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Abstract

Finding an initial noise vector that produces an input
image when fed into the diffusion process (known as inver-
sion) is an important problem in denoising diffusion models
(DDMs), with applications for real image editing. The stan-
dard approach for real image editing with inversion uses
denoising diffusion implicit models (DDIMs [29]) to deter-
ministically noise the image to the intermediate state along
the path that the denoising would follow given the original
conditioning. However, DDIM inversion for real images
is unstable as it relies on local linearization assumptions,
which result in the propagation of errors, leading to incor-
rect image reconstruction and loss of content. To alleviate
these problems, we propose Exact Diffusion Inversion via
Coupled Transformations (EDICT), an inversion method
that draws inspiration from affine coupling layers. EDICT
enables mathematically exact inversion of real and model-
generated images by maintaining two coupled noise vectors
which are used to invert each other in an alternating fash-
ion. Using Stable Diffusion [25], a state-of-the-art latent
diffusion model, we demonstrate that EDICT successfully
reconstructs real images with high fidelity. On complex im-
age datasets like MS-COCO, EDICT reconstruction signif-
icantly outperforms DDIM, improving the mean square er-
ror of reconstruction by a factor of two. Using noise vectors
inverted from real images, EDICT enables a wide range of
image edits—from local and global semantic edits to image
stylization—while maintaining fidelity to the original image
structure. EDICT requires no model training/finetuning,
prompt tuning, or extra data and can be combined with any
pretrained DDM.

1. Introduction
Using the iterative denoising diffusion principle, denois-

ing diffusion models (DDMs) trained with web-scale data
can generate highly realistic images conditioned on input
text, layouts, and scene graphs [24, 25, 27]. After im-
age generation, the next important application of DDMs
being explored by the research community is that of im-

age editing. Models such as DALL-E-2 [24] and Stable
Diffusion [25] can perform inpainting, allowing users to
edit images through manual annotation. Methods such as
SDEdit [20] have demonstrated that both synthetic and real
images can be edited using stroke or composite guidance via
DDMs. However, the goal of holistic image editing tools
that can edit any real/artificial image using purely text is
still a field of active research.

The generative process of DDMs starts with an initial
noise vector (xT ) and performs iterative denoising (typ-
ically with a guidance signal e.g. in the form of text-
conditional denoising), ending with a realistic image sam-
ple (x0). Reversing this generative process is key in solving
this image editing problem for one family of approaches.
Formally, this problem is known as “inversion” i.e., finding
the initial noise vector that produces the input image when
passed through the diffusion process.

A naı̈ve approach for inversion is to add Gaussian noise
to the input image and perform a predefined number of
diffusion steps, which typically results in significant dis-
tortions [7]. A more robust method is adapting Denois-
ing Diffusion Implicit Models (DDIMs) [29]. Unlike the
commonly used Denoising Diffusion Probabilistic Models
(DDPMs) [9], the generative process in DDIMs is defined
in a non-Markovian manner, which results in a determinis-
tic denoising process. DDIM can also be used for inversion,
deterministically noising an image to obtain the initial noise
vector (x0 → xT ).

DDIM inversion has been used for editing real images
through text methods such as DDIBs [30] and Prompt-to-
Prompt (P2P) image editing [7]. After DDIM inversion,
P2P edits the original image by running the generative pro-
cess from the noise vector and injecting conditioning infor-
mation from a new text prompt through the cross-attention
layers in the diffusion model, thus generating an edited im-
age that maintains faithfulness to the original content while
incorporating the edit. However, as noted in the original
P2P work [7], the DDIM inversion is unstable in many
cases—encoding from x0 to xT and back often results in
inexact reconstructions of the original image as in Fig. 2.
These distortions limit the ability to perform significant ma-
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Orig. Image Chihuahua Dalmatian Husky

Figure 1. EDICT enables complex real image edits, such as editing dog breeds. We highlight the fine-grain text preservation in the bottom
row of examples, with the message remaining even as the dog undergoes dramatic transformations. More examples, including baseline
comparisons for all image-breed pairs, are included in the Supplementary. All original images from the ImageNet 2012 validation set.

nipulations through text as increase in the corruption is cor-
related with the strength of the conditioning.

