scenes, addressing a different set of challenges. JRDB-Pose
also includes diverse data modalities including cylindrical
video, LiDAR point clouds, and rosbags.
Multi-Person and Multi-Object Tracking Datasets:
Multi-Person Pose Tracking (MPPT) and Multi-Object
Tracking (MOT) are crucial tasks in robotic perception and
navigation, where the challenge is to track, across a video,
the body keypoints of individuals or the locations of objects,
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Figure 2. Various statistic for JRDB-Pose, which provides visibility labels and track ids consistent across long periods of occlusion. From
left to right: 1) The distribution of track lengths, with the long tail truncated. 2) A log-scaled distribution showing all track lengths. JRDB-
Pose track lengths are varied and as high as 1700 frames long. 3) Number of pose annotations in each panoramic frame. 4) Number of
keypoints in each pose annotated as visible.

(a) Train set (b) Test set

Figure 3. Distribution of keypoint visibility annotations in the
JRDB-Pose train/validation and test splits. While most joints are
visible, JRDB-Pose contains a large number of occluded and in-
visible joints.

respectively. MOT has attracted significant attention from
the community with large-scale challenges [12, 25, 30], and
MPPT is increasingly becoming recognized for its signif-
icance in human activity understanding and human-object
interaction. Despite high performance on easy scenes, cur-
rent MPPT methods struggle in crowded environments with
occlusions and scale fluctuations.

Posetrack 2018 [2] introduced a benchmark for pose
estimation and tracking using annotated video sequences
featuring a variety of in-the-wild scenarios such as sports
and dancing. Since PoseTrack was not densely labeled in
crowded scenes, it required large “ignore regions” contains
regions of images and videos lacking annotations. More
recently, Posetrack21 [13] used the videos from PoseTrack
2018 to provide dense annotations of crowded scenes. Both
datasets target diverse pose tracking scenarios, containing
videos such as surveillance-like footage that are different
from typical robotic navigation and human-robot interac-
tion scenarios. Additionally, each video sequence is limited
to five seconds, while sequences in JRDB-Pose are up to
2 minutes long. JRDB-Pose is a challenging dataset and
benchmark for real-world tracking tasks, containing videos
captured in crowded environments with humans fading into
and emerging from the crowd.
Autonomous Driving Datasets: Recently, autonomous ve-
hicle datasets have been released featuring large-scale and
detailed annotations of the surrounding environment, pos-

ing difficult MOT and MPPT challenges. H3D [35] an-
notates human detections and tracks. More recently, the
Waymo Open Dataset [46] filled the gap by providing
172.6K human pose annotations from their autonomous ve-
hicle navigating outdoor road and highway environments.
While the data is valuable for driving applications, the
dataset contains exclusively outdoor road and highway en-
vironments making it unsuitable for non-driving robotic
tasks, e.g. navigating a crowded shopping mall.
Robotic Navigation: Robotics operating in a social envi-
ronment must learn to navigate in a socially-compliant man-
ner by detecting and reacting to other agents in the environ-
ment. Existing datasets for robotic navigation [23, 28, 41]
provide relatively few annotations and are often created in
limited environment. The THÖR dataset provides human
trajectories on a ground plane, and is filmed in a controlled
indoor environment. SCAND [23] captures a variety of
crowded indoor and outdoor environments without annota-
tions for human detection or tracking. In human environ-
ments with complex interactions, it is crucial to understand
human motion more deeply than a bounding box. To this
end, JRDB-Pose is one of the first datasets providing large-
scale pose annotations in a robotic navigation environment.
Synthetic Datasets: Several recent works have proposed
large synthetic datasets for human pose estimation and
tracking by generating data using a video game engine. The
Joint Track Auto (JTA) [17] dataset generates 10M anno-
tated human body poses, which MotSynth [16] extends to
40M human poses with associated track IDs. While syn-
thetic datasets have been shown to be helpful to the existing
frameworks’ performance boost when combined with the
real-world datasets [16], they may not reflect underlying bi-
ases and distributions in real-world data, preventing them
from being the only training data resources for evaluating
approaches in real-world applications.
State-of-the-art Frameworks: Multi-person pose estima-
tion involves predicting body keypoint locations for all peo-
ple in an image and identifying which keypoints belong to
which individuals. There are two common types of ap-
proaches to this problem: top-down methods first detect all
people and then execute pose estimation for each individ-
ual [24, 34, 49, 53], while bottom-up methods first identify
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Figure 4. A portion of the panoramic frame with annotated pose instances. We show some of our tracking annotations by visualizing pose
histories for two people. The gaps in the pose history correspond to periods of occlusion denoted by the numbers marking the length of the
occlusion in frames. JRDB-Pose provides track IDs which are consistent even across long periods of occlusion.

