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(a) Ground Truth (b) Input (10,000 points) (c) POCO [4] (36.8 sec) (d) ALTO (10.5 sec)

Figure 1. Rethinking latent topologies for fast and detailed implicit 3D reconstructions. Recent work (POCO CVPR’22 [4]) has used
latent encodings for each point to preserve 3D detail. We introduce ALTO, which can alternate between latent topologies like grid latents
and point latents to speed up inference and recover more detail, like the 3D reconstruction of a thin lamp-post. Scene from [52].

Abstract

This work introduces alternating latent topologies
(ALTO) for high-fidelity reconstruction of implicit 3D sur-
faces from noisy point clouds. Previous work identifies that
the spatial arrangement of latent encodings is important to
recover detail. One school of thought is to encode a la-
tent vector for each point (point latents). Another school
of thought is to project point latents into a grid (grid la-
tents) which could be a voxel grid or triplane grid. Each
school of thought has tradeoffs. Grid latents are coarse
and lose high-frequency detail. In contrast, point latents
preserve detail. However, point latents are more difficult
to decode into a surface, and quality and runtime suffer.
In this paper, we propose ALTO to sequentially alternate
between geometric representations, before converging to
an easy-to-decode latent. We find that this preserves spa-
tial expressiveness and makes decoding lightweight. We
validate ALTO on implicit 3D recovery and observe not
only a performance improvement over the state-of-the-art,
but a runtime improvement of 3-10×. Project website at
https://visual.ee.ucla.edu/alto.htm/ .

*Equal contribution.

1. Introduction

Reconstructing surfaces from noisy point clouds is an
active problem in 3D computer vision. Today, conditional
neural fields offer a promising way to learn surfaces from
noisy point clouds. Alternatives like voxel regression or
mesh estimation are limited by cubic complexity and the
requirement of a mesh template, respectively. Recent work
has successfully used conditional neural fields to recon-
struct 3D surfaces as an occupancy function. A conditional
neural field takes as input a query coordinate and conditions
this on a latent representation, e.g., feature grids. The spa-
tial expressiveness of the latent representation impacts the
overall surface reconstruction quality.

To achieve spatial expression, a neural field is condi-
tioned on a latent space of features (latents) from the con-
ditional input. In 3D surface reconstruction the input point
cloud is transformed into latents arranged in some topolog-
ical structure. Point latents occur when each point in the
input point cloud is assigned a latent vector [4]. Triplane
latents are formed when point latents are projected into a
3-axis grid [41, 52]. The triplane latent is not as spatially
expressive as freeform points, but the lower spatial com-
plexity makes it easier to decode. Voxel latents are another
type of grid latent where latents are arranged in a feature
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Figure 2. An overview of our method. Given input surface points, we obtain an implicit occupancy field with iterative alternation
between features in the forms of points and 2D or 3D grids (Sec. 3.2). Then we decode the occupancy values for query points with a
learned attention-based interpolation from neighboring grids (Sec. 3.3).

volume [52, 66].
To reconstruct detailed surfaces, recent state-of-the-art

methods try to preserve point latents as long as possi-
ble. Because point latents are spatially expressive, methods
based on point latents are considered state-of-the-art for de-
tailed surface reconstruction [4, 18]. However, using point
latents in this way has some tradeoffs. It is difficult to cor-
relate a query with the unstructured topology of a point-
based latent space, placing a burden on the decoder. Results
from POCO [4] are shown in Fig. 1 where runtime and high-
quality detail like thin lampposts remain out of reach.

In this paper, we seek to blend the upside of different
latent topologies, while minimizing downside. We present
an alternating latent topology (ALTO) method. In contrast
to previous work, our method does not stay with either
point [4] or grid latents [52], but instead alternates back and
forth between point and grid latents before converging to a
final grid for ease-of-decoding.

Our method is general. We can plug-in the ALTO com-
ponent to existing grid-based conditional models [10, 52]
to boost detail recovery. While we have shown that our
method can generate occupancy fields, we expect gain of
high-fidelity details for other neural fields, such as seman-
tic or affordance fields [32, 70], where similar conditional
techniques can be adopted.

We summarize our contributions as follows:

• We introduce an iterative technique to blend the
strengths of different latent topologies for high-fidelity
conditional neural fields generation.