To improve the inversion ability of DDMs and enable
robust real image editing, we diagnose the problems in
DDIM inversion, and offer a solution: Exact Diffusion In-
version via Coupled Transformations (EDICT). EDICT is a
re-formulation of the DDIM process inspired by coupling
layers in normalizing flow models [4, 5, 12] that allows for
mathematically exact inversion. By maintaining two cou-
pled noise vectors in the diffusion process, EDICT enables
recovery of the original noise vector in the case of model-
generated images; and for real imagery, initial noise vec-
tors that are guaranteed to map to the original image when
the EDICT generative process is run. While EDICT dou-
bles the computation time of the diffusion process, it can
be combined with any pretrained DDM model and does

not require any computationally-expensive model finetun-
ing, prompt tuning, or multiple images.

For the standard generative process, EDICT approxi-
mates DDIM well, resulting in nearly identical generations
given equal initial conditions For real images, EDICT can
recover a noise vector which yields an exact reconstruction
when used as input to the generative process. Experiments
with the COCO dataset [16] show that EDICT can recover
complex image features such as detailed textures, thin ob-
jects, subtle reflections, faces, and text, while DDIM fails to
do so consistently. Finally, using the initial noise vectors de-
rived from a real image with EDICT, we can sample from a
DDM and perform complex edits or transformations to real
images using textual guidance. We show editing capabili-
ties including local and global modifications of objects and
background and object transformations (Fig. 1).
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Original Image DDIM Unconditional DDIM ConditionalEDICT

Recon. MSE = 0.077 Recon. MSE = 0.085Recon. MSE = 0.069

Recon. MSE = 0.003 Recon. MSE = 0.038 Recon. MSE = 0.014

Recon. MSE = 0.011 Recon. MSE = 0.050 Recon. MSE = 0.044

 “A banana is laying 
on a small plate”

 “A dog”

 “A couple standing 
together holding Wii 

controllers 
next to a building.”

Figure 2. While both unconditional and conditional DDIM [29]
often fail to accurately reconstruct real images, leading to loss of
global image structure and/or finer details, EDICT is able to al-
most perfectly reconstruct even complex scenes. Examples from
ImageNet and COCO with 50 DDIM steps. Captions used only in
DDIM Conditional reconstruction with a guidance scale of 3.

2. Related Work

Diffusion Models and Normalizing Flows: Denoising dif-
fusion models (DDMs), drawing on nonequilibrium ther-
modynamics [28], have emerged at the forefront of image
generation. Models such as GLIDE [22], DALLE-2 [24],
Imagen (Video) [8, 27], Latent/Stable Diffusion [25], and
eDiffi [1] all utilize concepts borrowed from thermody-
namics to hallucinate an image from pure noise by train-
ing on intermediately noised images. While a commonly
used sampling process in DDMs is the stochastic Denois-
ing Diffusion Probabilistic Models (DDPMs) method [9], a
deterministic sampling method was introduced in Denois-
ing Diffusion Implicit Models (DDIM) [29]. Multi-step or
higher-order methods that parallel DDIM have also been
proposed [17, 19], including methods that aim to reducing
the computational time for generation [13, 18]. Another
class of generative models relevant to our work are normal-
izing flow models [4, 5, 12]. In these models, an invertible
mapping is learned between a latent gaussian distribution
and image space. The methods of invertibility, specifically
coupling layers, are used as an inspiration for our method.
Invertible neural networks have been studied in areas out-
side of normalizing flows as well. Neural ODEs [2] have
many parallels with the diffusion process and can be in-
verted using a variety of ODE solvers.
Editing in Diffusion Models: The seminal work in apply-