keypoints and then group them into individual people [7],
including disentangled representations [19], associative em-
bedding [32], HGG [22], YOLO-Pose [27], and CID [48].

Multi-person pose tracking approaches [7, 34, 44, 53]
often identify keypoints or poses using a pose estima-
tion method, and then predict tracks using the estimated
keypoints. Top-down techniques like openSVAI [34] and
PGG [21] decompose the task into three discrete stages:
human detection, pose estimation, and then pose track-
ing. Recently, UniTrack [50] proposed a unified framework
for multiple object and keypoint tracking utilizing shared
general-purpose appearance models.

The multi-object tracking task can be categorized into
tracking by detection (TBD) [8, 14, 42, 51, 55] and joint de-
tection and tracking (JDT) [5, 11, 29, 45, 52, 56, 57]. SORT-
based [6] approaches [8, 14, 51] have gained popularity
with methods including DeepSORT [51] and StrongSORT
[14] In addition, OC-Sort [8] improved these methods by
proposing an enhanced filter and recovery strategy suit-
able for tracking non-linearly moving and frequently oc-
cluded objects. Recently, ByteTrack [55] achieved effi-
cient and precise tracking results using a general associa-
tion technique that utilizes nearly every detection box. Pop-
ular JDT methods include Tracktor++ [5] which uses in-
tegrated detection-tracking modules and CenterTrack [56]
which employs two-frames tracking algorithm for real-time
and accurate tracking. Overall, since significant research
in multi-person pose and multi-object tracking focuses on
refining track consistency, occlusion recovery, and missing
and false detection handling, JRDB-Pose is a useful and
challenging benchmark for existing and future works.

3. The JRDB-Pose Dataset
We create JRDB-Pose using all videos from the JRDB

dataset [28], including 64 minutes of sensory data consist-
ing of 54 sequences captured from indoor and outdoor lo-
cations in a university campus environment. JRDB-Pose
includes 57,687 annotated panoramic (3760 x 480) frames,
containing total of 636k annotated pose instances with 11
million labeled keypoints with occlusion labels for each
keypoint. We annotate 17 keypoints for each body pose
including head, eyes, neck, shoulders, center-shoulder, el-

Annotations Quantity Track IDs
2D Body Bounding Box [28] 2,400,000 X
3D Body Bounding Box [28] 1,800,000 X

Atomic Action [15] 2,800,000 N/A
Social Group [15] 600,000 N/A

2D Head Bounding Box 600,000 X
2D Body Pose 600,000 X

Table 2. A summary of annotations in JRDB [28], JRDB-Act [15],
and JRDB-Pose, which together provide a unique multi-modal
dataset suitable for multi-person detection, pose estimation track-
ing, and activity recognition. Bolded annotations are introduced in
this paper.

bows, wrists, hips, center-hips, knees and ankles. Each
pose includes a tracking ID which is consistent for each per-
son across the entire scene, including across long periods of
full occlusion (see Fig. 4), and is also consistent with per-
son IDs for existing 2D and 3D bounding box annotations
from JRDB. Fig. 2 shows the distribution of track lengths
present in JRDB-Pose. In total, JRDB-Pose provides 5022
pose tracks with an average length of 124 frames and some
tracks as long as 1700 frames.