• We propose an attention-based decoder that replaces
naive linear interpolation of feature-grids or computa-
tionally expensive point-wise attention while keeping
compute burden in check.

• We demonstrate performance and runtime improve-
ments over the highest-quality previous method [4], as
well as performance improvements over all other base-
lines.

2. Related Work

3D reconstruction is a very important topic in both com-
puter vision and computational imaging [3]. In this section,
we discuss the most relevant literature on learning-based
3D reconstruction methods. Based on their output, existing
learning-based approaches can be categorized as implicit or
explicit-based representations. In this work, we primarily
focus on implicit-based representations as they are closely
related to our method.

2.1. Explicit Representations

A common shape representation is 2.5D depth maps
[28, 29, 33, 34, 36, 42, 50, 75, 82, 83], which can be inferred
using 2D CNNs [73,74,81,84]. However, 2.5D depth maps
cannot capture the full 3D geometry. In contrast, vox-
els [5, 12, 15, 21, 45, 56, 64, 76–78] naturally capture 3D
object geometry, by discretizing the shape into a regular
grid. As voxel-based methods exhibit cubic space complex-
ity that results in high memory and computation require-
ments, several works tried to circumvent this with efficient
space partitioning techniques [27, 45, 57, 58, 67]. Although
these methods allow for increasing the voxel resolution and
hence capturing more complex geometries, their applica-
tion is still limited. Recently, a promising new direction
explored learning grid deformations to better capture geo-
metric details [22]. An alternative representation relies on
pointclouds. Point-based approaches [1, 20, 31, 55, 69, 80]
discretize the 3D space using points and are more light-
weight and memory efficient. However, as they lack sur-
face connectivity, they require additional post-processing
steps (e.g. using Poisson Surface Reconstruction [38]) for
generating the final mesh. Instead, mesh-based meth-
ods [8, 16, 24, 26, 35, 40, 48, 71, 80] naturally yield smooth
surfaces but they typically require a template mesh [71],
which makes scaling them to arbitrarily complex topologies
difficult. Other works, proposed to also represent the geom-
etry as an atlas of mappings [17,26,44], which can result in
non-watertight meshes. To address limitations with learn-
ing explicit representations, implicit models [9, 46, 49, 62]

260



emerged as an alternative more compact representation that
yield 3D geometries at infinitely high resolutions using iso-
surfacing operations (i.e. marching cubes). In this work,
we capture 3D geometries implicitly, using an occupancy
field [46], as it faithfully can capture complex topologies.

2.2. Neural Implicit Representations

Unlike explicit representations that discretize the output
space using voxels, points or mesh vertices, implicit repre-
sentations represent the 3D shape and appearance implic-
itly, in the latent vectors of a neural network that learns a
mapping between a query point and a context vector to ei-
ther a signed distance value [2, 25, 47, 49, 65] or a binary
occupancy value [9, 46, 63]. However, while these methods
typically rely on a single global latent code, they cannot
capture local details and struggle scaling to more compli-
cated geometries. To address this, several works [60,61,79]
explored pixel-aligned implicit representations, that rely
on both global and local image features computed along
a viewing direction. While, these approaches are able to
capture fine-grained geometric details, they rely on features
that are computed from images, hence are limited to image-
based inputs with known camera poses.

Our work falls in the category of methods that perform
3D reconstructions from points. Among the first to explore
this direction were [10,30,52]. To increase the expressivity
of the underlying representation and to be able to capture
complex geometries, instead of conditioning on a global
latent code, these works condition on local per-point fea-
tures. For example, Jiang et al. [30] leverage shape pri-
ors by conditioning on a patch-based representation of the
point cloud. Other works [41,52,66], utilize grid-based con-
volutional features extracted from feature planes [41], fea-
ture volumes [10, 66] or both [52]. An alternative line of
work, [72] introduce a test-time optimization mechanism to
refine the per-point features predicted on a feature volume.
Concurrently, POCO [4], propose to estimate per-point fea-
tures, which are then refined based on the per-point features
of their neighboring points using an attention-based mech-
anism. A similar idea is also explored in Points2Surf [19]
that introduces a patch-based mechanism to decide the sign
of the implicit function. Our work is closely related to
POCO [4] that can faithfully capture higher-frequency de-
tails due its point-wise latent coding. However, the lack of a
grid-like structure places extra complexity on the attention-
based aggregation module, which results in a higher compu-
tation cost. AIR-Net [23] applied local attention to reduce
the computation but limits its operating range to objects. In
this work, we propose conditioning on a hybrid representa-
tion of points and grid latents. In particular, instead of fus-
ing points and grids, we demonstrate that it is the point and
grid alternation between points and grids that enables re-
covery of more detail than POCO [4], while reducing com-