ing DDMs to image editing is SDEdit [20] where coarse
layouts are used to guide the generative process by nois-
ing the layout to resemble an intermediately noised image.
Prompt-to-Prompt [7] combines query-key pairs from one
prompt with values from another in the attention layers of
a DDM to enable prompt-guided image editing from in-
termediate latents obtained by sampler inversion [29, 31].
DiffEdit [3] edits real/synthetic images using automatically
generated masks for regions of an input image that should
be edited given a text query. Kwon et al. [14] introduce style
and structure losses to guide the sampling process to enable
text-guided image translation. CycleDiffusion [32] uses a
deterministic DPM encoder to enable zero-shot image-to-
image translation. Concurrent work [21] also stabilizes text-
conditioned inversion, optimizing the null embedding ∅ for
consistency. While highly effective, the algorithmic exact-
ness is not guaranteed and per-case optimization is required.
Another set of methods [6, 11, 26] finetune the model with
the target image and/or learn a new conditioning prompt
to enable indirect image editing via sampling. EDICT, our
proposed approach, does not require any specialized train-
ing/finetuning, and can be paired with any pretrained DDM.

3. Background
3.1. Denoising Diffusion Models

DDMs are trained on a simple denoising objective. A set
of timesteps index a monotonic strictly increasing noising
schedule {αt}Tt=0, αT = 0, α0 = 1. Images (or autoen-
coded latents) x ∈ X are noised with draws ϵ ∼ N(0, I)
according to the noising schedule following the formula

xt =
√
αtx+

√
1− αtϵ (1)

The time-aware DDM Θ is trained on the objective
MSE(Θ(xt, t, C), ϵ) to predict the noise added to the orig-
inal image where C is a conditioning signal (typically in
the form of a text embedding) with some probability of ran-
dom assignment to the null conditioning ∅. To generate a
novel image from a gaussian draw ϵT ∼ N(0, I), partial
denoising is applied at each t. The most common sampling
scheme is that of DDIM [29] where intermediate steps are
calculated as

xt−1 =
√
αt−1

xt −
√
1− αtΘ(xt, t, C)√

αt

+
√

1− αt−1Θ(xt, t, C)

(2)

In practice, for text-to-image models to hallucinate from
random noise an x0 that matches conditioning C to desired
levels, the model has to be biased more heavily towards
generations aligned with C. To do so, a pseudo-gradient
G · (Θ(xt, t, C) − Θ(xt, t, ∅)) is added to the uncondi-
tional prediction Θ(xt, t, ∅) to up-weight the effect of con-
ditioning, where G is a weighting parameter, Substituting
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Φ(xt, t, C,G) = Θ(xt, t, ∅)+G·(Θ(xt, t, C)−Θ(xt, t, ∅))
into the prior equation for the Θ term, we simplify the no-
tation Φ(xt, t, C,G) −→ ϵ(xt, t) and rewrite the previous
equation as xt−1 = atxt + btϵ(xt, t) where

at =
√
αt−1/αt (3)

bt = −
√
αt−1(1− αt)/αt +

√
1− αt−1 (4)

3.2. Denoising Diffusion Implicit Model (DDIM)

As noted in DDIM [29], the above denoising process is
approximately invertible; that is xt is approximately recov-
erable from xt−1

xt =
xt−1 − btϵ(xt, t)

at
≈ xt−1 − btϵ(xt−1, t)

at
(5)

where the approximation is a linearization assumption that
ϵ(xt, t) ≈ ϵ(xt−1, t) (necessary due to the discrete na-
ture of both computation and the underlying noise sched-
ule). This corresponds with reversing the Euler integra-
tion which is a first-order ODE solver. More sophisticated
solvers such as multi-step Euler [17] have been shown to
stabilize the generative process, and correspondingly the de-
terministic inversion process, with fewer time steps. How-
ever, such methods are also approximations where the in-
version accuracy ultimately relies on the strength of the lin-
earization assumption and the reconstruction is not exactly
equal. This assumption is largely accurate for unconditional
DDIM generation, but the pseudo-gradient of classifier-free
guidanceG·(Θ(xt, t, C)−Θ(xt, t, ∅)) is inconsistent across
time steps as shown in the Supplementary.

While unconditional reconstructions have relatively in-
significant errors (Fig. 2), conditional reconstructions are
extremely distorted when noised to high levels. This phe-
nomenon was noted in [7], where the guidance scale must
be heavily downweighted in order for inversions on real-
world images to be stable, thus limiting the strength of edits.
Obtaining an xt from x0 allows for the generative process
to be run with novel conditioning. In SDEdit [20], this pro-
cess is done stochastically to obtain broad sample diversity,
at the cost of controllability and faithfulness to the original
image contents. In contrast, the inverse DDIM process pro-
duces a unique xt from a single x0 in a deterministic man-
ner, yielding only one sample but enabling higher strength
edits while preserving finer-grain structure and content.

