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Abstract

Vision Transformers (ViTs) have gained significant pop-
ularity in recent years and have proliferated into many
applications. However, their behavior under different
learning paradigms is not well explored. We compare
ViTs trained through different methods of supervision,
and show that they learn a diverse range of behaviors in
terms of their attention, representations, and downstream
performance. We also discover ViT behaviors that are
consistent across supervision, including the emergence
of Offset Local Attention Heads. These are self-attention
heads that attend to a token adjacent to the current token
with a fixed directional offset, a phenomenon that to the
best of our knowledge has not been highlighted in any prior
work. Our analysis shows that ViTs are highly flexible and
learn to process local and global information in different
orders depending on their training method. We find that
contrastive self-supervised methods learn features that are
competitive with explicitly supervised features, and they
can even be superior for part-level tasks. We also find that
the representations of reconstruction-based models show
non-trivial similarity to contrastive self-supervised models.

1. Introduction
The field of Computer Vision has advanced massively

in the past decade, largely built on the backbone of Con-
volutional Neural Networks (CNNs). More recently, Vi-
sion Transformers (ViTs) [18] have shown the potential
to overtake CNNs as the go-to visual processing model.
Prior works have asked the question do ViTs see like CNNs
do? [52], but in this work, we ask: how do ViTs learn un-
der different supervision? Past examinations of ViTs have
largely focused on models trained through full supervision.
Instead, we aim to characterize the differences and similar-
ities of ViTs trained through varying training methods, in-
cluding self-supervised methods. Unlike CNNs, the ViT ar-
chitecture imposes few structural biases to guide the learn-
ing of representations. This gives them the flexibility to
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Figure 1. ViTs exhibit highly varied behaviors depending on
their method of training. In this work, we compare ViTs through
three domains of analysis representing the How, What, and Why of
ViTs. How do ViTs process information through attention? (Top)
Attention maps averaged over 5000 images show clear differences
in the mid-to-late layers. What do ViTs learn to represent? (Left)
Contrastive self-supervised ViTs have a greater feature similarity
to explicitly supervised ViTs, but also have some similarity with
ViTs trained through masked reconstruction. Why do we care
about using ViTs? (Right) We evaluate ViTs on a variety of global
and local tasks and show that the best model and layer vary greatly.

learn diverse information processing strategies, and through
our analyses, we uncover a wide array of ViT behaviors.

There are countless ways to analyze ViTs, so to guide
this analysis we choose three major domains which corre-
spond to the How, What, and Why of ViTs. For the How,
we focus on how ViTs process information through Atten-
tion. Multi-Headed Attention (MHA) layers are arguably
the key element of ViTs, and they most distinguish them
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from CNNs. For the What, we examine the Features of
ViTs, as these are typically what practitioners take away
from them. Finally for the Why, we focus on Downstream
Tasks, which are why we care about using ViTs.

Our work unveils that a powerful aspect of the ViT ar-
chitecture is its local-global dual nature, which plays a
role in all three aspects of our analyses. While standard
CNNs are restricted to building representations hierarchi-
cally from local to global, in a ViT each token can attend
to information from any other image region at any time.
And unlike popular CNN modifications like Spatial Pyra-
mids [20, 28, 33, 35] and top-down strategies [6, 47, 56],
ViTs have the freedom to decide when and where global in-
formation should be integrated. In this study, we show that
the order and the relative ratio of local and global attention
in ViTs varies dramatically based on the method of supervi-
sion. We also find clearly different trends in the allocation
of attention in the mid-to-late layers of these networks, as
highlighted in Figure 2. This local-global dual nature is also
embedded into the structure and features of the ViT, which
encodes both local spatial tokens and a non-local classifier
(CLS) token throughout its entire depth. We analyze the
features of ViTs for both the CLS and spatial tokens, and
assess how they align with semantics at the image, object,
part, and pixel-level. We perform this analysis at every layer
of the ViT to show the emergence of different levels of se-
mantic information. Finally, we assess ViTs on a number of
local and global downstream tasks.