We started our annotation process using the JRDB
bounding boxes and tracking IDs for each person in the
scene. Annotators manually label human poses, and all
the annotations were carefully quality-assessed to ensure
high-quality and temporally consistent annotations. Details
on our annotation protocol can be found in Appendix A.
We annotated all persons from the 5 camera views of the
360º cylindrical video stream that had either a large enough
bounding box (area �6000 pixels) or clear keypoint loca-
tions. For researchers interested in panoramic views, we
merge the annotations from the 5 camera views into a sin-
gle panoramic image. Note that this means not all visible
people are labeled, especially those far away from the robot.
Poses were annotated at 7.5 Hz and finally upsampled to 15
Hz, providing accurate high-frequency annotations without
significant jitter.

JRDB-Pose labels poses for a wide range of scales, as
shown in Fig. 6. We visualize the pose scales for each train-
ing and validation scene in Fig. 5, showing that the distribu-
tion of scales also varies significantly by scene as the types
human motions and activities vary. Details on testing scenes
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Figure 5. Distribution of bounding box scales in the train and validation scenes. JRDB-Pose contains a wide distribution of pose scale that
is different for each scene.

Figure 6. Bounding box distribution of the train/validation and test
splits. JRDB-Pose contains a wide distribution of pose scales.

are not shown because test data is held out.
JRDB [28] and JRDB-Act [15] previously introduced

annotations including 2D and 3D bounding boxes with
tracking IDs, atomic action labels, and social groups.
Together with JRDB and JRDB-Act annotations, JRDB-
Pose is a multi-task learning dataset for human detec-
tion/tracking, pose estimation/tracking, individual action,
social group, and social activity detection. Tab. 2 summa-
rizes all annotations now available on videos from JRDB.
Occlusion: Occlusion is a key problem for human pose es-
timation and tracking because it causes incomplete infor-
mation for predicting keypoints, leading to major errors in
pose estimation tasks [33]. Significant research in the field
of pose estimation has focused on occlusion-aware methods
for improving pose estimation [1,9, 10], but may be limited
by lack of quantity and diversity in the existing data [9].
JRDB-Pose advances this research by providing large-scale
data including occluded scenarios, as well as detailed occlu-
sion labels for every keypoint which we hope will be use-
ful for quantifying and improving performance under oc-
clusion. In particular, we assign each keypoint a label in
{0, 1, 2} defining its occlusion type, where for every pose
we annotate the posistion and occlusion of each keypoint:

Figure 3 shows the occlusion label distribution in the
train and test splits. JRDB-Pose contains a large number of
labeled occluded and invisible joints, making it suitable for
pose estimation under occlusion. Occlusion varies by scene:

ID Meaning Description
0 Invisible The joint is out of frame or especially

difficult to annotate, with a location in-
ferred from context by annotators.

1 Occluded The joint is obscured by an object or an-
other body part, but its location is ap-
parent from the image context.

2 Visible The joint is fully visible and in view of
the camera.

Fig. 7 shows that the training scenes of JRDB-Pose contain
varied distributions of keypoint visibility, from densely pop-
ulated indoor to dynamic outdoor scenes in which the robot
navigates and interacts with oncoming pedestrians.

3.1. Benchmark and Metrics
JRDB-Pose Splits: We follow the splits of JRDB [28] to
create training, validation, and testing splits from the 54
captured sequences, with each split containing an equal pro-
portion of indoor and outdoor scenes as well as scenes cap-
tured using a stationary or moving robot. All frames from a
scene appear strictly in one split.