pute time by an order of magnitude.

3. Method
There are three insights that motivate our approach: (1)

conditioning on the right topology of the latent space is im-
portant; (2) previous neural fields for surface reconstruction
condition on point or grid latents; (3) both point and grid la-
tents have complementary strengths and weaknesses. Point
latents are more spatially expressive but grid latents are eas-
ier to decode into a surface.

It might seem like a simple concatenation of point and
grid latents would be sufficient. The problem is that point
latents remain difficult to decode (even if concatenated with
a grid latent). Therefore, our insight is to alternate between
grid and point latents, and converge to a grid latent. For
feature triplane latents, the alternation also permits com-
munication between the individual planes, which in previ-
ous, grid-based works would have been fed into indepen-
dent hourglass U-Nets [52].

In this section, we introduce a version of ALTO as a
point-grid alternating U-Net. An overview of the method
is shown in Fig. 2. We demonstrate how the convolutional
grid form is learned in Sec. 3.1, our point-grid alternating
network in Sec. 3.2, our attention-based decoder in Sec. 3.3
and training and inference in more detail in Sec. 3.4.

3.1. Convolutional Feature Grids

The input to our method is a noisy un-oriented point
cloud P =

{
pi ∈ R3

}S

i=1
, where S is the number of in-

put points. We first use a shallow Point-Net [54] to obtain
the initial point features as in ConvONet [52]. These point
features are then projected into three 2D grids (feature tri-
planes) {Πxy,Πxz,Πyz} ∈ RH×W×d or 3D grids (feature
volumes) V ∈ RH×W×D×d before feeding into a 2D or 3D
convolutional hourglass (U-Net) networks [13, 59]. d is the
number of feature channels. For feature volumes, we set
H = W = D = 64 due to memory overhead of 3D-CNN
and for feature triplanes,H andW can be set as high as 128
depending on the task.

3.2. ALTO Latent to Blend Grid and Point Latents

Without loss of generality, we demonstrate ALTO in the
context of blending grid and point latents. Note that naive
concatenation of latents would not work, as the point latents
are difficult to decode. The goal is to use ALTO to blend
point latent characteristics into a grid latent via alternation.
The alternating block is illustrated in Fig. 3 and incorpo-
rated into a U-Net architecture. At each alternation, we first
do grid-to-point conversion where convolutional grid fea-
tures are transformed into point features, followed by point-
to-grid conversion where extracted point features are trans-
formed back into grid features for next alternation.
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Figure 3. An illustration of our ALTO encoder. (a) As an example, we show the ALTO block instantiated by alternating between two
latent topologies: point and triplanes via an “in-network” fashion, i.e. within each level of an hourglass framework U-Net. ‘Concatenate’
refers to concatenation of the ALTO block output triplane in the downsampling stage and the ALTO block input triplane in the correspond-
ing upsampling stage. (b) We expand on ALTO block to illustrate the sequential grid-to-point and point-to-grid conversion. There are skip
connections for both point and grid features between two consecutive levels in the ALTO U-Net.

Grid-to-Point Conversion: At each alternation, to ag-
gregate local neighborhood information, we use convolu-
tional operations for the grid features. We then project
each point p orthographically onto the canonical planes and
query the feature values through bilinear interpolation for
2D grid and trilinear interpolation for 3D grid. For triplane
latents, we sum together the interpolated features from each
individual plane.