Overall, our contributions are: [1] A detailed comparison
of ViTs trained with six different methods, including both
fully supervised and self-supervised training. [2] A cross-
cutting analysis spanning three major domains: Attention,
Features, and Downstream Tasks. [3] Multiple insights into
the inner workings of ViTs to guide future development of
ViT variants, training strategies, and applications.

In addition, we summarize some of our key observations
about ViT behavior: [1] The attention maps of explicitly
supervised ViTs devolve into Sparse Repeating Patterns
in the mid-to-late layers, but the quality of features con-
tinues to improve in these layers (Section 4.1). [2] All
ViTs studied learn to use Offset Local Attention Heads,
suggesting they are fundamentally necessary in ViTs (Sec-
tion 4.2). To the best of our knowledge, no prior work has
brought attention to this phenomenon. [3] ViTs learn to pro-
cess local and global information in different orders depend-
ing on their method of supervision (Section 4.3). [4] All
ViTs studied differentiate salient foreground objects by the
early-to-mid layers (Section 4.4). [5] Reconstruction-based
self-supervised methods can learn semantically meaningful
CLS representations, even when the CLS token is only a
placeholder (Section 5.1, 5.2). [6] Supervised method’s fea-
tures are the most semantically rich, but contrastive self-
supervised methods are comparable or even superior in
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Figure 2. Clear differences in attention emerge in the mid-to-
late layers under different supervision methods. These plots
show the attention maps of CLS tokens averaged over 5000 Ima-
geNet images. Rows indicate layers and columns indicate heads.
For brevity, we show only three heads per layer. The bracketed
numbers in the lower half denote the layer and head.

some cases (Section 5.2, 5.3). [7] For localized tasks,
the best performance often comes from a mid-to-late layer
(Section 6.2). [8] There is no single “best” training method
or layer for all downstream tasks (Section 6.3).

2. Related Work
Previous works have attempted to understand the rep-

resentation quality for both supervised and self-supervised
training for Convolutional Neural Networks (CNNs). [5]
focuses on understanding the concepts learned by individ-
ual neurons while [41] looks at explaining their compo-
sitionality in the case of supervised networks. Simulta-
neously, due to the popularity of self-supervised learning
methods [3, 4, 9–11, 26, 27, 29, 40, 43, 60, 73] multiple
works have analyzed these representations learned from no
labels. Under this umbrella, [13, 62] tried to understand the
effect of training data in terms of both the number and type
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of samples. Some works [66, 67] analyze the alignment,
separability, and uniformity of features while [49] looks
at invariance to augmentations like occlusion, illumination,
and viewpoint change in the learned representation. [64]
looks at the downstream performance of self-supervised
networks on fine-grained tasks. Finally, [21, 23, 32] an-
alyze multiple self-supervised methods and compare their
performance based on representation similarity and down-
stream task performance over multiple datasets along with
comparisons to supervised methods.

Since the proliferation of ViTs, a number of works have
tried to understand and explore the different properties of
the representations learned by these networks. A few works
[45, 55, 75] have analyzed the robustness of ViT features
against corruptions, perturbations, distribution shifts, and
adversarial examples while also analyzing the role of self-
attention for robustness. [34] benchmarks different pre-
trained ViTs as backbones for object detection. [7] provides
a theoretical understanding of how MAEs work while [53]
analyzes attention using convex duality. [61] gives insights
to train and use ViTs more efficiently. [44] gives a deeper
understanding of how Multi-Headed Attention layers work
while comparing and contrasting to how convolution layers
behave in terms of the loss landscapes and low-pass/high-
pass filtering. [52] compares fully supervised ViTs and
ResNets in terms of the local and global information en-
coded at different depths, the role of skip connections, and
the uniformity of representations.

