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Abstract

We propose Video Localized Narratives, a new form of

multimodal video annotations connecting vision and lan-

guage. In the original Localized Narratives [36], annota-

tors speak and move their mouse simultaneously on an im-

age, thus grounding each word with a mouse trace segment.

However, this is challenging on a video. Our new protocol

empowers annotators to tell the story of a video with Local-

ized Narratives, capturing even complex events involving

multiple actors interacting with each other and with sev-

eral passive objects. We annotated 20k videos of the OVIS,

UVO, and Oops datasets, totalling 1.7M words. Based on

this data, we also construct new benchmarks for the video

narrative grounding and video question answering tasks,

and provide reference results from strong baseline models.

Our annotations are available at https://google.

github.io/video-localized-narratives/.

1. Introduction

Vision and language is a very active research area, which

experienced much exciting progress recently [1, 28, 38, 39,

48]. At the heart of many developments lie datasets con-

necting still images to captions, while grounding some of

the words in the caption to regions in the image, made with

a variety of protocols [6,20,23,25,29,34,36,44,46,56]. The

recent Localized Narratives (ImLNs) [36] offer a particu-

larly attractive solution: the annotators describe an image

with their voice while simultaneously moving their mouse

over the regions they are describing. Speaking is natural and

efficient, resulting in long captions that describe the whole

scene. Moreover, the synchronization between the voice

and mouse pointer yields dense visual grounding for every

word. Yet, still images only show one instant in time. Anno-

tating videos would be even more interesting, as they show

entire stories, featuring a flow of events involving multiple

actors and objects interacting with each other.

Directly extending ImLNs to video by letting the anno-

tator move their mouse and talk while the video is playing

would lead to a “race against time”, likely resulting in fol-

lowing only one salient object. In this paper, we propose

a better annotation protocol which allows the annotator to

tell the story of the video in a calm environment (Fig. 1-3).

The annotators first watch the video carefully, identify the

main actors (“man”, “ostrich”), and select a few represen-

tative key-frames for each actor. Then, for each actor sep-

arately, the annotators tell a story: describing the events it

is involved in using their voice, while moving the mouse on

the key-frames over the objects and actions they are talking

about. The annotators mention the actor name, its attributes,

and especially the actions it performs, both on other ac-

tors (e.g., “play with the ostrich”) and on passive objects

(e.g., “grabs the cup of food”). For completeness, the an-

notators also briefly describe the background in a separate

step (bottom row). Working on keyframes avoids the race

against time, and producing a separate narration for each ac-

tor enables disentangling situations and thus cleanly captur-

ing even complex events involving multiple actors interact-

ing with each other and with several passive objects. As in

ImLN, this protocol localizes each word with a mouse trace

segment. We take several additional measures to obtain ac-

curate localizations, beyond what was achieved in [36].

We annotated the OVIS [37], UVO [47], and Oops [12]

datasets with Video Localized Narratives (VidLNs). These

datasets cover a general domain, as opposed to only cook-

ing [10, 62] or first-person videos [16]. Moreover, these

videos contain complex scenes with interactions between

multiple actors and passive objects, leading to interesting

stories that are captured by our rich annotations. In to-

tal our annotations span 20k videos, 72k actors, and 1.7

million words. On average, each narrative features tran-

scriptions for 3.5 actors, totaling 75.1 words, including 23.0

nouns, 9.5 verbs, and 8.5 adjectives (Fig. 4). Our analysis

demonstrates the high quality of the data. The text descrip-

tions almost always mention objects/actions that are actu-

ally present in the video, and the mouse traces do lie inside

their corresponding object in most cases.

The richness of our VidLNs makes them a strong ba-

sis for several tasks. We demonstrate this by creating new

benchmarks for the tasks of Video Narrative Grounding

(VNG) and Video Question Answering (VideoQA). The

new VNG task requires a method to localize the nouns in
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1. Watch 2./3. Select actors and key-frames 5. Transcription4. Speak and move mouse

"A man wearing a black t-shirt is

holding a cup of food in his right hand.

He moves around a piece of food in 

his left hand to play with the ostrich."

A man wearing a black t-shirt is

holding a cup of food in his right hand.

He moves around a piece of food in 

his left hand to play with the ostrich.