Point-to-Grid Conversion: At each alternation, given
the interpolated point features, we then process point fea-
tures with an MLP in order to model individual point fea-
ture with finer granularity. For feature triplanes grid form,
an MLP also gives an additional benefit of having individ-
ual plane features communicate with each other. The MLP
is implemented with two linear layers and one ReLU non-
linearity. Projected point features falling within the same
pixel or voxel cell will be aggregated using average pool-
ing. If using triplane latents with each plane discretized at
H ×W , this results in planar features with dimensionality
H ×W × d or if using voxel latents we obtain dimension-
ality H ×W ×D × d, where d is the number of features.

We also adopt skip connections for both point features
and grid features between two consecutive ALTO blocks,
as illustrated in Fig. 3b. The alternation needs to be im-
plemented carefully to minimize runtime. Naively, we can
alternate between triplanes or voxel latents using a U-Net
and point latents using MLP, but that would require multi-
ple network passes. Instead, we incorporate the point-grid
alternating inside each block of a U-Net, i.e. replacing orig-
inal convolution-only block with ALTO block. We call this
single U-Net, the ALTO U-Net. This also enables point and
grid features blended at multiple scales and the number of

alternation blocks depends on the number of levels of U-
Net.

3.3. Decoding ALTO latents using Attention

As discussed in the previous section, ALTO provides a
way to get a single latent that blends characteristics of dif-
ferent topologies. The advantage is that the final latent that
ALTO converges to (hereafter, ALTO latent) can take on the
topology that is easier to decode.

For example, in the case of using ALTO to blend point
and grid characteristics, we would like ALTO to converge to
a final output in the simpler grid topology. Then, given the
ALTO latent in grid form and any query point q ∈ R3 in 3D
space, our goal is to decode the learned feature and estimate
the occupancy probability of each query point. ALTO ben-
efits from attention on the decoder side. The ALTO latent
is in grid form, but has spatial expressivity coming from the
blended-in point latents. Standard grid latent decoding, e.g.,
bi-/tri-linear interpolation used in previous work [41, 52]
would not preserve this spatial expressivity.

To decode an ALTO latent, we propose an efficient
attention-based mechanism to replace the previous ap-
proach of linear interpolation on feature grids. While atten-
tion is not new, we leverage grid latent attention to avoid
heavy runtime issues of point latent attention [4] that ap-
plies attention over a point-wise 3D neighborhood. As il-
lustrated in Fig. 4, we consider the nearest grids (indices
denoted as N (q)), where |N | = 9 for triplane representa-
tion and |N | = 27 for volume representation, we call these
areas as per-point neighbor feature patches C{i∈N}. We de-
fine the query Q, key K, and value V for our attention as
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Figure 4. Attention-based decoder on neighboring grids (2D
or 3D). To obtain features of each query point for decoding occu-
pancy value, we use learned interpolation from neighboring grids
that improves occupancy prediction, while being more efficient
than expansive point-wise attention mechanism (e.g. POCO [4]).

follows:
Q = MLP(ψ(q)),
K = MLP(C{i∈N (q)}),

V = MLP(C{i∈N (q)}),

(1)

where ψ(q) is the linear interpolated feature value of the
query points. Additionally, we compute the displacement
vector d ∈ R2 or R3 which represents the spatial rela-
tionship between the projected query point coordinate and
the nearest feature grid points. We use the subtraction rela-
tion [86] in our attention scoring function:

A = softmax(MLP((Q−K) + γ(d))), (2)

where γ(d) works as a learnable positional encoding. In
our implementation, γ is an MLP with two fully-connected
layers and activated by ReLU. We compute the attention-
based interpolated per-point feature F as:

F = A⊙ (V + γ(d)). (3)

Note that the same positional encoding from above is added
to V and ⊙ denotes the element-wise product operation. For
the case of triplane representation, we use a single-head at-
tention to extract the feature F from each individual plane.
The per-triplane features are then concatenated and used for
the occupancy prediction. For the case of the volume repre-
sentation, we use multi-head attention for h independently
learned subspaces of Q, K, and V , where h is a hyperpa-
rameter varying based on the experiment. Additional details
are provided in the supplementary.

Finally, we predict the occupancy of q using a small
fully-connected occupancy network:

fθ(F ) → [0, 1]. (4)

The network fθ consists of several ResNet blocks as in [52].
The major difference to the original occupancy decoder
in [52] is that we do not bring in the absolute 3D coordinate
of q as input since it theoretically breaks the translational
equivalence property.