3.3. Affine Coupling Layers

Affine Coupling Layers (ACL) are invertible neural net-
work layers introduced in [4, 5] and used in other normal-
izing flow models such as Glow [12]. The layer input z, is
split into two equal-dimensional halves za and zb. A modi-
fied version of za is then calculated, according to:

z′a = Ψ(zb)za + ψ(zb) (6)

xt

yt yt
(inter)

xt
(inter) xt-1

yt-1

Figure 3. Information flow of EDICT. Denoising process (sam-
pling) follows the arrows forwards, sampler inversion backwards.
From (xt, yt), (xt−1, yt−1) can be calculated while holding a sin-
gle member of each sequence in memory at a time. All steps are
invertible, so (xt, yt) can be exactly recovered from (xt−1, yt−1),
as opposed to current methods which compute an approximation.

where Ψ and ψ are neural networks. The layer output z′

is the concatenation of z′a and zb in accordance with the
original splitting function. ACL can parameterize complex
functions and z can be exactly recovered given z′:

za = (z′a − ψ(zb))/Ψ(zb) (7)

Noting the similarity of equations 6 and 7 to the simplified
form of Eq. (2), we parallel this construction in our method
(described next) where two separate quantities are tracked
and alternately modified by transformations that are affine
with respect to the original modified quantity and a non-
linear transformation of its counterpart.

4. Exact Diffusion Inversion via Coupled
Transformations (EDICT)

4.1. Making an Invertible Diffusion Process

As summarized in Sec. 3.3, affine coupling layers track
two quantities which can then be used to invert each other.
These two quantities are partitions of a latent representation
with a network specifically designed to operate in a fitting
alternating manner. Without training of a new DDM, this
method can not be applied out-of-the-box to the forward
diffusion process. We consider the simplified form of the
forward step equation from Sec. 3.1 below

xt−1 := atxt + btϵ(xt, t) (8)

If the noise prediction term, ϵ(xt, t) = ε was independent
of xt, this would be an affine function in both xt, and ε.
Paralleling Eq. (6), by creating a new variable yt = xt the
stepping equation fits the desired form. Consider perform-
ing this computation, so we have the variables xt, yt =
xt, xt−1 = atxt + btϵ(yt, t). xt can be recovered exactly
from xt−1 in the non-trivial form:

xt = (xt−1 − bt · ϵ(yt, t))/at (9)

yt = xt is trivial and will not be true in the general case.
Now consider the initialization of the reverse (denoising)
diffusion process, where xT ∼ N (0, 1), we similarly ini-
tialize yT = xT . Following the above process, we define
the update rule
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EDICT x
(No Mixing)

EDICT y
(No Mixing) EDICT x EDICT y Baseline

Figure 4. Images generated from the same text prompt and ran-
dom seed. EDICT x/y (No mixing) employs coupling layers but
not intermediate mixing layers, resulting in distorted and inconsis-
tent images as x and y diverge. EDICT is our full method with
the sequences explicitly contracted together, resulting in identical
images that match DDIM (Baseline) in quality and composition.
Top row prompt: A white horse galloping through a forest Bottom
row prompt: A couple of glasses are sitting on a table

xt−1 = atxt + bt · ϵ(yt, t)
yt−1 = atyt + bt · ϵ(xt−1, t)

(10)

Note that the noise prediction term in the second line is a
function of the other sequence value at the next timestep.
Only one member of each sequence (xt, yt(±1)) must be
held in memory at any given time. The sequences can be
recovered exactly according to

yt = (yt−1 − bt · ϵ(xt−1, t))/at

xt = (xt−1 − bt · ϵ(yt, t))/at
(11)

As illustrated in Fig. 3, the entire sequence can be recon-
structed from any two adjacent xi and yi. In sum, our
method re-uses the linearization assumption of Euler DDIM
inversion, that ϵ(xt, t) ≈ ϵ(xt−1, t), but crucially does not
rely on it for invertibility, guaranteeing recovery up to ma-
chine precision. We note that the functional form of our ap-
proach bears similarities to the ODE solver Heun’s method
where derivative values at initial predictions are used to re-
fine predictions, but due to the need for invertibility we can-
not exploit this for more accurate/faster sampling.