Figure 1. The five steps of the annotation process for VidLNs. We are able to cleanly describe even complex interactions and events by

disentangling the storylines of different actors.

<Man> A man wearing a black t-shirt is holding a cup of food in his right hand. 
He moves around a piece of food in his left hand to play with the ostrich.

<Ostrich> An ostrich is looking at the piece of food held by the man and suddenly 
grabs the cup of food and starts eating.

<Background> In the background, there are hills, white barriers, a flag, the sky, and 
soil on the ground.

Man

Ostrich

Background

Figure 2. An example VidLN annotation. Each row shows the story of the video from the perspective of a different actor. Each mouse

trace segment drawn on selected key-frames localizes the word highlighted in the same color. More examples are in the supplement.

an input narrative with a segmentation mask on the video

frames. This is a complex task that goes beyond open-

vocabulary semantic segmentation [14], as often the text has

multiple identical nouns that need to be disambiguated us-

ing the context provided by other words. We construct two

VNG benchmarks on OVIS and UVO, with a total of 8k

videos involving 45k objects. We also build baseline mod-

els that explicitly attempt this disambiguation and report ex-

periments showing it’s beneficial on this dataset, while also

highlighting these new benchmarks are far from solved.

For VideoQA, we construct a benchmark on the Oops

dataset, consisting of text-output questions (e.g., “What is

the person in the blue suit doing?”), where the answer

is free-form text (e.g., “paragliding”), and location-output

questions (e.g., “Where is the woman that is wearing a black

and white dress?”), where the answer is a spatio-temporal

location in the video. The benchmark features a total of 62k

questions on 9.5k videos. Answering many of these ques-

tions requires a deep understanding of the whole video. We

also implement baseline methods to establish initial results

on this task.

2. Related Work

Datasets Connecting Vision and Language. Many

datasets exist that connect vision and language on still im-

ages, at different granularities of grounding [6, 20, 23, 25,

29, 34, 36, 44, 46, 56]. In the video domain, there is also

a wide range of vision-and-language datasets. Ego4D [16]

and Epic-Kitchens [9] are large-scale collections of daily-

life egocentric videos accompanied with narrations, which

were also used as a seed for creating benchmarks for differ-

ent tasks. We instead focus on third-person view videos

that were especially selected to contain complex interac-

tions between multiple actors and passive objects. Our per-

actor narration annotation protocol enables disentangling

situations and thus cleanly describing such complex videos.

Moreover, our descriptions are long story-like narrations

connecting various objects, actions, and attributes (e.g.,
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<Man> A man holding a mug in one hand and a dog in the other hand is trying to avoid a chicken that is approaching him, but he falls down on the grey

floor, and the dog slips out of his hand.

<Chicken> A chicken is roaming on the grey floor and then tries to attack a man, and that man falls down, and then the chicken walks away from there.

Figure 3. Another VidLN example (also featuring a third actor “Dog”, and “Background”, not shown). From this VidLN, we automatically

generate text-output Q+A pairs, including “What falls out of the man’s hand?” with answer “dog”.

Fig. 2); instead of short descriptions of atomic actions (e.g.,

“C closes bottle”). Finally, Ego4D provides grounding only

for some nouns, Epic-Kitchens for all nouns, whereas our

VidLN annotations ground every word (including adjec-

tives, verbs, etc.).

YouCook2-BB [62] and ActivityNet-Entities [61] also

contain video descriptions with grounded noun phrases.

YouCook2-BB focuses only on cooking, and provides

grounding (bounding boxes) only for the test set.

ActivityNet-Entities annotations ground the 432 most com-

mon nouns mentioned in ActivitiyNet-Captions [24] with

bounding boxes. In contrast, our VidLNs ground every

word with a mouse trace. Besides, their annotation pro-

tocol is simpler: writing sentences describing major events

and then finding their corresponding video segments [24].

It does not facilitate the disentanglement between actors or

complex actor-object interactions as our protocol does.

Many other datasets [13,19,24,30–32,45,51,53,63] offer

textual descriptions for videos, but have no spatial localiza-

tion annotation of any kind.