All these prior works either examine the impact of super-
vision on CNNs or compare CNNs and ViTs trained with
full supervision. Some recent and concurrent works have
compared the properties of differently supervised ViTs,
though typically focused on a particular task and only two
methods of supervision at a time. [1] compares the proper-
ties of fully supervised and DINO ViT features in the con-
text of dense feature descriptors, and [2] further compares
these two across several semantic correspondence tasks.
[19] compares fully supervised and CLIP ViTs through
feature visualizations. To the best of our knowledge, we
present what is to date the broadest and the most in-depth
comparison of ViTs with varying supervision, including
six different methods covering three supervision subcate-
gories. Additionally, we propose new attention-based anal-
ysis methods along with evaluations on multiple down-
stream tasks focused on both local and global information.

3. Experimental Design
3.1. A Primer on Vision Transformers

Vision Transformers (ViTs) [18] are adapted from Trans-
formers [65] for the Natural Language Processing domain.
A ViT consists of an array of tokens, each representing
an image patch. In addition, most ViTs include an ex-

tra “classifier” or “CLS” token, which is connected to the
task-specific output layers during training. ViTs use Multi-
Headed Attention (MHA) layers [65], which use a Query-
Key-Value system that allows each token to attend to all
other tokens with a variable intensity attention map. This
is in stark contrast to the limited receptive fields of con-
volutions. These layers are “multi-headed” because they
repeat this process multiple times in parallel, allowing to-
kens to apply multiple attention strategies concurrently. A
ViT architecture includes multiple blocks, each with one
MHA layer followed by a position-wise fully connected
layer. Unlike CNNs, which usually get narrower in deeper
layers, ViTs maintain the same “width” (number of to-
kens) throughout. There are some transformer variants,
like SWiN transformers [37], that introduce a narrowing
width, but for our analyses, we focus on only traditional
ViTs. Specifically, our primary analysis focuses on ViT-
Base models with patch size 16 ⇥ 16 (ViT-B/16) and input
size 224 ⇥ 224, which results in a 14 ⇥ 14 spatial token
array. ViT-Base has 12 blocks and 12 attention heads per
MHA layer. In the Appendix, we provide additional results
on a wider range of ViTs, including variations in architec-
ture size and patch size.

3.2. Methods of Supervision

Although a large number of ViT training methods have
been proposed in a short span of three years, many of the
most popular methods can be loosely categorized into the
following three groups. From each group, we select two
representative models for in-depth analysis. We further dis-
cuss these models’ details in Appendix B.2.

Explicit Supervision. These models are trained with an
explicit objective that is defined either by human annota-
tions or by labels derived from another source, like paired
image captions. For this category, we use a Fully Super-
vised (FS) ViT pretrained on ImageNet21k and fine-tuned
on ImageNet1k [58, 69], as well as a CLIP ViT [51].

Self-Supervision (Contrastive). Self-supervised learn-
ing methods broadly attempt to train a model through a pre-
text task that can be directly derived from the input data.
Among the more popular pretext tasks are contrastive learn-
ing methods [27, 70] which generally present a model with
multiple augmented views of the same image alongside dis-
tractor views of other images. The model must learn to
identify which of the views came from the same image. For
this category, we select DINO [9] and MoCo-v3 [12] which
we denote simply as MoCo for the rest of this paper.

Self-Supervision (Reconstruction). Another popu-
lar category of self-supervision is reconstruction meth-
ods, which train models to predict the missing content
from masked or otherwise corrupted images. We select
MAE [26] and BEiT [4] for this category. Note that MAE
has a separate decoder which is discarded after pretraining,
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while BEiT’s decoder is learned in the same ViT. This has a
strong impact on the behavior of the later layers of BEiT.

3.3. Datasets
We study the ViTs on multiple datasets and down-

stream tasks. Unless otherwise specified, we use ImageNet-
50 [63], a subset of ImageNet [16] which narrows the
dataset down to 50 representative categories. We sample
100 images per class to create a diverse collection of 5000
images. We additionally use PartImageNet [25] to mea-
sure Attention Saliency and part-level feature purity, as well
as COCO [36] to measure object-level feature purity. We
use revisited [50] Oxford [46] (ROxford5k) for evaluating
image retrieval, DAVIS [48] for video segmentation, and
SPair-71k [39] for keypoint correspondence.

