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Abstract

We introduce anchored radial observations (ARO), a novel
shape encoding for learning implicit field representation of
3D shapes that is category-agnostic and generalizable amid
significant shape variations. The main idea behind our work
is to reason about shapes through partial observations from
a set of viewpoints, called anchors. We develop a general and
unified shape representation by employing a fixed set of an-
chors, via Fibonacci sampling, and designing a coordinate-
based deep neural network to predict the occupancy value of
a query point in space. Differently from prior neural implicit
models that use global shape feature, our shape encoder
operates on contextual, query-specific features. To predict
point occupancy, locally observed shape information from
the perspective of the anchors surrounding the input query
point are encoded and aggregated through an attention mod-
ule, before implicit decoding is performed. We demonstrate
the quality and generality of our network, coined ARO-Net,
on surface reconstruction from sparse point clouds, with
tests on novel and unseen object categories, “one-shape”
training, and comparisons to state-of-the-art neural and
classical methods for reconstruction and tessellation.

1. Introduction
Despite the substantial progress made in deep learning in

recent years, transferability and generalizability issues still
persist due to domain shifts and the need to handle diverse,
out-of-distribution test cases. For 3D shape representation
learning, a reoccurring challenge has been the inability of
trained neural models to generalize to unseen object cate-
gories and diverse shape structures, as these models often
overfit to or “memorize" the training data.

In this paper, we introduce a novel shape encoding for
learning an implicit field [34] representation of 3D shapes
that is category-agnostic and generalizable amid significant
shape variations. In Figure 1 (top), we show 3D reconstruc-
tions from sparse point clouds obtained by our approach
that is trained on chairs but tested on airplanes, riffles, and
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Figure 1. Neural 3D reconstruction using ARO-Net from sparse
point clouds (1,024 or 2,048 points). Top: reconstruction results
on airplanes, riffles, and animals when the network was trained
only on chairs. Bottom: reconstruction of a variety of shapes when
the network was train on numerous versions of one model - the
Fertility. See comparison to other methods in Section 4.

animals. Our model can even reconstruct a variety of shapes
when the training data consists of only one shape, augmented
with rotation and scaling; see Figure 1 (bottom).

The main idea behind our work is to reason about shapes
from partial observations at a set of viewpoints, called an-
chors, and apply this reasoning to learn implicit fields. We
develop a general and unified shape representation by des-
ignating a fixed set of anchors and designing a coordinate-
based neural network to predict the occupancy at a query
point. In contrast to classical neural implicit models such as
IM-Net [8], OccNet [23], and DeepSDF [24], which learn
global shape features for occupancy/distance prediction, our
novel encoding scheme operates on local shape features
obtained by viewing the query point from the anchors.

Specifically, for a given query point x, we collect locally
observable shape information surrounding x, as well as direc-
tional and distance information toward x, from the perspec-
tive of the set of anchors, and encode such information using
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Figure 2. 2D illustration of ARO and ARO-Net architecture: (a) Input point cloud (in grey) and a set of m fixed anchors (coloured dots).
(b) Radial observation Oi from each anchor ai toward the query point x consists of closed points inside the cone apexed at ai, with axis
ri = x−ai. (c) Each radial observation Oi is passed to a PointNet encoder to obtain an embedding feature fi, which is concatenated with ri
and its norm to form the query-specific ARO encoding of x with respect to ai. Finally, all the ARO features are decoded into the occupancy
value occ(x) though an attention module and several MLPs. For 3D reconstruction, the ARO features are computed for each query point,
while the PointNet, attention module, and implicit decoder are fixed during inference – their weights were determined during training.

(e) GT(d) ARO-Net(c) ConvONet(b) OccNet(a) Input

Figure 3. A somewhat extreme toy example comparing ARO-Net
to prior occupancy prediction networks on 3D reconstruction from
a sparse point cloud of a cube (a), with training on a single sphere.
The results from OccNet [23] and ConvONet) [25] show more signs
of overfitting to the training sphere than ARO-Net (d).

PointNet [27]; see Figure 2(b). The PointNet features are
then aggregated through an attention module, whose output
is fed to an implicit decoder to produce the occupancy value
for x. We call our query-specific shape encoding Anchored
Radial Observations, or ARO. The prediction network is
coined ARO-Net, as illustrated in Figure 2.