Tasks Related to VNG. Panoptic Narrative Grounding

(PNG) [15] creates a panoptic segmentation that grounds

the nouns of an input caption describing an image. In con-

trast, our proposed VNG operates on videos and focuses on

concrete objects only. ImLNs were automatically combined

with the panoptic segmentation annotations in COCO [3,27]

to create PNG. We also leveraged pre-existing segmenta-

tions, with the key difference that we manually revised and

annotated the missing ones, which greatly improves the ac-

curacy and completeness of the benchmark.

In Referring Video Object Segmentation (R-VOS) [21,

43], each referring expression is a short phrase specifically

designed to identify one object. In contrast, VNG requires

taking a whole description as input and then localizing each

noun, which is a more natural formulation of the task and

introduces extra challenges such as co-reference resolution.

The same noun can appear multiple times in the description,

referring to different objects in the video. These cases must

be disambiguated based on context offered by other words.

Video Object Grounding [62] is close to VNG as the ex-

pected output is the grounding of the noun phrases in the

descriptions, but as a bounding box instead of a segmenta-

tion, and only evaluated on the top 63 recurring objects.

Other VideoQA benchmarks. There is a wide spectrum

of datasets on Video Question Answering (VideoQA) [60].

Closest to our location-output questions are the so-

called Factoid VideoQA benchmarks with open-ended an-

swers [60]. Many datasets contain question-answer pairs

automatically derived from video descriptions [42, 50, 53–

55] without any manual checking, and thus are not suit-

able as a high-quality evaluation benchmark. Besides,

some of them [53, 54] are based on the native audio

track of instructional videos, which often mentions ob-

jects/verbs that are not actually visible in the video. Other

datasets are manually curated: WildQA [4] focuses on

outdoor videos, iVQA [53] covers instructional videos,

ActivityNet-QA [57] contains various human activities, and

VideoQA [59] contains varied web-crawled videos. Our

text-output questions are set apart from these works in that

(i) they are on videos selected to contain complex inter-

actions between different actors/objects and (ii) they are

seeded from dense video narrations that describe the actions

from the point of view of these different actors.

Related to our location-output questions are the

VideoQA datasets that ground parts of their textual ques-

tions and answers (e.g., noun phrases) with bounding boxes

on the video [8, 26, 58]. Closest to ours is TVQA+ [8],

where the task is to choose one answer out of five and

ground it spatially and temporally, on videos from a single

TV show. In contrast, our answers can refer to any object,
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Dataset #Videos #Narratives #Actors (per narr.) #Words (per narr.) Domain Grounding

OVIS-VidLN 607 610 1,799 (2.95) 28,676 (47.01) General Every word

UVO-VidLN 7,588 8,587 25,755 (3.00) 549,303 (63.97) General Every word

Oops-VidLN 12,128 12,894 44,422 (3.45) 1,080,211 (83.78) General Every word

VidLN All 20,323 22,091 71,976 (3.54) 1,658,190 (75.06) General Every word

ActivityNet-Ent [61] 14,926 14,926 - 745,876 (49.97) General 432 nouns

MPII-MD [40] 94 94 - 647,814 (6,891.7) Movies People names

YouCook2-BB [62] 667 667 - ∼40,500 (60.72) Cooking 67 objects

Ego4D-summary [16] 9,643 18,870 - 165,274 (8.76) 1st-person None

Ego4D-narration [16] 9,643 18,870 - 23,924,308 (1,267.85) 1st-person Some nouns

Epic-Kitchens [10] 273 273 - 81,501 (298.54) 1st-p. Cooking Every noun

Table 1. Statistics of our Video Localized Narrative annotations for three datasets, compared to related datasets. Our datasets focus on a

general domain (not movies, cooking, or first-person) and provide grounding for each word.

and our videos come from varied sources chosen to contain

complex interactions.

3. Video Localized Narrative Annotations

A trivial extension from ImLNs to video would be to

simply let the annotator move their mouse and talk while

the video is playing. However, this would lead to a “race

against time” likely resulting in following only one salient

object. Hence, we introduce a better protocol based on key-

frames, that gives the annotator an opportunity to tell the

story of the video in a calm environment (Fig. 1-3).

3.1. Annotation Protocol

Our annotation protocol has the following 5 steps.

1. Understand the Video. The annotator watches the

video, possibly multiple times, to understand its story.

2. Actor Selection. Some objects carry out actions, such

as the man and the ostrich in Fig. 2, as opposed to passive

objects receiving the action, such as the cup. The annota-

tor selects and names the actors of this video, e.g., “man”

and “ostrich” (these names are mainly a memory aid for the

annotator, and not a core part of the annotations).