3.4. Proposed Analyses
Our analysis is broadly divided into three domains cov-

ering the How, What, and Why of ViTs:
How ViTs process local/global information (Attention).
Do self-attention heads learn to operate in different ways
depending on their method of training? Are there distinctive
modes of attention behavior? How does supervision impact
the processing order of local and global information?
What we take away from ViTs (Features). How do the
final and intermediate representations of a ViT change de-
pending on the method of supervision? Are these trends
similar or different for CLS vs. spatial tokens?
Why we use ViTs (Downstream Tasks). Which forms of
supervision are best suited for different downstream tasks?
Which layers of a ViT produce features that are best for
different local and global tasks?

4. Attention Analysis
Multi-Headed Attention layers are one of the defining

components of the Transformer architecture, and the atten-
tion maps they generate can give key insights into what
is similar or different about ViTs trained through different
methods. We perform an in-depth examination of the self-
attention maps of ViT-B/16 models at every layer. Through
this study, we uncover a diverse range of attention head be-
havioral modalities. Additional visualizations are provided
in Appendix C for a wide range of ViT variants.

4.1. Attention Visualizations
We start by examining the attention maps of the CLS

tokens of each head and layer. To gain a comprehensive un-
derstanding of each head’s behavior, we compute the aver-
age attention maps over 5000 ImageNet images, as shown
in Figure 2. For brevity, we display only three heads per
layer, but complete plots can be found in Appendix C.1,
along with additional visualizations for spatial token atten-
tion and individual input images.
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Figure 3. Multiple distinct forms of local attention exist. We
visualize spatial token attention using Aligned Aggregated Atten-
tion Maps, and highlight different types of local attention heads,
including Strict, Soft, Axial, and Offset Local Attention Heads. In
row 4 we draw the mid-lines in red as a visual aid.

One of the clearest differences can be seen by comparing
the mid-to-final layers. For the contrastive self-supervised
methods, DINO and MoCo, the attention maps tend to
be centered blobs. These heads tend to focus on salient
foreground objects, so these blobs simply reflect object-
centered photography bias. For the reconstruction-based
methods, MAE and BEiT, we see a more diverse group of
attention maps. This is likely because these methods must
reconstruct all image regions, and thus their attention in the
final layers must be more diverse and cover more of the im-
age. Finally, for the explicitly supervised methods, FS and
CLIP, the mid-to-final layers do not focus on salient object
regions and instead focus on Sparse Repeating Patterns
with seemingly no spatial meaning. This occurs for both
the CLS tokens and spatial tokens, and the patterns are re-
peated across both heads and layers. We hypothesize that
these patterns occur because the mid-to-late layers are no
longer focused on parsing the scene structure, and instead
are using their processing power to generate their final de-
cisions for their respective tasks. This phenomenon helps to
explain why the attention maps of the later layers of fully-
supervised ViTs are poorly suited for segmentation tasks, as
was observed by [9].
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4.2. Emergence of Offset Local Attention Heads
It has been shown that ViTs use a mixture of short-range

“local” and long-range “global” attention heads in any given
layer [9, 18]. To gain a better understanding of local atten-
tion, we propose a visualization strategy of Aligned Aggre-
gated Attention Maps (AAAMs). We extract all spatial
token attention maps for 5000 ImageNet images, but before
averaging them, we first realigned them so the current spa-
tial token is always in the center of the array. Additional
samples of AAAMs are provided in Appendix C.1. Study-
ing these aligned views reveals multiple forms of local at-
tention, shown in Figure 3. We find Strict Local Attention
Heads, which attend almost completely to their own posi-
tion, as well as Soft Local Attention Heads, which attend
to a wider neighborhood around them. We also find Axial
Local Attention Heads, which are elongated to attend to the
local neighborhood along one or both spatial axes.