4.2. Stabilization

While our method assures invertibility by design, realism
and faithfulness to the original diffusion process are not au-
tomatic. When naively applied for a typical, low number of
DDIM steps (e.g., T = 50), the sequences xt and yt can
diverge (Fig. 4). This is a result of the strong linearization
assumption not holding in practice. To alleviate this prob-
lem, we introduce intermediate mixing layers after each dif-
fusion step computing weighted averages of the form

x′ = px+ (1− p)y, 0 ≤ p ≤ 1 (12)

which are invertible affine transformations. Note that this
averaging layer becomes a dilating layer during determinis-
tic noising; the inversion being

A couple of 
glasses 
are sitting 
on a table

Prompt
Orig.

Generation

50 0

Cosine Similarity
of (xt, yt)

50
1

0

1

p = 0.5
p = 0.8

p = 0.9
p = 0.93

p = 0.95
p = 0.97

p = 1

A long-haired 
cat sitting 
outside 
with leaves 
on the 
ground

Orig. Image

50 0 50
1

0

1

Timestep

Figure 5. We visualize the effect of the mixing coefficient p. Top
row: an EDICT-generated image with p = 0.93, for each listed
p a generation is computed from T = 50 to T = 0 followed
by reconstructing initial latents (T = 50). Cosine similarity be-
tween (xt, yt) is computed at each step. p = 0.97 suffices for
generative convergence, but the inverse process diverges when
p is too small. Repeated dilation can exponentially exaggerate
small floating-point differences, annulling the theoretical guaran-
tee. These trends hold in the bottom row for a non-generated im-
age put through the EDICT inversion/generation process. While
all reconstructions ultimately are aligned, a sufficiently large p is
needed for the latents to maintain alignment throughout.

x =
x′ − (1− p)y

p
(13)

A high (near 1) value of p results in the averaging layer not
being strong enough to prevent divergence of the x and y
series during denoising, while a low value of p results in a
numerically unstable exponential dilation in the backwards
pass (Fig. 5). Note that in both cases that our generative
process remains exactly mathematically invertible with no
further assumptions, but there is a degradation in utility of
the results. Typically we employ p = 0.93, with values in
the interval [0.9, 0.97] generally being effective for 50 steps.

4.3. Complete Summary of the Method

We dub our presented process EDICT: Exact Diffusion
Inversion via Coupled Transformations. In sum, EDICT
uses a combination of “coupling” and “averaging/dilating”
steps for exact inversion of the diffusion process. Given xt
and yt, we calculate the denoising process by

xintert = at · xt + bt · ϵ(yt, t)
yintert = at · yt + bt · ϵ(xintert , t)

xt−1 = p · xintert + (1− p) · yintert

yt−1 = p · yintert + (1− p) · xt−1

(14)
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COCO Reconstruction Error (MSE)

Method LDM AE EDICT EDICT DDIM DDIM
(UC) (C) (UC) (C)

50 Steps 0.015 0.015 0.015 0.030 0.420
100 Steps 0.015 0.015 0.015 0.027 0.471
200 Steps 0.015 0.015 0.015 0.023 0.497

Table 1. Mean-square reconstruction error for COCO-val using
the first listed prompt as conditioning with G = 7. The latent
diffusion model autoencoder (LDM AE) is the lower bound on re-
construction error. Using half precision increases 50-step EDICT
(C) MSE by 6%. More step values are in the Supplementary.

and the deterministic noising inversion process by:

yintert+1 = (yt − (1− p) · xt)/p
xintert+1 = (xt − (1− p) · yintert+1 )/p

yt+1 = (yintert+1 − bt+1 · ϵ(xintert+1 , t+ 1))/at+1

xt+1 = (xintert+1 − bt+1 · ϵ(yt+1, t+ 1))/at+1

(15)

Recall that the conditioning C is implicitly included in the ϵ
terms. In practice, we alternate the order in which the x and
y series are calculated at each step in order to symmetrize
the process with respect to both sequences. We cast all op-
erations to double floating point precision (from the native
half precision) to mitigate roundoff floating point errors.