3. Key-frame Selection. We present the annotator with a

set of key-frame candidates, uniformly sampled over time.

For each actor, the annotator selects a few key-frames cov-

ering the main actions it performs (the story of that actor).

4. A Story for each Actor. This is the main part of the

annotation process and it is performed separately for each

actor. We show to the annotator the selected key-frames

for the actor and they describe the events it is involved in,

with full natural language sentences that mention the actor

name, its attributes, the actions it performs, other objects

and its interactions with them. We instruct the annotators

to put special emphasis on the actions performed by the

actor, including also actions performed on passive objects

(e.g., “grabs the cup of food”). While talking, the annotator

moves the mouse pointer on the key-frames over the spatial

positions of the objects and actions they are talking about.

For completeness, we ask the annotators to also describe

the background in a separate row, albeit in less detail and

typically on a single key-frame.

We want to have a good localization for every word, with

a mouse trace segment. To achieve this, we explicitly in-

struct the annotators to talk slowly and to stop talking while

moving the mouse between two objects. Additionally, we

give the annotators the option to stop a mouse trace by click-

ing the mouse, to avoid spurious traces, e.g., when moving

the mouse between different key-frames or objects. This

results in mouse traces that are easy to segment at the be-

ginning and end times of word utterances, leading to well-

localized trace segments (see Sec. 3.2 for evaluation).

5. Transcription and Time Alignment. After finishing

steps 1-4, the annotator is asked to manually transcribe their

voice recording. This ensures the captions are of high qual-

ity (as automatic speech transcription can make mistakes).

The annotations for each actor now include a mouse

trace, an audio recording, and a manual transcription, but

we still need an alignment between words and trace seg-

ments to provide localization. To this end, we use an au-

tomatic algorithm [2] to align the manual transcription di-

rectly to the audio. This yields time-stamps for each word

in the transcription, revealing which part of the mouse trace

belongs to which word. Note that this direct alignment of

audio to text works significantly better than the process used

by ImLNs [36] which first invokes an automatic speech-to-

text transcription model, and then aligns the automatic tran-

scriptions to the manual ones.

3.2. Statistics

We annotated three datasets with VidLNs: OVIS [37],

UVO [47], and Oops [12] (Tab. 1). In total, we annotated

about 20k videos with over 1.65 million words, 508k of

which are nouns (30.7%), 209k verbs (12.6%), and 188K

adjectives (11.3%). In contrast to existing datasets, our nar-

ratives feature a separate transcription for each actor, dis-
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Figure 4. Richness of VidLNs compared to ActivityNet-Entities.

We characterize linguistic richness via word type count per narra-

tive. PRON: Pronouns, ADP: Adpositions, ADJ: Adjectives. Our

Oops-VidLN is the most complex dataset in all major dimensions.

entangling them (3.54 actors per video on average), and we

provide a mouse trace grounding for every word. Addition-

ally, our VidLNs cover a general domain rather than only

first-person [16] or cooking [10, 62].

In Fig. 4, we compare the per-narrative counts for the 5

main word types to those of ActivityNet-Entities [61], the

most related video dataset with grounded captions. On aver-

age, our narratives have 75.1 words (including 23.0 nouns,

9.5 verbs, 8.5 adjectives, 7.2 adpositions, 2.4 pronouns).

Thus our narratives are longer, and contain more words of

each type, than those in ActivityNet-Entities. In summary,

we present the largest and richest collection of general-

domain video datasets with grounded captions to date.

Semantic Accuracy. We evaluate manually how well the

verbs and noun phrases of VidLN describe the actions and

objects in the video. We randomly picked 70 videos in each

dataset and checked for every verb and noun phrase whether

the described object/action is present in the video, and if it is

correctly described. Tab. 2 shows the results, demonstrating

that the captions are almost perfectly semantically accurate.

Localization Accuracy. We evaluate the localization accu-

racy of our mouse traces on the OVIS-VNG dataset, where

we have ground-truth segmentation masks for many nouns

(see Sec. 4). For each such noun we measure what per-

centage of its mouse trace segment is inside the ground

truth mask. We find that the average precision is high at

73.2%. Additionally, we can discard mouse trace segments

that consist of multiple disconnected components, as poten-

tially indicative of some error. Note that this can be done au-

tomatically without access to the ground-truth masks. This

process discards 15.8% of the mouse trace segments, and

the remaining ones have an even higher precision of 77.3%.