3.1.1 Pose estimation

OKS. We define the ground-truth and a corresponding pre-
dicted human body keypoints as xi 2 R2⇥J and yj 2

R2⇥J , respectively, where J represents the number of the
keypoints. We measure a similarity score between xi and
yj via Object Keypoint Similarity (OKS) [26] as:

OKS(xi, yj) = exp

✓
�
d
2
E
(xi, yj)

2s2k2

◆
(1)

where dE(xi, yj) is the mean Euclidean distance between
two set of keypoints normalized by the product of ground-
truth box area s and a sigma constants k. While this met-
ric is commonly used for single-person pose estimation, in
multi-person settings the assignment between ground-truth
and predicted poses is not known, so it is unclear which
pose pairs to use without a matching mechanism.
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Figure 7. Distribution of keypoint visibility annotations for each
JRDB-Pose train and validation scene. Best viewed in color.

Average Precision. Average Precision (AP) and mean
AP (mAP) [36] are among the most common multi-person
pose estimation metrics. Similarity between predicted and
ground-truth poses are calculated via OKS [26], and poses
are matched via a non-optimal greedy assignment strategy
that matches poses with higher confidence scores first. True
and false positive predictions are determined by a threshold
on the OKS score. Since the resulting AP score corresponds
to the performance at a specific OKS threshold rather than
a continuous value based on overall keypoint distances, the
COCO benchmark [26] averages AP across multiple OKS
thresholds to reward methods with higher localization ac-
curacy. Nevertheless, this strategy does not fully capture
keypoint distance nor is the matching strategy optimal. We
evaluate AP using an OKS threshold of 0.5.
OSPA-Pose. Optimal Sub-Pattern Matching (OSPA) [43]
is a multi-object performance evaluation metric which in-
cludes the concept of miss-distance. Recently, OSPA has
been further adapted to detection and tracking tasks [38]
while preserving its metric properties. We propose OSPA-
Pose (Opose), a modification of the OSPA metric suited to
multi-person pose estimation.

Let X = {x1, x2, . . . xm} and Y = {y1, y2, . . . yn} be
two sets of body keypoints for all ground-truth and pre-
dicted body poses, respectively, with |Y | � |X| (otherwise
flip X,Y ). Considering dK(xi, yi) = 1 � OKS(xi, yi) 2
[0, 1] as a normalized distance metric between human poses,
OSPA-Pose (Opose) error is calculated by

Opose(X,Y )=
1

n

✓
min
⇡2⇧n

mX

i=1

(dK(xi, y⇡i))+(n�m)

◆
, (2)

where n � m � 0, ⇧n is the set of all permutations of
{1, 2, . . . , n}, and Opose(X,Y ) = Opose(Y,X) if m > n.
We further define Opose(X,Y ) = 1 if either X or Y is
empty, and Opose(;, ;) = 0.

While both AP and Opose use OKS to calculate pose
similarity, Opose measures an optimal distance from the
set of continuous keypoint distances consisting of the local-
ization error (first term) and cardinality mismatch (second
term), eliminating the need for thresholding.

3.1.2 Pose tracking metrics

Commonly used metrics: We evaluate pose tracking
performance with three commonly used tracking metrics,
MOTA [2], IDF1 [40], and IDSW [31], with modifications
to make them suitable for the pose tracking task. Rather
than using IoU or GIoU [39] to calculate similarity scores
which are more appropriate for bounding boxes, we apply
OKS (as defined in Eq. (1)) to obtain a similarity score be-
tween keypoint sets, with any keypoint pair of OKS above
a threshold of 0.5 considered a positive prediction.
OSPA(2)-Pose Inspired by [4,38] extending the OSPA met-
ric for evaluating two sets of trajectories, we propose a new
metric for evaluating two sets of human body pose tracks,
namely OSPA(2)-Pose (O2

pose
).