But perhaps the most noteworthy type of head we ob-
serve is the Offset Local Attention Head. These are heads
that attend locally, but to a point or region offset from the
current token in a vertical or horizontal direction. We find
instances of Offset Local Attention Heads in all the models
examined, suggesting they are fundamentally necessary for
ViTs. To the best of our knowledge, ours is the first work
to draw attention to this phenomenon. We believe that such
heads are absolutely necessary because ViTs, unlike CNNs,
do not have an easy built-in way to test if two features occur
next to each other with a particular spatial arrangement. In
a CNN, this type of check is naturally embedded into the
convolution operator. But in a ViT, there is no inductive
bias to induce such a check. For comparison, Soft Local
Attention Heads are able to identify if a certain feature is
near another feature, but they cannot identify their specific
directional arrangement due to their symmetrical attention
pattern. The existence of Offset Local Attention Heads im-
plies one possible path for improvement for the ViT archi-
tecture, possibly by adding a self-attention variant that in-
troduces some implicit directional structure.

4.3. Average Attention Distance
We measure the Average Attention Distance [18, 52] of

each head to assess if particular heads have a short-range
“local” focus or a long-range “global” focus. This metric is
computed by measuring the distance from each spatial to-
ken to all other tokens and taking a weighted average using
the attention map. We normalize the distances so the token
grid is embedded on a 1 ⇥ 1 square. [52] observed that for
a well-trained fully-supervised ViT, the early layers have a
mixture of local and global attention heads, while the later
layers have only global attention heads.

Figure 4 (left) shows the Average Attention Distances of
all heads organized by layer and model. Like [52], we see
that most layers use a mixture of local and global attention

Figure 4. Different methods of supervision lead to different or-
derings and ratios of local and global processing. We show the
Average Attention Distance of all ViT attention heads organized
by layer (left), and the per-layer averages (right).

Figure 5. Attention IoU with salient content plateaus early for
all ViTs evaluated. We calculate the alignment of ground-truth
segmentation masks with CLS token attention maps (left) and the
average of spatial token attention maps (right).

heads, however, we also find that the ordering of local and
global processing varies greatly with the supervision type.
FS, CLIP, DINO, and MoCo all use exclusively global at-
tention heads in the last layers, but the reconstruction-based
methods MAE and BEiT use a diverse range of heads in
their later layers. Figure 4 (right) compares the combined
Average Attention Distances at the per-layer level. In all
models, we observe a greater number of global attention
heads in the initial layers, followed by decreased distances
around layers 3-6. This result is again in contrast to [52].
The behaviors diverge in the mid-to-late layers. For the
models trained with explicit or contrastive supervision, the
Attention Distance trends upward in the later layers. For the
reconstruction-based methods, the Average Attention Dis-
tances stay lower. These results show that, unlike CNNs,
ViTs can learn a variable local/global processing order de-
pending on the training method used.

4.4. Attention Alignment with Salient Content

One of the most desirable (and exploitable) features of
DINO is that the CLS token attention maps of the last layer
tend to be well-aligned with salient foreground objects [9].
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Figure 6. CKA similarity between final layer features of different
ViTs for their CLS tokens (left) and spatial tokens (right).

Several methods propose to use DINO attention maps, fea-
ture maps, or a combination of the two to generate segmen-
tations in a self-supervised manner [24, 57, 68]. We conduct
a quantitative analysis of this property at all layers of the
ViTs, both to measure the usefulness of masks and to assess
how early the ViTs differentiate salient object regions. Like
[9], we threshold the CLS token attention masks keeping
60% of the total attention mass. We then compute the Inter-
section over Union (IoU) of said masks with ground-truth
segmentations from PartImageNet [25]. As an alternative
to CLS token attention, we also extract masks using the av-
erage of spatial token attention maps. We present results for
the single “best” head per layer in Figure 5.