Now we compare to the localization accuracy of the orig-

inal ImLNs [36]. For ImLNs, the mouse trace precision

measured against ground-truth bounding boxes is 57.6% for

Open Images [22] and 54.8% for COCO [27] (as derived

from the raw data behind Fig. 4 in [36], which the authors

Accuracy (%) OVIS-VLN UVO-VLN Oops-VLN

Noun phrases 97.7 96.8 97.2

Verbs 96.0 97.8 97.9

Table 2. Semantic accuracy for noun phrases and verbs of our

three VidLN datasets.

shared with us). For our VidLNs, the precision measured on

bounding boxes is 83.1% (73.2% measured on segmenta-

tion masks). This means that our improvements in the anno-

tation protocol have been very successful, and that VidLN

traces have much higher quality than ImLN traces (+25%).

4. Video Narrative Grounding (VNG)

Task Definition. We propose the VNG task (Fig. 5), as a

first example of the applicability of our VidLN annotations.

The input is a video with a text description (the narrative)

and the positions of certain nouns marked. For each marked

noun, the method must output a segmentation mask for the

object it refers to, in each video frame. Importantly, the

same noun (e.g., “parrot”) can appear multiple times in the

description, referring to different objects in the video. The

key challenge is to disambiguate those cases, based on the

context offered by other words (e.g., “red-black neckline”).

As said in Sec. 2, VNG is related to PNG and R-VOS,

but PNG is only defined on images, and for R-VOS each

referring expression is a short phrase for a single object.

Instead VNG inputs a long natural description containing

multiple nouns to be disambiguated and segmented.

Evaluation Measure. We adopt the well-established

J&F measure [35], which is the average of the mean

intersection-over-union J and the boundary measure F

[33]. Note that different nouns can refer to the same ob-

ject (e.g., “person” and “hand” in Fig. 5). Hence, over-

lapping segmentation masks are allowed and the masks for

each noun are evaluated separately.

4.1. Benchmarks

We propose two new benchmarks: OVIS-VNG, based on

the OVIS dataset [37], and UVO-VNG, based on the UVO

dataset [47]. To build such a benchmark, we first need to se-

lect nouns in the VidLN captions, and then get ground-truth

masks for these nouns. To select nouns we run a noun tag-

ger [18], and then keep only singular nouns of concrete ob-

jects (e.g., car, parrot), as opposed to stuff categories (e.g.,

sky, water). We then get masks for these nouns as follows.

OVIS/UVO already have mask annotations for some ob-

jects, which we ask annotators to manually match to their

corresponding nouns. Finally, we manually annotate masks

for all nouns for which OVIS/UVO does not provide one.

As Tab. 3 shows, with 7,587 videos and 43,058 objects,

our UVO-VNG has almost 2× as many videos as the largest

R-VOS benchmark (Refer-YouTube-VOS), almost 3× total
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VNG method

predict

Caption + nouns

Raw video

Figure 5. The Video Narrative Grounding (VNG) task. The raw video and the caption together with the position of nouns are given as input

to the VNG method, which then predicts segmentation masks for each noun in each frame (masks shown in the same color as the nouns) .

Note that the method has to disambiguate between two parrots based on other words, i.e., the red-black neckline.

Benchmark Task Videos Objects (per vid.)

OVIS-VNG VNG 505 2,407 (4.77)

UVO-VNG VNG 7,587 43,058 (5.68)

Ref-YTB-VOS [43] R-VOS 3,978 15,009 (3.77)

Ref-DAVIS’17 [21] R-VOS 90 205 (2.28)

Table 3. Statistics of our VNG benchmarks compared to R-VOS

datasets. “Objects” are not necessarily unique object instances, as

multiple nouns or expressions can refer to the same object. For

VNG, “Objects” is the number of nouns with ground truth masks.

For R-VOS, it is the number of full-video referring expressions.

objects, and about 1.5× objects per video. In addition to

the large UVO-VNG benchmark, we propose OVIS-VNG

which features many occlusions that make it challenging

and its small size makes it well-suited for development.