The advantages of ARO for learning implicit fields are
three-fold. First, shape inference from partial and local
observations is not bound by barriers set by object categories
or structural variations. Indeed, local shape features are more
prevalent, and hence more generalizable, across categories
than global ones [8, 23, 24]. Second, ARO is query-specific
and the directional and distance information it includes is
intimately tied to the occupancy prediction at the query point,
as explained in Section 3.1. Last but not least, by aggregating
observations from all the anchors, the resulting encoding
is not purely local, like the voxel-level encoding or latent
codes designed to better capture geometric details across
large-scale scenes [3,15,25]. ARO effectively captures more
global and contextual query-specific shape features.

In Figure 3, we demonstrate using a toy example the
difference between ARO-Net and representative neural im-
plicit models based on global (OccNet [23]) and local grid

shape encodings (convolutional occupancy network or Con-
vONet [25]), for the 3D reconstruction task. All three net-
works were trained on a single sphere shape, with a single
anchor for ARO inside the sphere. When tested on recon-
structing a cube, the results show that both OccNet and
ConvONet exhibit more memorization of the training sphere
either globally or locally, while the ARO-Net reconstruction
is more faithful to the input without special fine-tuning.

In our current implementation of ARO-Net, we adopt Fi-
bonacci sampling [19] to obtain the fixed set of anchors. We
demonstrate the quality and generalizability of our method
on surface reconstruction from sparse point clouds, with
testing on novel and unseen object categories, as well as
“one-shape” training (see bottom of Figure 1). We report
extensive quantitative and qualitative comparison results to
state-of-the-art methods including both neural models for re-
construction [8, 11, 23, 25, 26] and tessellation [7], as well as
classical schemes such as screen Poisson reconstruction [18].
Finally, we conduct ablation studies to evaluate our choices
for the number of anchors, the selection strategies, and the
decoder architecture: MLP vs. attention modules.

2. Related work

Learning neural fields is an emerging and one of the most
intensely studied subjects in the vision and machine learning
communities in recent years, while surface reconstruction
is one of the most classical problems in computer vision
and graphics. In this section, we shall only focus on the
most closely related prior works. For a more comprehensive
coverage on the relevant topics, we refer the readers to the
surveys on surface reconstruction from point clouds [1] and
neural fields [34], as well as the the excellent summary on
neural implicit representations by Vincent Sitzmann.
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Surface reconstruction and local priors. Classical recon-
struction schemes such as Screened Poisson (SPR) [18] often
produce artifacts amid noise and under sampling. One rem-
edy is to rely on local shape priors, which are reoccurring
patch templates that can be matched to help reconstruction
over sparse input. Gal et al. [12] develop such an example-
based surface reconstruction method, relying on a pre-built
set of enriched patches sampled from a database of 3D mod-
els that include surface normals and point feature classifica-
tion (e.g., edge or corner) to facilitate reconstruction. These
patches essentially serve as a training set.

Taking local templates to the extreme gives us classical
tessellation methods such as Marching Cubes [22] and Dual
Countouring [16], whose “neural” versions have been devel-
oped recently as neural Marching Cubes [9] and neural Dual
Contouring (NDC) [7]. In particular, the unsigned version
of NDC, or UNDC, can achieve state-of-the-art results on
reconstruction from un-oriented point clouds with sufficient
sampling. Indeed, what is common about all of these purely
local reconstruction schemes is their ability to generalize
across object categories, while disregarding any contextual
shape information and global reconstruction priors.

Neural implicit models. Since OccNet [23], IM-Net [8],
and DeepSDF [24] concurrently introduced the coordinate-
based implicit neural representation in 2019, research and
development on neural implicit fields [34] have flourished.
In these early works, the shape encoder [8, 23] and latent
code [24] employed for occupancy/distance predictions only
model global shape features. The resulting learned represen-
tations were unable to reconstruct fine geometric details.

The next wave of developments has focused on condition-
ing implicit neural representations on local features stored
in voxel [3, 10, 15, 25] or image grids [21, 28, 35] to more
effectively recover geometric or topological details and to
scale to scene reconstruction, or at the patch level [13, 32] to
improve generalizability across object categories.

Some of these locally conditioned neural implicit mod-
els essentially learn local shape priors [12] from training
shapes, where the learned priors are parameterized in dif-
ferent ways, e.g., voxel-level latent codes in Deep Local
Shape [3], embeddings of ShapeNet [5] parts in local im-
plicit grid representations [15], structured Gaussians in Local
Deep Implicit Functions (LDIF) [13], and canonical patches
in PatchNets [32]. Other works [10, 11, 25], like ARO-Net,
also utilize query-specific shape features.