(a) GT (b) Grid Latent [52] (c) Sec. 3.2
“ALTO (Enc.)”

(d) Sec. 3.2+3.3
“ALTO”

Figure 5. Ablation analysis on ShapeNet. Note the top inset
showing the poles in the chair back (yellow). ALTO (Enc.) is
ALTO (Encoder Only) and uses the latent space encoding pro-
posed in Sec. 3.2 with a standard decoder. The full ALTO method
includes also the attention-based decoder in Sec. 3.3.

This concludes our description of our latent space en-
coding and attention decoding. In Fig. 5 observe that the
architectures we have proposed progressively improve de-
tail from a standard grid formulation.

3.4. Training and Inference

At training time, we uniformly sample query points Q
and minimize the binary cross-entropy loss between the pre-
dicted occupancy value and ground-truth occupancy values
written as:

L (ôq, oq)=−
∑
q∈Q

[oq log (ôq)+(1−oq) log (1−ôq)] (5)

Our model is implemented in PyTorch [51] and uses the
Adam optimizer [39] with a learning rate of 10−4. During
inference, we use a form of Marching Cubes [43] to obtain
the mesh.

4. Experimental Evaluation
4.1. Datasets, Metrics, and Baselines

Object Level Datasets: For evaluation on object-
level reconstruction, we use ShapeNet [6]. In particular,
ShapeNet [6] contains watertight meshes of object shapes in
13 classes. For fair comparison, we use the same train/val
splits and 8500 objects for testing as described in [4, 52].

263



input points 3K input points 1K input points 300

Method IoU ↑ Chamfer-L1 ↓ NC↑ F-score↑ IoU ↑ Chamfer-L1 ↓ NC↑ F-score↑ IoU ↑ Chamfer-L1 ↓ NC↑ F-score↑
ONet [46] 0.761 0.87 0.891 0.785 0.772 0.81 0.894 0.801 0.778 0.80 0.895 0.806
ConvONet [52] 0.884 0.44 0.938 0.942 0.859 0.50 0.929 0.918 0.821 0.59 0.907 0.883
POCO [4] 0.926 0.30 0.950 0.984 0.884 0.40 0.928 0.950 0.808 0.61 0.892 0.869

ALTO (Encoder Only) 0.931 0.30 0.950 0.981 0.889 0.39 0.932 0.951 0.842 0.52 0.908 0.903
ALTO 0.930 0.30 0.952 0.980 0.905 0.35 0.940 0.964 0.863 0.47 0.922 0.924

Table 1. Performance on ShapeNet with various point density levels. Input noisy point cloud with 3K, 1K and 300 input points from
left to right. ALTO is our proposed method and ALTO (Encoder only) is an ablation that uses only our encoder with a non-attention based
decoder.

Points are obtained by randomly sampling from each mesh
and adding Gaussian noise with zero mean and standard de-
viation of 0.05.

Scene-Level Datasets: For scene level evaluation, we
use Synthetic Rooms dataset [52] and ScanNet-v2 [14]. In
total, we use 5000 synthetic room scenes with walls, floors
and ShapeNet objects randomly placed together. We use an
identical train/val/test split as prepared in prior work [4,52],
and Gaussian noise with zero mean and 0.05 standard de-
viation. ScanNet-v2 contains 1513 scans from real-world
scenes that cover a wide range of room types. Since the
provided meshes in ScanNet-v2 are not watertight, mod-
els are trained on the Synthetic Rooms dataset and tested
on ScanNet-v2, which also enables some assessment of
Sim2Real performance of various methods.

Evaluation Metrics: The quantitative evaluation met-
rics used in data tables are standard metrics that enable us to
form comparisons to prior work. These include: volumetric
IoU, Chamfer-L1 distance ×102, and normal consistency
(NC). A detailed definition of each metric can be found in
the Occupancy Networks paper [46]. We also include an
F-Score metric [68] with threshold value 1%.

Baselines for Comparison: As noted by Boulch et
al. [4], baseline methods often perform better in the set-
tings of the original papers. In the same spirit, we thus
strictly adapt the protocol of the state-of-the-art (SOTA) pa-
per POCO [4] for evaluation protocol. In addition to POCO,
other baselines we include are SPSR [37], ONet [46] and
ConvONet [52]. Note that we omit NFK [72] from our eval-
uations, as they have not made their code publicly available.