Let X = {X
D1
1 , X

D2
2 , . . . X

Dm
m

} and Y =
{Y

D1
1 , Y

D2
2 , . . . Y

Dn
n

} to be two sets of body keypoint tra-
jectories for ground-truth and predicted body poses, respec-
tively. Note Di represents the time indices which track i

exists (having a state-value). Then, we calculate the time
average distance of every pair of tracks XDi

i
and Y

Dj

j
:

ed(XDi
i

, Y
Dj

j
) =

X

t2Di[Dj

dO

�
{X

t

i
}, {Y

t

j
}
�

|Di [Dj |
, (3)

where t 2 Di [ Dj is the time-step when either or both
track presents. Note that {Xt

i
} and {Y

t

j
} are singleton sets,

i.e. {Xt

i
} = ; or {X

t

i
} = x

t

i
2 R2⇥J and {Y

t

j
} = ;

or {Y t

j
} = y

t

j
2 R2⇥J . Therefore, inspired by the OSPA

set distance, dO
�
{X

t

i
}, {Y

t

j
}
�

can be simplified into the
following distance function, :

dO({X
t

i
},{Y

t

j
}) =

8
<

:

dK(xt

i
, y

t

j
) if |{Xt

i
}| ^ |{Y

t

j
}| = 1,

1 if |{Xt

i
}|� |{Y

t

j
}| = 1,

0 Otherwise,
(4)

where ^ and � are boolean operators AND and OR,
dK(xi, yi) = 1�OKS(xi, yi) 2 [0, 1].

Finally, we obtain the distance, O2
pose

, between two sets
of pose tracks, i.e. X and Y by applying another OSPA
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distance over Eq. (3), i.e.

O
2
pose

(X,Y) =

1

n

 
min
⇡2⇧n

mX

i=1

ed(XDi
i

, Y
D⇡i
⇡i ) + (n�m)

!
, (5)

where n � m � 0, ⇧n is the set of all permutations of
{1, 2, . . . , n}, and O

2
pose

(X,Y ) = O
2
pose

(Y,X) if m < n.
We further define O

2
pose

(X,Y ) = 1 if either X or Y is
empty, and O

2
pose

(;, ;) = 0.
Note that the first term ed reflects ID switches and local-

ization errors, whereas the cardinality error (n � m) con-
tains false and missed track errors. In Tab. 5, we also present
the O2

pose
per occlusion level, where each occlusion level is

considered individually. We do not apply localisation er-
ror to joints that do not belong to the occlusion of interest
by setting their Euclidean distance to zero, indicating that
dE(xi, yj) in Eq. (1) is now the average Euclidean distance
between two sets of keypoints of a certain occlusion level.

4. Multi-Person Pose Estimation and Tracking
Baselines

In this section we evaluate the performance of various
state-of-the-art methods for pose estimation and tracking,
verifying that JRDB-Pose is a challenging dataset for ex-
isting frameworks seeking an opportunity for a dedicated
developments in this domain. All methods are evaluated on
our individual images and annotations.

4.1. Multi-Person Pose Estimation
We evaluate several popular or recent state-of-the-art

methods for multi-person pose estimation models [19, 27,
48, 49]. We evaluate one top-down method using HRNet
backbone [49]. The top-down method uses a Faster R-CNN
[37] detector to predict all humans in the scene, from which
the high-confidence (score > 0.95) predictions are kept. We
use a heatmap size of 192x256, and the HRNet backbone
with a high-resolution convolution width of 48. We further
evaluate three recent bottom-up models, which regress joint
locations directly without the need for human detections:
DEKR [19], CID [48], an YoloPose [27]. All methods are
trained from their respective initializations without COCO
pre-training. To help address training difficulties associated
with wide panoramic images, we train on individual camera
images, and then combine them together to form stitched
view predictions. Duplicate poses in the stitched annotation
set are eliminated using NMS on the predicted boxes.