A key challenge in VNG is to disambiguate multiple oc-

currences of the same noun in the input description. We

analyzed the OVIS training set, which has class label an-

notations, and found that for 96.4% of the object instances,

there is another instance of the same class in the same video.

Hence, our benchmark contains substantial ambiguity that

can only be resolved using context information.

4.2. ReferFormer­VNG Baseline Method

We modify the ReferFormer [49] method to address our

VNG task. The original ReferFormer was designed to

tackle the R-VOS task, taking a short phrase describing a

single object as input. For VNG, instead the input is a

longer caption that can mention different objects and their

interactions (Fig. 5), along with the positions of the nouns

to be segmented. For the sentence “A green parrot with a

red-black neckline is playing with the other parrot”, Refer-

Former would predict a single mask per frame. For VNG,

we instead need a separate mask for each parrot.

ReferFormer uses a visual encoder to extract features

from the video. A text encoder extracts text features, from

which conditional query features (conditioned on the text)

are generated. Both types of features are fed together into a

decoder to predict a mask for each frame. The text encoder

extracts both per-text-token features and whole-sentence

features. The sentence features are used to generate the

conditional queries, which makes sense in the case of R-

VOS, where the whole sentence describes a single object.

For ReferFormer-VNG, we instead take the features of each

text-token that belongs to the noun we want to segment,

and average-pool over them to obtain the conditional query

(conditioned on the noun). To segment the two different

parrots, we run ReferFormer-VNG first using the features

belonging to the first “parrot” noun, and a second time us-

ing the features of the second occurrence.

4.3. Experiments

Simple baseline. As a simple baseline we use the original

ReferFormer. We either input the full narrative as text (“Full

narrative”) or we pre-process the text input based on the

noun which has to be segmented (“Noun”) by keeping only

the noun and add “a” as prefix, e.g., “a parrot”. The results

in Tab. 4 show that the “Full Narrative” version performs

poorly. This baseline inputs the same text for each noun,

and hence is unable to distinguish between different nouns.

The “Noun” version tries to force the model to segment the

correct noun, which works somewhat better. It essentially

gets the class name of the object to be segmented, but can-

not differentiate between different instances (e.g., two “par-

rot”). This explains the modest results, as most OVIS videos

contain multiple instances of the same class (cf . Sec. 4.1).

ReferFormer-VNG. For ReferFormer-VNG’s visual en-

coder, we use a ResNet-50 backbone [17] initialized on Im-

ageNet [41]. For the best results, we pre-train ReferFormer-

VNG on the COCO-PNG dataset which provides annota-

tions for a similar task as VNG, but defined on images in-

stead of videos. Afterwards, we do the main training pass

on our new UVO-VNG training set. Finally, we can option-

ally fine-tune on the OVIS-VNG training set for evaluation

on the OVIS-VNG test set.

Tab. 5 shows results for the various training regimes.

Generally, these results are superior to those of the sim-

ple baselines, showing that ReferFormer-VNG’s ability to

disambiguate among multiple objects with the same class

name is beneficial on this dataset. Using the most train-

ing data (first row) leads to the strongest results. Because

of having so much training data, the effect of a final fine-

tuning pass on OVIS-VNG is small (from 32.0 to 32.7). The
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Text pre-proc. OVIS-VNG UVO-VNG

Full narrative 22.9 25.8

Noun 25.7 35.6

Table 4. J&F scores for simple baselines for the VNG task based

on the original ReferFormer.

second and third rows show that removing either COCO-

PNG pre-training or UVO-VNG main-training reduces per-

formance on both test sets. This also shows that training on

our proposed UVO-VNG training set is beneficial, both for

evaluating on similar data (the UVO-VNG test set), and for

evaluating on a different dataset (OVIS-VNG), even without

fine-tuning. Implementation details and more experiments

can be found in the supplement.

5. Video Question Answering (VideoQA)

As a second example of the applicability of VidLN anno-

tations, we create a Video Question Answering (VideoQA)

benchmark. We generate Q+A pairs automatically from the

VidLN annotations and only require humans to verify them.

Based on the VidLN annotations for the Oops

dataset [12], we create Oops-QA, featuring two kinds of

questions: text-output questions and location-output ques-

tions (Tab. 6). Below we describe how we generate ques-

tions, how we verify them, and present evaluation measures

to assess the performance of methods for the two tasks.