Our Method: “Our method” is ALTO. ALTO com-
bines Sec. 3.2 + Sec. 3.3, and is shown in Fig. 5d. Fig-
ures/tables use ALTO to denote the proposed method. If
we are considering an ablation analysis we will use ALTO
with parentheses, e.g., “ALTO (Encoder Only)”, and the ta-
ble caption will specify the ablation. To demonstrate ALTO
with different latent topologies , for object-level reconstruc-
tion, we use alternation between point and feature triplanes
and the resolution of initial individual plane H =W = 64.
For scene-level reconstruction, we use alternation between
point and feature volumes and the resolution H = W =
D = 64.

(a) GT (b) Input (1K) (c) CONet [52] (d) POCO [4] (e) ALTO

Figure 6. Object-level comparisons on ShapeNet. On the car,
ALTO recovers the detail of having both side mirrors.

4.2. Results of Object-level Reconstruction

Qualitative Object-level Comparisons: Qualitative re-
sults of object-level reconstruction are provided in Fig. 6.
We observe that [52] obtains a blurry reconstruction. Note
that the width of the bookcase dividers are thicker and there
are spurious blobs on the shelves. The SOTA baseline [4]
is able to recover some detail, such as the wheel geometry
in the car, but loses both side mirrors in the reconstruction.
ALTO seems to have a higher fidelity reconstruction due to
combining ideas from point and grid latents.

Quantative Object-level Comparisons: ALTO’s per-
formance metrics at various point density levels are listed
in Tab. 1, for 3K, 1K and 300 input points. When point
clouds are sparser, ALTO performs better than POCO on
all four metrics. At high point density, ALTO outperforms
POCO on three of four metrics. An ablation of just using
the ALTO latent encoding and a traditional interpolating de-
coder [52] is also conducted in the table.

4.3. Scene-level Reconstruction

Qualitative Scene-level Comparisons: ALTO achieves
detailed qualitative results compared to baselines. Fig. 7
depicts scene-level reconstruction on the Synthetic Room
dataset introduced in [52]. In the first row of Fig. 7 the base-
lines of ConvONet and POCO both have holes in the coffee
table. In the second row of Fig. 7 the high-frequency deatil
in the wooden slats of the chair is fully blurred out by Con-
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(a) Ground Truth (b) Input Points (c) SPSR [37] (d) ConvONet [52] (e) POCO [4] (f) ALTO

Figure 7. Qualitative comparison on scene-level reconstruction Synthetic Room Dataset. Learning-based methods are trained and
tested on 10K noisy points. ALTO can reconstruct the (top scene) double-deck table and (bottom scene) details in the chair.

Method IoU ↑ Chamfer-L1 ↓ NC↑ F-score↑
ONet [46] 0.475 2.03 0.783 0.541
SPSR [37] - 2.23 0.866 0.810
SPSR trimmed [37] - 0.69 0.890 0.892
ConvONet [52] 0.849 0.42 0.915 0.964
DP-ConvONet [41] 0.800 0.42 0.912 0.960
POCO [4] 0.884 0.36 0.919 0.980

ALTO 0.914 0.35 0.921 0.981

Table 2. Synthetic Room Dataset. Input points 10K with noise
added. Boldface font represents the preferred results.

Method IoU ↑ Chamfer-L1 ↓ NC↑ F-score↑
ConvONet [52] 0.818 0.46 0.906 0.943
POCO [4] 0.801 0.57 0.904 0.812

ALTO 0.882 0.39 0.911 0.969

Table 3. Performance on Synthetic Room Dataset (sparser in-
put point cloud with 3K input points). Boldface font represents
the preferred results.

vONet. The advantages of ALTO are even more apparent
for fine detail, such as the thin lamp-posts shown in Fig. 1.
ALTO reduces the quantization effect due to the grid dis-
cretization in the grid form by by using iterative alternation
between grid and point latents, encoding more fine-grained
local features for conditional occupancy field generation.