4.4. Image Editing

While EDICT can theoretically operate on either pixel-
based or latent-diffusion models we present the latter case
in this work. Given an image I , we edit the seman-
tic contents to match text conditioning Ctarget. We de-
scribe the current content by text Cbase in a parallel man-
ner to Ctarget. We compute an autoencoder latent x0 =
V AEenc(I), initializing y0 = x0. We run the determinis-
tic noising process of Eq. (15) on (x0, y0) using text con-
ditioning Cbase for s · S steps, where S is the number of
global timesteps and s is a chosen editing strength. This
yields partially “noised” latents (xt, yt) which are not nec-
essarily equal and, in practice, tend to diverge by a small
amount due to linearization error and the dilation of the
mixing layers. These intermediate representations are then
used as input to Eq. (14) using text condition Ctarget,
and identical step parameters, (s, S). The resulting image
outputs (V AEdec(x

edit
0 ), V AEdec(y

edit
0 )) are empirically

nearly identical as seen in Fig. 4, this is by design of the
method and in particular, the mixing layers. For all meth-
ods we find that a guidance scale of 3 performs well (as
opposed to the standard 7.5 for generation).

5. Experiments
We now describe results using the Stable Diffusion 1.4

latent diffusion model [25].

5.1. Image Reconstruction

We demonstrate the exact invertibility of EDICT using
the MS-COCO-2017 validation set (n = 5, 000), which
contains both simple object-centric images and complex
scene images [16]. Given an image-caption pair, inverted
latents are calculated and used to reconstruct the image.
Mean-square error is calculated on pixels normalized to
[−1, 1] and averaged across all images in the dataset. This
process is performed both with and without the text as con-
ditioning (C vs. UC). For COCO, we use the first listed
prompt as conditioning. The LDM autoencoder reconstruc-
tion error serves as a lower bound. EDICT maintains com-
plete latent recovery in all examples for both 50 and 200
steps, with error 50-75% that of DDIM (UC) (Tab. 1).
DDIM (C) is unstable for inversions (also noted in [7]),
which results in an error an order of magnitude greater than
any other, with failure to reconstruct as shown in Fig. 2.

5.2. Image Editing

We show EDICT’s ability to perform complex editing
tasks on real images in Fig. 6. In the first row, a diverse
set of objects are added to a lake scene, demonstrating ob-
ject addition. In the giraffe and car examples, we see in-
teraction between introduced and original objects. Addi-
tionally, both the giraffe and castle examples capture re-
flections of the added objects, while the pattern of the wa-
ter is maintained. Throughout all edits, details such as the
cloud patterns and patches of tree color are preserved. The
second row shows object-preserving global changes. A
chair is placed into a variety of settings while keeping near-
perfect identity and detail, even when occlusions are gen-
erated (grass and snow). In all examples the chair keeps a
realistic footing, despite ground changes.

In the third row, we demonstrate that EDICT is able to
perform object deformations, a challenging class of edits
for DDM methods, as many broad compositional compo-
nents are determined very early in the generation [7]. The
previously most successful method for these types of edits,
Imagic [11] requires model finetuning. EDICT makes the
sculpture assume a broad set of poses, spatially changing
the semantic map in a refined way. Novel views, such as
“A statue from behind” are able to be plausibly rendered
Across these large-scale edits, fine-grained details such as
the face and dress of the statue –as well as the foliage and
path– are preserved. In the fourth row, we show that EDICT
is able to perform global style changes while maintaining
layout and details where appropriate. The layout is nearly
identical across images (note the preserved cloud pattern),
but can be changed when needed (e.g., the lack of trees in
the Mars example). Specific art-styles are capable of being
generated, including challenging concepts such as cubism.

In Fig. 1, EDICT makes semantic entity edits to and
from a variety of dog breeds. It proves adept at holding the
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“A waterfall in the 
mountains”

“A cubist 
painting of ..”

“An impressionistic 
painting of ..”