Implicit field from query-specific features. For occu-
pancy prediction at a query point p, ConvONet [25] extracts
convolutional features at p by interpolating over a feature
field defined for an input shape. IF-Net [10] also extracts a
feature at p but its associated feature grid encodes multi-scale
features representing both global and local shape informa-
tion. Given an input point cloud, Points2Surf [11] samples a

local point patch close to the query p, as well as a global point
sub-sampling emanating from p, and encodes them into two
features vectors for implicit decoding. More recently, AIR-
Net [14], POCO [2], 3DLIG [36], and SA-ConvONet [31],
improve over ConvONet with irregular grids, attention mech-
anisms, and sign-agnostic optimizations.

Compared to all these query-specific encodings, ARO
captures shape information around the query p in a more
contextual and structure-aware manner. In particular, while
Points2Surf provides a “uni-directional” observation from p,
the local observations by ARO are radially distributed around
p, providing a more global context. In addition, the inclusion
of distance and directional information in ARO reveals a
direction connection to occupancy prediction, as explained
in Section 3.1. Owing to these distinctive properties of ARO,
ARO-Net consistently produces higher-quality and more
faithful reconstructions, as demonstrated in Section 4.

Basis point set. Our view-based ARO encoding is related
to basis point set (BPS) [26] for point cloud encoding. BPS
is a fixed-length feature vector computed as the minimal
distances from a fixed set of anchors to a given point cloud.
BPS can serve as a global shape feature, e.g., in place of
ARO, for neural implicit reconstruction from point clouds.

3. Method
In this section, we describe and analyze our novel query-

specific shape encoding, ARO, in detail. We first show in
Section 3.1 that when a given set of anchors can provide
a full coverage of a shape, i.e., it observe the entire shape
surface, then point occupancies around the shape surface can
be fully determined from the corresponding ARO represen-
tation. More generally however, the full coverage condition
may not be satisfied or in the case of 3D reconstruction from
a noisy and sparse point cloud, the partial observations at
the anchors may be inaccurate. In such cases, we train a
neural network to predict the point occupancies. This net-
work learns a mapping from the anchored observations to
the occupancy value at any spatial query point. We present
this network, ARO-Net, in Section 3.2.

3.1. Anchor visibility and point occupancy

Given an anchor point a, we can cast rays from a in
all directions to obtain its visible region relative to a given
watertight surface S. A ray that does not intersect S can be
clipped by the bounding box of the S. In previous works,
such visible regions have been adopted for points inside the
shape to assist in shape partition, i.e., the Shape Diameter
Function [30], as well as for points outside the shape for
reconstruction [29], or to guide relationship optimization
between two shapes [37]. These works have shown that the
visible regions can not only characterize local shape regions,
but also provide a global and contextual view of the shape
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(a) Visible regions of anchors (b) Interior anchors (c) Exterior anchors (d) Mixed anchors

Figure 4. Anchor visibility vs. point occupancy. The anchors are shown in yellow dots, and the ones that are used to determine the occupancy
of the query point (red star) are turn into red. (a) The visible regions of different anchors relative to the given shape ’G’, colored in blue for
interior anchors and green for exterior anchors. (b) A set of interior anchors that fully cover the surface, the inside region of the shape is
exactly the union of the visible regions of all the anchors. (c) For a set of exterior anchors that fully cover the surface, the region outside
the shape is exactly the union of the visible regions of all the anchors. (d) For a set of mixed anchors that together cover the surface, apart
from the visible regions, the occupancy of uncovered regions, i.e., R1 and R2, can also be determined. R1 bounded by the surface and the
visibility boundary is totally inside the shape, while R2 with dashed virtual boundary is totally outside the shape.

structure. Figure 4 (a) shows the visible regions of one
anchor inside the shape (blue) and the other anchor outside
the shape (green).

Our key observation to guide the design of our ARO
representation is that if we have a set of well-distributed
anchors, then combining their visible regions together can
fully characterize the entire shape. We consider a set of
anchors to be well-distributed if any surface point of the
shape can be viewed by at least one anchor. In the following,
we discuss different cases of well-distributed anchors and
how they define the shape; see illustrations in Figure 4(b-d).