5.1. Text­Output Questions

Text-output questions are analog to those in other

VideoQA benchmarks [4, 8, 26, 53, 57–59], where the an-

swer is given as free-form text. Questions can for example

be about colors (“what color is the cat?”), the number of

objects (“How many basketballs are in the background?”),

the type of object (“The ball falls out of what?”), or about

actions (“what action does the man perform?”).

Automatic Q+A Generation. For the caption of each actor

of each VidLN, we use the VQ2A method [5] to generate a

large pool of Q+A pairs (Fig. 3). This produces about 230

Q+A pairs per video. To facilitate free-form text prediction

evaluation, we only keep pairs whose answer has one or

two words. Finally, to reduce redundancy we (1) keep only

one of multiple questions with the same answer, and (2) re-

move near-duplicate questions. These steps greatly reduce

the number of Q+A pairs to around 22 per video.

Manual Verification. As the Q+A pairs are generated

from the VidLN captions that have near-perfect semantic

accuracy, they are unlikely to be factually wrong. However,

some Q+A pairs are irrelevant, ambiguous, or contain gram-

matical errors introduced by the generation algorithm. For

example: “What color is the sky?” is irrelevant as it can be

answered without looking at the video. The question “What

color is the cat?” is ambiguous for a video containing two

COCO-PNG UVO-VNG OVIS-VNG UVO-VNG

pre-training training no ft ft

yes yes 32.0 32.7 46.4

yes no 28.5 32.4 39.6

no yes 26.2 29.8 43.1

Table 5. Results of ReferFormer-VNG on the proposed OVIS-

VNG and UVO-VNG benchmarks. “no-ft” and “ft” indicate

whether we fine-tuned on the OVIS-VNG training set before eval-

uating on the OVIS-VNG test set. The first two columns indicate

different (pre-)training data. All numbers are J&F scores.

cats of different colors. Hence, we ask two annotators to

independently verify that each Q+A pair is relevant, unam-

biguous, and grammatically sound. Since only verification

is done manually, rather than annotating Q+A from scratch,

it can be done with little effort. Manual verification retains

27% of the generated Q+A pairs (about 6 per video).

Evaluation Measures. We evaluate the text answer pre-

dicted by a VideoQA method using the exact match accu-

racy against the ground-truth [57,60]. The final result is the

percentage of correct answers across the dataset.

PaLI Baseline. To establish initial results on this new

benchmark, we use the state-of-the-art VideoQA model

PaLI [7]. PaLI is an encoder-decoder model that inputs an

image and a text prompt, and outputs text. We use the 1.5B

version with ViT-L16 [11] (vision) and mT5-Large [52]

(language) backbones. At test time, the input is 1-3 video

frames and the question as prompt. Using a single frame in

the middle of the video as visual input, PaLI-1.5B achieves

24.1% zero-shot accuracy and 44.9% when fine-tuned on

the Oops-QA training set. Using 3 equally spaced frames,

the results are 25.1% and 49.0%. These results demonstrate

the complexity of our benchmark and leave room for the

development of even more advanced techniques.

5.2. Location­output Questions

The second part of the Oops-QA benchmark consists of

location-output questions. These start with “where is”, and

their answer is a space-time location in the video (Fig. 6).

Automatic Q+A Generation. For the caption of each actor

of a VidLN, we first use spaCy [18] to assign part-of-speech

tags for each word (e.g., verb, adjective), and a parse tree

for each sentence (e.g., connecting subjects to their verbs).

Based on this information, we try to transform each sen-

tence into a question about where the subject is. As sen-

tences can be long, we first use the parse tree to focus on

the sub-tree containing the verb and the subject (e.g., “the

girl that is wearing a pink dress” in a much longer caption).

In this case we prepend “where is” to obtain the question.

In other cases, we add “that” or “that is” before the verb

(e.g., “where is the dog that is playing with the cat”). In this

manner we generate about 3.7 questions per video.

For each question, we use the mouse trace segment asso-
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Figure 6. An example location-output question of the proposed

Oops-QA benchmark: “Where is the girl that is wearing a pink

dress?” The ground truth answer is based on a mouse trace seg-

ment (green). We use a special evaluation methodology which

accounts for the fact that the trace does not cover the whole object.

ciated to the subject as a basis to construct a ground-truth

answer. To facilitate the subsequent manual verification

process, when the trace segment spans multiple frames, we

retain only the frame with the longest segment. To improve

quality, we only consider trace segments that consist of a

single connected component (cf . Sec. 3.2).