Tab. 3 summarises the pose estimation results for each
method. To highlight the large number of occluded and in-
visible labels in our dataset, we include the total contribu-
tion of joints of each visibility type to the overall OSPA-
Pose as well as average contribution for joints of each vis-
ibility. We also include cardinality and localization errors

Method Opose Loc Card AP AR

HRNet [49] 0.480 0.210 0.270 24.6 47.5
DEKR [19] 0.410 0.113 0.2968 31.7 46.9
CID [48] 0.377 0.174 0.204 38.6 48.0

YOLO-Pose [27] 0.368 0.172 0.196 47.9 72.5

Table 3. Multi-person pose estimation baselines evaluated on
JRDB-Pose stitched annotations. Loc and Card are the Opose lo-
calization and cardinality error, respectively.

Method Total Contribution Per-Keypoint Avg
V# O# I# V# O# I#

HRNet [49] 0.131 0.054 0.025 0.051 0.075 0.102
DEKR [19] 0.070 0.031 0.012 0.030 0.052 0.089
CID [48] 0.101 0.047 0.026 0.038 0.063 0.108

YOLO-Pose [27] 0.098 0.048 0.026 0.033 0.055 0.091

Table 4. We break down Opose localization error from Tab. 3 for
visible (V), occluded (O), and invisible (I) joints. The left and right
columns represent the total and average per-keypoint contribution
(scaled by 1M) to the Opose localization error, respectively.

of OSPA-Pose. We find that Yolo-Pose is the best perform-
ing baseline, outperforming the other methods in Opose and
AP. DEKR achieves the lowest Opose localization error but
a higher cardinality error as a result of a high number of
missed detections. In Tab. 4 we see the contributions to
the localization error based on keypoint visibility. DEKR
achieves the lower metrics due to its low localization error,
besides which Yolo-Pose again performs best. Although
visible joints contribute the most to localization error due
to their higher overall frequency, on a per-keypoint aver-
age the predictions on occluded and invisible joints showed
significantly higher errors for all models, confirming that
occlusion poses a difficult challenge for existing methods.
JRDB-Pose contains a significant number of occluded joints
which we hope will be useful for researchers to improve the
robustness of pose estimation methods to occlusions. We
also find that all methods achieve lower AP as compared
to their results on common large-scale benchmarks [26],
showing that JRDB-Pose presents a reasonable and difficult
challenge for multi-person pose estimation.

4.2. Multi-Person Pose Tracking

We evaluate three recent state-of-the-art methods, such
as ByteTrack [55], Unitrack [50], and OC-SORT [8], in
our tracking benchmark. All these methods are from the
tracking-by-detection category and predict tracks based on
predictions from a pose estimation method. We use the esti-
mates from Yolo-Pose, as our highest-performing baseline,
to initialize the predictions for all pose tracking methods.

In Tab. 5 we provide our pose tracking results for all
trackers and training strategies. OC-Sort achieves the best
results by a wide margin. Since OC-SORT targets im-
proving tracking robustness for objects in non-linear mo-
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Pose Estimation
Method (Training)

Tracking
Method MOTA " IDF1" IDSW# O

2
pose#

Components O
2
pose# by Visibility

Card# Loc# V# O# I#

Yolo-Pose [27]
(COCO only)

ByteTrack [55] 61.32 55.80 4236 0.715 0.519 0.196 0.698 0.703 0.731
UniTrack [50] 60.80 55.01 2854 0.727 0.473 0.253 0.713 0.716 0.733
OC-SORT [8] 66.09 59.93 2588 0.630 0.380 0.249 0.610 0.618 0.646

Yolo-Pose [27]
(JRDB-Pose only)

ByteTrack [55] 61.17 52.11 3203 0.693 0.429 0.264 0.678 0.692 0.708
UniTrack [50] 69.84 56.06 2565 0.725 0.454 0.271 0.710 0.722 0.734
OC-SORT [8] 69.22 60.62 1977 0.577 0.295 0.283 0.556 0.577 0.595

Yolo-Pose [27]
(COCO!