When the set of well-distributed anchors is all inside
the shape as shown in Figure 4(b), then the union of all
the visible regions of the anchors is identical to the interior
region of the shape. Thus, a query point, the red star in
Figure 4(b), is inside the shape if and only if it is covered
by at least one radial observation, which we call a covering
anchor, i.e., the red point in Figure 4(b). This is true if the
distance between the query point and the covering anchor is
smaller than the radial distance of this anchor along the ray
direction pointing to the query point.

When the set of well-distributed anchors is all outside the
shape as shown in Figure 4(c), the conclusion is similar for
the points outside the shape. Thus, the union of all the visible
regions of the anchors is identical to the region exterior to the
shape. Therefore, a query point, i.e., the red star in Figure
4(c), is inside the shape if and only if it is not covered by any
of the visible regions. That is, its distance to each anchor is
always larger than the radial distance of this anchor along
the ray direction pointing to the query point. Thus, all the
anchors together determine the occupancy of the query point.

When the anchor locations are mixed, with some inside
and some outside the shape as shown in Figure 4(d), the

uncovered spatial regions, R1 and R2, could be either inside
or outside the shape. If the region is bounded by the shape
boundary and the visible region boundaries for the anchors,
such as R1, then the entire region is inside the shape. Lo-
cally, this is similar to cases shown in (c) with those red
anchors fully covering its boundary. As for R2, the region is
partially bounded by the virtual bounding box, i.e., for the
image/volume capture, then it is totally outside the shape.

To summarize, if we have a set of anchors that together
observe the entire surface of the shape, then their visible
regions together can fully determine the inside and outside
regions of the shape. Moreover, one important property is
that it converts the inside/outside judgment of a spatial point
relative to the shape, to the point’s relationship to the radial
observations of the anchors, which leads to our definition
of query-specific ARO. This property allows to design a
network than predicts the occupancy of a spatial point based
on local features captured by ARO when the anchors are not
well-distributed and the shape is only partially observed.

3.2. ARO-Net for occupancy prediction

Given a point cloud P , our goal is to reconstruct the
corresponding watertight surface S based on our ARO rep-
resentation for point clouds. We choose to use an implicit
representation of the surface, which is essentially a func-
tion determining whether a given query point x in space is
inside or outside the surface S. Unlike previous methods
that encode the entire point cloud as a single global latent
code [8, 23], we utilize the set of anchors to identify local
surface regions that are essential to classify occupancy. This
allows us to implement a category-agnostic method to recon-
struct any shape. Figure 2 shows how query-specific ARO
is extracted and utilized by ARO-Net, which outputs the
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(a) Initial sampling (b) Relocated anchors

Figure 5. Anchor placement.

occupancy for any given query point in space.
The input of our method consists of a point cloud P =

{p1, . . . , pn} and an anchor set A = {a1, . . . , am} as shown
in Figure 2 (a), where the point cloud are drawn in gray and
anchors are drawn with different colors. Given a query point
x shown as the red dot in Figure 2 (b), for each anchor ai, we
can compute the relative position of x to ai as ri = x− ai.
Next, we create a cone with apex at ai and ri as the axis to
get the nearest k points Oi = {pji}j=1,...,k from P , which is
defined as the radial observation of ai relative to the query
point x and referred as ARO. Each ARO Oi is then passed
to the PointNet encoder to get the corresponding embedding
feature fi. The relative location ri and its norm ∥ri∥ are
further concatenated to get a local feature representative of
query x relative to anchor ai. All the local features relative
to all the anchors are then passed to an attention module and
finally decoded into an occupancy value.

Anchors placement. A good set of anchor points A =
{a1, a2, . . . , am} must be located in different positions in
the space bounding the shape, so that they will observe more
of the shape’s surface with high probability. Hence, to build
our set, we sample a set of anchors on three spheres with
different radii around the shape. In more detail, assuming
that the input point cloud is normalized inside a unit sphere,
we first uniformly sample m points on the surface of the unit
sphere with radius r = 1/2 using Fibonacci Sampling [19],
then for the points with index i%3 = 1 we move the point
towards the center to position them on the sphere with radius
r = 1/4, and for the points with index i%3 = 2 we further
move the point to the sphere with radius r = 1/8, as shown
in Figure 5. This creates a set of anchors distributed in space
that can well observe any shape within the sphere.