Manual Verification. We show to two annotators each

question together with its trace segment overlaid on the

frame selected above. We only keep a Q+A pair if both

annotators agree the question is grammatically correct, the

trace segment is on the correct object, and the question

refers to a unique object in that video. For example, in

Fig. 6, “where is the kid?” is ambiguous, whereas “where is

the kid with the pink dress” is not. About 52% of the gener-

ated Q+A pairs pass this verification step, yielding about 2

per video for the final benchmark. As a side benefit, the lo-

calization accuracy of the mouse traces in the verified ques-

tions is extremely high (92.9% on the correct object mask

on average, see supplement for details).

Evaluation Measures. For each question, a VideoQA

method must output a bounding box for every frame where

the object is present. However, we evaluate only in the one

frame where we have a verified ground-truth trace segment

t. For a predicted box b to be correct, it has to fulfill both

the precision and the recall criterion described below.

Recall criterion: b has to contain most of t, according to

intersection-over-area:
|b ∩ t|
|t| ≥ 0.5.

Precision criterion: A mouse trace segment only covers

part of an object surface (Fig. 6). To mitigate this effect, we

derive from t an approximate ground-truth box g around the

object, and use it to evaluate the precision of b (see supple-

ment for how we learn a transformation to enlarge the trace

segment into an approximate box around the object). This

requires most of b to be contained in g:
|b ∩ g|

|b| ≥ 0.5.

Quality of Evaluation Measure. To demonstrate the va-

lidity of our evaluation procedure based on approximate

ground-truth boxes, we perform an experiment on OVIS-

VNG. We simulate a perfect VideoQA method which out-

Oops-QA Text-output Location-output

train test train test

#Videos 7,509 1,982 8,113 1,691

#Questions (total) 31,760 12,417 14,779 3,179

#Questions (per vid.) 4.23 6.26 1.82 1.88

Table 6. Statistics of our Oops-QA benchmark, divided into text-

output questions and location-output questions.

puts a bounding box on the ground-truth segmentation

masks of the OVIS-VNG test set. We now evaluate these

perfect predictions against our approximate ground-truth

boxes. The result is that 99.1% of the perfectly predicted

boxes fulfill the recall criterion above, 85.1% fulfill the pre-

cision criterion, and 84.4% fulfill both. Hence, a strong

method will be properly rewarded by our evaluation. Addi-

tionally, on average 82.3% of the image area is not covered

by the approximate ground-truth box. Hence, the task is

challenging: as the ground-truth boxes are small on average,

a method cannot easily localize them (predictions falling

outside the ground-truth are penalized by a low precision).

Baseline Method. We repurpose ReferFormer-VNG

(Sec. 4.2) to answer location-output questions. We turn

the question into a statement by dropping the “where is”,

then input it together with the position of the first noun into

ReferFormer-VNG to produce a segmentation mask in each

video frame. Finally, we convert the masks into bounding

boxes, and evaluate them as described above. This baseline

fulfills the recall criterion for 66.7% of the questions, the

precision criterion for 53.9%, and both for 48.3%. While

these results are good, they are far from perfect, showing the

challenge posed by our new benchmark and leaving plenty

of room for the development of better methods.

5.3. Combined Score

We define a combined score for the whole Oops-QA

benchmark as the average of the two sub-tasks. Hence our

two baselines together achieve an overall score of 50.8% ac-

curacy (mean of 53.2% and 48.3%). With the unified Oops-

QA benchmark of location-output questions and text-output

questions, we want to encourage the development of a sin-

gle model that can answer both kinds of questions and at the

same time improve the results.

6. Conclusion

We introduce VidLNs, an annotation procedure that ob-

tains rich video descriptions, that are semantically correct

and densely grounded with accurate spatio-temporal local-

izations. We annotated roughly 20k videos of three different

datasets, and obtained captions with more than 1.6 million

words in total. We demonstrated the versatility of VidLNs

by using them to generate two Video Narrative Grounding

benchmarks, and the Oops-QA benchmark.
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