We see a clear drop in FS and CLIP mask IoU around
the middle of the network, which directly corresponds to
the emergence of the Sparse Repeating Patterns observed in
Section 4.1. We also find that the IoUs plateau around layers
3-6 for all networks. This demonstrates that ViT models al-
ready have a solid understanding of foreground/background
separation by the middle layers. While the later atten-
tion maps of FS and CLIP are much worse than their self-
supervised counterparts, their early-to-mid layers are more
comparable. We find that MoCo, MAE, and BEiT can all
produce attention maps with IoUs that are comparable with
DINO. In addition, we see that the average of spatial tokens
produces maps that are comparable with the CLS token, and
for CLIP the IoU increases greatly in the final layer.

5. Feature Analysis
In this section, we directly compare ViT features

across models and layers using Centered Kernel Alignment
(CKA) [14, 31]. We also study unsupervised clustering per-
formance to compare global and local semantic information
in the learned representations. We present addition analysis
in Appendix D.4 focused on ViT residual connections.

5.1. Last Block Feature Comparisons
Comparing representations is non-trivial due to vary-

ing feature sizes, large feature representations, and lack of
alignment between them. To overcome this, we use batched
Centered Kernel Alignment (CKA) [14, 31, 42] which can

align features and compute a similarity score. We compare
the last layer outputs for each model.

Figure 6 (left) shows that the CLS token representations
are usually similar for similar supervision strategies (ex-
plicit, contrastive, reconstruction). The contrastive meth-
ods, MoCo and DINO, show very high similarity to each
other, indicating that the CLS token encodes the same type
of information for both these methods. There is also an in-
creased level of similarity between the explicitly supervised
methods, FS and CLIP, and the contrastive methods. In-
terestingly, we see that MAE has as high a similarity with
DINO and MoCo as it does with BEiT. This result is sur-
prising because MAE’s CLS token has no explicit training
objective or loss, and the way these approaches are trained
is very different. This presents evidence that training au-
toencoders with a high masking percentage indeed forces
the model to learn image-level semantics.

In Figure 6 (right), we look at the similarity of the last-
layer spatial token representations. Unlike the CLS token
representations, CLIP and FS have low similarity in their
spatial representations. The self-supervised methods DINO,
MAE, and MoCo show a high level of similarity to each
other, and a lower level of similarity to BEiT. MoCo and
DINO show the highest similarity due to their similar kind
of self-supervision. Once again, MAE has a high similarity
to MoCo and DINO despite their very different supervision.

5.2. Feature Clustering for Global Semantics

Through this analysis, we aim to test how well the
learned CLS and spatial token representations encode
global (image-level) semantic information at every layer.
We extract the CLS token features from the end of each
block for 5000 ImageNet images, and we generate k-Means
cluster assignments with k = 50. We present results for
cluster purity measured with respect to ground truth image
labels, but additional clustering metrics are also presented
in Appendix D.5. For the spatial tokens, we follow the
same process except we average-pool over all positions be-
fore clustering. We also compute a random chance score by
replacing the ViT features with Gaussian random noise.

For CLS token features, shown in Figure 7 (left), clus-
ter purity improves with depth with the exception of the
last layers of BEiT. This is likely because the last lay-
ers of BEiT serve as a task-specific decoder, unlike MAE,
where the decoder is separate and discarded after pretrain-
ing. Unsurprisingly, FS achieves the best cluster purity, fol-
lowed by CLIP. The contrastive methods, DINO and MoCo,
achieve scores close to the explicitly supervised methods.
The reconstruction-based methods, MAE and BEiT, have
the lowest cluster purity, but they are still above random
chance, which again indicates that they do learn to encode
some image-level semantic information in their CLS tokens.
Also, we find that semantic information emerges earlier for
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Figure 7. Clustering purity analysis with image-level labels in
ImageNet-50 for CLS features (left) and average-pooled spatial
token features (right).