Quantitative Scene-level Comparisons: ALTO scores
higher on quantitative values for scene-level metrics, shown
in Tab. 2 and Tab. 3. In the sparse setting, for the baselines
methods, we find that ConvONet [52] is quantitatively su-
perior to the SOTA of POCO [4] because oversmoothing
tends to improve quantitative results on noisy point clouds.
Nonetheless, ALTO performs better than both baselines be-
cause ALTO limits spurious noise without resorting to as
much oversmoothing.

NTrain=10K, NTest=3K NTrain=NTest=3K

Method Chamfer-L1 ↓ F-score↑ Chamfer-L1 ↓ F-score↑
ConvONet [52] 1.01 0.719 1.16 0.669
POCO [4] 0.93 0.737 1.15 0.667

ALTO 0.87 0.746 0.92 0.726

Table 4. ScanNet-v2. We test the generalization capability of all
the methods on real-world scans ScanNet using models trained
on both the same input points of synthetic dataset as test set
(NTrain=NTest=3K) and different point density level (NTrain=10K,
NTest=3K). Boldface font represents the preferred results.

4.4. Real-world Scene Generalization

A final experiment in the main paper is to assess the per-
formance of our model in real-world scans from ScanNet-
v2 [14]. All models are trained on Synthetic Rooms and
tested on ScanNet-v2 to demonstrate generalization capa-
bility of our method along with baselines. We demonstrate
the qualitative results of the setting where models trained
on both the same input points of synthetic dataset as Scan-
Net test set (NTrain=NTest=3K) in Fig. 8. Our method is
qualitatively superior to SPSR [37], ConvONet [52], and
POCO [4]. As in the Synthetic Rooms dataset, we observe
that ConvONet oversmooths surfaces (sometimes causing
entire objects to disappear, like the conference table in the
purple inset of Fig. 8). In contrast, POCO retains some de-
tail but is noisier. The quantitative results in Tab. 4 are con-
sistent with qualitative results. The cross point density test
results (NTrain=10k,NTest=3k) also demonstrates the superi-
ority of our method on generalization when there are abun-
dant input points in synthetic dataset used for training and
low point density in real-world inference.

5. Discussion and Conclusion

In summary, this paper has adopted a different philoso-
phy from the SOTA in surface detail recovery. We rely nei-
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(a) Ground Truth (b) Input Points (c) SPSR [37] (d) ConvONet [52] (e) POCO [4] (f) ALTO

Figure 8. Cross-dataset evaluation of ALTO and baselines by training on Synthetic Rooms [52] and testing on real-world ScanNet-
v2 [14]. Note the large conference-room table is missing in ConvONet [52] (purple inset). The ladder (yellow inset) is a high-frequency
surface and we believe our method is qualitatively closest. Please zoom in if browsing with PDF.

Method # Parameters Inference time (s)

ConvONet [52] 4,166,657 1.6
POCO [4] 12,790,454 36.1
ALTO 4,787,905 3.6

Table 5. Runtime comparison. We report the number of param-
eters and inference time corresponding to Fig. 8. ALTO is much
faster than POCO and recovers more detail [4]. ALTO is also only
slightly slower than fast methods that are not as spatially expres-
sive [52].

ther on point latents [4] or grid latents [52] alone, but alter-
nate between topologies. The output of ALTO is a spatially
expressive latent that is also topologically easy-to-decode
into a 3D surface. This breaks a Pareto tradeoff that previ-
ous works have posited between spatial expressiveness and
decoding complexity. For this reason, it is not surprising
that our method reconstructs more detailed 3D surfaces with
faster runtimes than state-of-the-art (Fig. 1 and Tab. 5).

The idea of alternating latent topologies could have im-
plications beyond surface reconstruction. Concurrent re-
search has introduced unusual latent topologies, known as
irregular latents that show compelling performance ben-

efits for neural fields [85]. One can imagine alternating
not only between point, triplane, and voxel latents, but also
throwing irregular latents in the mix. Our alternating strate-
gies can be readily applied into other representations such
as UDF [11] and 3PSDF [7]. We are also curious to see if
alternating topologies can improve performance on a wide
range of tasks in neural fields that require spatially expres-
sive latents, such as semantic [70], affordance fields [32] or
polarimetric field [53].
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