JRDB-Pose)

ByteTrack [55] 67.16 55.38 3325 0.690 0.456 0.234 0.674 0.688 0.708
UniTrack [50] 72.82 57.69 2413 0.708 0.435 0.272 0.693 0.707 0.719
OC-SORT [8] 71.74 61.15 2260 0.594 0.331 0.263 0.573 0.592 0.613

Table 5. Multi-person pose tracking baselines evaluated on JRDB-Pose individual camera images.

tion with the improved Kalman-filter and recovery strat-
egy, we believe it is better suited for JRDB-Pose which
includes occluded periods during which people are often
not moving linearly with respect to the robot’s perspective
(e.g. sequences where both the robot and nearby people are
turning or moving simultaneously), thus better recovering
from occlusions. This method’s lower O2

pose
cardinality er-

ror further confirms that it can better find accurate tracks.
Compared to their performance in other large-scale track-
ing benchmarks [12, 13], these methods achieve relatively
lower overall performance in the same reported metrics, re-
flecting the unique challenges in our dataset, which we hope
will motivate further work within the research community.

4.3. Study on Pre-training Methods

Using our highest performing pose estimation method,
we further study how pre-training strategies affect our final
model performance. We try inference-only with a COCO-
pretrained model, finetuning a COCO-pretrained model,
and training from scratch. Tab. 6 and Tab. 5 show pose esti-
mation and tracking performance of our highest performing
model across the different training strategies. For pose es-
timation we find that finetuning from COCO generally per-
forms better than training from scratch in both pose esti-
mation and tracking tasks with an improvement of 1.7%
in O

2
pose

, while running inference from a COCO model
without finetune shows much weaker results especially in
Opose . The relatively small improvement also suggests
that JRDB-Pose contains a varied distribution of scenes and
poses suitable for model training.

We also include results for pose tracking across the same
three training strategies of Yolo-Pose used to initialize the
tracking. In Tab. 5 we find that the JRDB-Pose model
outperforms the COCO model finetuned on JRDB-Pose in
MOTA and IDF1 but is itself outperformed in IDSW and
O

2
pose

. The COCO model without finetuning performs
worse than the other models. Since the COCO model is
not trained on the crowded human scenes and overall im-

Training
strategy

Stitched Per Camera

AP " Opose # AP " Opose #

COCO [26] 48.0 0.460 60.2 0.320
JRDB-Pose 48.2 0.357 61.9 0.280

COCO ! JRDB-Pose 49.6 0.385 63.9 0.273

Table 6. We study how training protocols affect performance of
YoloPose. Finetuning from COCO achieves best results.

age distribution present in JRDB-Pose, it struggles to find
keypoints and thus has a high miss-rate as indicated by a
much higher O2

pose
cardinality component compared to the

other training schemes. JRDB-Pose contains a varied dis-
tribution of scenes in human environments different from
COCO. Based on the per-sequence results, the models typi-
cally demonstrate superior performance in indoor areas with
no obstacles, such as hewlett-class and nvidia-aud. On the
other hand, the models tend to perform more poorly in com-
plex scenes containing numerous background objects, in-
cluding robot hands, photocopies, coffee machines, trolleys,
and so on. Such scenarios can be observed in gate-ai-lab

and indoor/outdoor-coupa-caffe.

5. Conclusion

In this paper we have introduced JRDB-Pose, a
large-scale dataset of human poses and track IDs suit-
able for multi-person pose estimation and tracking from
videos. JRDB-Pose features high-frequency annotations
for crowded indoor and outdoor scenes with heavy occlu-
sion, diverse actions, and longer videos than existing large-
scale pose estimation and tracking datasets. Finally, we
have introduced OSPApose and OSPA

2
pose

, new metrics
for multi-person pose estimation and tracking. We believe
that JRDB-Pose will help address limitations in human ac-
tion understanding for human-robot interaction and naviga-
tion in human environments and advance research by prov-
ing large-scale and high-quality annotations.
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