Figure 8. Clustering purity of spatial token features gathered at the
object-level in COCO (left) and part-level in PartImageNet (right).

DINO and MoCo. For the spatial token features, shown in
Figure 7 (right), the cluster purity of FS rises earlier com-
pared with the FS CLS token. This suggests that the FS spa-
tial tokens do more work gathering semantic information in
the early layers. For all other ViTs, the spatial feature purity
is lower in the final layers, but is comparable in layers 1-7.

5.3. Feature Clustering for Local Semantics
We next measure how well the spatial token features dif-

ferentiate salient image content at the object or part-level
using COCO [36] and PartImageNet [25] respectively. We
use a tiling strategy to extract a denser array of features,
which we detail in Appendix B.4. Using ground truth seg-
mentation masks, we extract and average the features of the
tokens overlapping with the masks. This generates a collec-
tion of object-level or part-level features which we cluster
just like Section 5.2. The results for object-level features
are shown in Figure 8 (left). We see that the supervised
methods CLIP and FS have the highest feature purity by far,
followed by the contrastive methods DINO and MoCo. The
purity is much lower for the reconstruction methods MAE
and BEiT. For part-level features, shown in Figure 8 (right),
FS achieves the best purity, but the contrastive methods are
very competitive in this case, surpassing CLIP completely.
In addition, while still being the lowest scoring, MAE and

BEiT are much more competitive at the part-level. Like
the image-level purity, the object and part-level feature pu-
rity tend to improve with depth, but the purity peaks early
around layers 9 to 11. The peak for BEiT is even earlier,
likely due to its integrated decoder.

6. Downstream Task Analysis
Finally, we analyze the performance of these models on

downstream tasks that can be performed directly without
any fine-tuning or training. We follow the evaluation proto-
cols of [9, 30] for k-NN classification, image retrieval, and
video object segmentation. We also perform keypoint corre-
spondence as a more local-focused task. Again we compute
random chance scores by replacing all ViT features with
Gaussian noise.

6.1. Global Tasks
ImageNet Classification. We perform k-Nearest Neigh-

bor (k-NN) image classification on ImageNet [16] with
k = 20. We use the CLS token features from each network
and assign the label for a test sample based on the train-
ing set features and labels. As can be seen from Figure 9
(left), FS performs the best as it has been trained to classify
the same dataset. DINO and MoCo follow a similar trend
as Section 5.2 and better encode semantic information in
the earlier layers. FS and CLIP also follow a similar trend
where their performance shoots up in the last few layers.
It is also interesting to see how MAE and BEiT, for which
the CLS tokens have no explicit objective, do better than
chance, although MAE is considerably better than BEiT.

Image Retrieval. Similar to k-NN classification, we uti-
lize the CLS token representation for retrieval. We evaluate
on ROxford5k [50] for the Medium (M) split and report the
Mean Average Precision (mAP). In Appendix E.2 we also
report results for the Hard (H) split and the RParis6k [50]
dataset, which follow similar trends. The results, shown in
Figure 9 (right), align closely with those for k-NN Clas-
sification on ImageNet. FS performs the best followed by
CLIP and then DINO and MoCo, and finally by MAE and
BEiT with the lowest performance. We hypothesize that the
local/global crops used in DINO training help it perform
competitively in these global tasks.

6.2. Local Tasks
DAVIS Segmentation Propagation. DAVIS Seg-

mentation Propagation is a dense prediction-based video
localized task where frame-by-frame features are used to
propagate the first frame segmentation mask to subsequent
frames. Like Section 5.3, we use a tiling-based dense fea-
ture extraction strategy. Results are shown in Figure 10
(left). The contrastive techniques of DINO and MoCo per-
form the best while FS and CLIP, which are more image-
level approaches, face a drop in performance towards the
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Figure 9. Global (image-level) downstream task analysis using
the CLS token. We present k-NN classifier Top-1 Accuracy on
ImageNet (left) and image retrieval mAP on ROxford5k (right).

tFigure 10. Local (pixel-level) downstream task analysis using the
dense spatial token features. We perform DAVIS video segmenta-
tion (left) and SPair-71k keypoint correspondence (right).

later layers. The local reconstruction-based methods, MAE
and BEiT, are also much more competitive in this task.
These results show that for purposes of constructing highly
descriptive local features, contrastive methods like DINO
and MoCo and reconstructive methods like BEiT can sur-
pass features trained with explicit image-level supervision.