“.. in the fall” “.. on Mars”

“A statue” “.. with raised arms” “.. walking” “.. from behind” “.. standing alone giving 
a thumbs-up”

“A red chair” “.. at the Grand Canyon” “.. on a field of grass” “.. covered in snow in 
the mountains

“.. after a flood”

“A lake” “A giraffe in ..” “A car stuck in..” “A castle overlooking ..” “A fountain in..”

Real Image Edited Images

Figure 6. Examples of the strength and varied editing ability of EDICT. From top to bottom: object additions, global context changes with
object preservation, deformations while preserving identity, and global style changes. The bidirectional reversibility of EDICT’s process
allows for large-scale changes to the image while maintaining auxiliary details.

original subject pose, including in the third row where the
dog is viewed in a very atypical position. The realism in
the Chihuahua examples is particularly interesting, due to
the relatively small size of the breed. We again highlight
the preservation of details such as the background foliage
or ground in the upper three rows. The fourth row is of
specific interest as small text is preserved across examples
(a typical failure case for DDIM).

Baseline Comparison: In Fig. 7, we demonstrate EDICT’s
superior performance to other DDM sampling-based meth-
ods for image editing: conditional and unconditional DDIM
inversion, prompt-to-prompt image editing, and SDEdit
(as a stochastic baseline). All methods are run with 50
steps (we do not observe improvement of baselines when
the number of steps are increased, see Supplementary).
Since methods that require model finetuning or prompt tun-
ing [6, 11, 26] can be combined with EDICT, we view them
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Original Image DDIM
Unconditional

DDIM
Conditional

P2P DDIM
Unconditional

Original Description “A photo of a dog”→ Image edit using prompt:  “ A photo of a drone”

P2P DDIM
Conditional

SDEdit EDICT

Original Description “A cat”→ Image edit using prompt:  “ A ferret”

Original Description “A stone church”→ Image edit using prompt:  “ A stone church in wildflowers”

Figure 7. EDICT compared to baseline editing methods. EDICT demonstrates superior preservation of unedited components while still
performing the edit edit. Further comparison between EDICT and baselines (including concurrent work ( [14,32]) is in the Supplementary.

as complementary to, rather than competitive with, EDICT,
and do not perform a direct comparison with them. We
quantitatively compare visual metrics of edits in Fig. 8.

6. Discussion
Limitations and Future Work: EDICT is deterministic,
only outputs one generation per image-prompt pair (vs.
SDEdit). Also, the computational time is approximately
twice that of baseline DDIM. As with all editing meth-
ods, performance can vary across inputs in a hard-to-predict
manner and sometimes requires careful prompt selection.
For future work, we note that the induced latent space con-
structed by the inversion process admits operations such la-
tent interpolation [10] which has not been widely applied
to real images. As in prompt tuning [15], formalizing the
process of prompt selection could further improve EDICT.
Adding a controllable degree of randomness to EDICT
could yield multiple candidate generations per input.
Ethics: Like other image generation and editing models,
EDICT will produce images that may reflect the socioeco-
nomic biases of the training data or images that could be
considered inappropriate. Image editing methods can also
utilized for malicious purposes, including harassment and
misinformation spread. Practitioners utilizing EDICT or its
methodologies in a production setting should consider these
limitations. An in-depth discussion on the ethics of image
generation can be found in Imagen [27].
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Figure 8. We quantitatively benchmark all methods on image edit-
ing using images from five ImageNet mammal classes (African
Elephant, Ram, Egyptian Cat, Brown Bear, and Norfolk Terrier).
Four experiments are performed, one swapping the pictured ani-
mal’s species to each of the other classes (20 species editing pairs
in total), two contextual changes (A [animal] in the snow and A
[animal] in a parking lot), and one stylistic (An impressionistic
painting of a [animal]). The LPIPS [33] (visual similarity) score
to the original image and a CLIP score [23] (semantic similarity)
to a set of five related text queries is computed per edit. Metrics are
averaged across images and experiments. Details and human eval-
uation are provided in the Supplementary. We sweep across the
fraction of inverted steps (overlaid in black on top of gray EDICT
bubbles), observing that EDICT forms a Pareto frontier.
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