Keypoint Correspondence. We choose keypoint corre-
spondence as an additional local-focused downstream task.
Given an image with annotated keypoints, the model must
predict the position of corresponding keypoints in a paired
image with similar content. We use the SPair-71k [39]
dataset and follow the evaluation protocol of [1] and report
the Percentage of Correct Keypoints (PCK) [72]. The re-
sults are summarized in Figure 10 (right). CLIP excels at
this task, closely followed by both FS and DINO. Mean-
while, MoCo, BEiT, and MAE are all very competitive also.
The position of the best layer varies significantly, from 8 for
CLIP and BEiT to 11 for MAE.

6.3. Summary of Downstream Tasks
We summarize the best results for all downstream tasks

in Table 1. We denote the best-performing layers in paren-
thesis. These results show that ViTs with different supervi-
sion methods [1] peak at different layers, and [2] perform
best at different tasks. In image-level tasks like k-NN clas-

Table 1. Best performance for each ViT on each downstream task
with the corresponding best layer in parenthesis.

Model Task Performance (Best Performing Layer)

Dataset ImageNet ROxford5k (M) Davis SPair-71k
Metric Top-1↑ mAP↑ J and F Mean↑ PCK@0.1↑

FS 83.79 (12) 0.45 (12) 0.59 (8) 28.56 (9)
CLIP 75.75 (12) 0.40 (12) 0.60 (9) 30.70 (8)
DINO 76.06 (12) 0.37 (12) 0.60 (12) 28.28 (9)
MoCo 71.59 (12) 0.31 (12) 0.61 (11) 25.85 (9)
MAE 45.19 (12) 0.15 (10) 0.54 (12) 22.74 (11)
BEiT 26.84 (8) 0.14 (8) 0.58 (9) 24.11 (8)
Random 0.10 0.02 0.06 1.32

sification and retrieval, usually, the last layer works the best.
For localized tasks like keypoint correspondence and video
object segmentation, most models’ peak performance hap-
pens a few layers before the last one. This shows that always
picking the last layer output is not optimal.

7. Conclusion

In this work, we have performed an in-depth comparison
of ViTs trained through different methodologies by exam-
ining their attention patterns, learned representations, and
downstream task performance. We review some of the key
findings of our analyses. First, different methods of su-
pervision lead to ViTs that process local and global infor-
mation in different orders. All ViTs have heads that align
well with salient image content, but for the explicitly su-
pervised models, the late-layer attention maps change into
Sparse Repeating Patterns. In addition, all ViTs examined
have learned to use Offset Local Attention Heads in multi-
ple layers. While explicitly supervised ViTs have the most
semantically rich representations at the image level, con-
trastive methods are competitive, and reconstruction-based
methods can also learn meaningful CLS token representa-
tions even though said token is a placeholder and has no
explicit supervision. Finally, there is no single best model
for all the downstream tasks, and the best layer to extract
representations from also varies greatly by task and model,
so one should not simply take the last layer representation.
ViTs have shown a great deal of potential, and we expect
they will become more widely used in the coming years.
We hope these insights can help with the future develop-
ment of losses and architectures for Vision Transformers.
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beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 4

[49] Senthil Purushwalkam and Abhinav Gupta. Demystifying
contrastive self-supervised learning: Invariances, augmenta-
tions and dataset biases. Advances in Neural Information
Processing Systems, 33:3407–3418, 2020. 3
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