4. Results and evaluation

4.1. Experiment setting

Implementation details. We employ a binary cross en-
tropy loss for predicted occupancies and an Adam optimizer
whose initial learning rate is 3e-4, decaying by 0.5 every
100 epochs. The conical angle is set to be 24◦ and k = 16

Method LFD↓ HD↓ CD↓ EMD↓ IOU↑
IM-Net [8] 3.27 11.96 57.00 11.40 3.63
OccNet [23] 2.49 11.95 54.68 11.60 3.51
BPS [26] 2.64 5.03 11.72 2.66 6.56
ConvONet [25] 2.69 3.87 8.43 1.71 6.78
Points2Surf [11] 1.64 2.75 5.69 1.25 8.36
UNDC [7] 1.25 2.78 4.90 1.17 8.21
ARO-Net 1.35 2.25 5.46 1.12 8.79

Table 1. Quantitative comparisons to state-of-the-art methods on
the ABC dataset. Numbers in bold represent first ranking and
those underlined in second ranking, in each column. Note that the
original version of IM-Net does not take point clouds as input, thus
we replace its encoder with OccNet’s PointNet encoder.

in all our experiments. The attention module is a Trans-
former [33] encoder consisting of 6 encoding layers and 8
attention heads. The implicit decoder is a fully connected
layer which outputs the occupancy value. We use the sample
PointNet architecture as Occ-Net [23]. ARO-Net receives
2,048 points as input when training, and can handle arbi-
trary point numbers when testing. We tested 3 sets of point
numbers n = {512, 1024, 2048}.

Dataset. Our experiments are conducted on the “Big CAD
dataset", ABC [20], and ShapeNet V1 [4]. For ABC, we
use the same train/test split as NDC [7], with 4,011 shapes
for training and 982 shapes for testing. For ShapeNet V1,
we train ARO-Net using 4K chairs and test 100 shapes per
category. Note that ABC is an especially challenging dataset
for 3D representation learning since there is no clear notion
of object category (no category labels at all), while the shapes
exhibit significant geometry and topology variations.

Evaluation metrics. We adopt Chamfer distance (CD),
Hausdoff distance (HD), earth mover’s distance (EMD), oc-
cupancy intersection over union (IOU) proposed in [23], and
light filed distance (LFD) [6] as the evaluation metrics for
reconstructed meshes. Note that since the IOU computa-
tion method provided by [23] requires watertight shapes, we
report IOU only on the ABC dataset.

4.2. Comparisons to state-of-the-art methods

Reconstruction on ABC. Quantitative comparisons to
state-of-the-art neural 3D reconstruction models on ABC
are shown in Table. 1. We can see that those methods using
only global shape features, i.e., Occ-Net [23], IM-Net [8],
and BPS [26], are consistently outperformed by UNDC,
which learns local tessellation, and ConvONet, Points2Surf,
and ARO-Net, which all encode local and query-specific
features. Among the last four methods, ARO-Net exhibits
a clear advantage in Hausdoff distance and OCC-IOU, and
produces the overall best performance by ranking the first
in three out of five metrics (IOU, EMD and HD) and rank-

3576



IM-Net GT meshARO-NetOccNet Points2SurfBPS UNDCInput (1024) ConvONet

Figure 6. Visual comparisons to state-of-the-art methods on ABC. Zoom-ins highlight reconstruction artifacts to contrast with ARO-Net.

ing the second in one metric (LFD). For the remaining CD
metric, ARO-Net is still a close runner-up.

Some visual comparisons are shown in Figure 6. As
shape variations in ABC is large, Occ-Net [23] and IM-
Net [8] cannot faithfully reconstruct global shape structures.
With the anchored global features, BPS [26] better captures
the overall shapes but fails to reconstruct local details. Con-
vONet [25] yields smoother local geometry but is unable to
reconstruct sharp features. Points2Surf [11] tends to produce
random noises near reconstructed surfaces. While showing
high performance in quantitative evaluations, visual results
from UNDC [7] often contain holes with sparse point cloud
inputs. Compared to all those methods, ARO-Net is able
to reconstruct both global structure and local detail well,
including sharp features as UNDC, and its results exhibit the
least amount of artifacts in terms of holes and noise.

ARO-Net also exhibits superior robustness to sparsity
of input point clouds. Once trained with 2,048-point input,
ARO-Net can produce quality results with sparser inputs
without re-training. As shown in Figure 7, when the number
of points decreases from 2,048 to 512, the reconstruction
quality of both UNDC [7] and Points2Surf [11] degrades
dramatically, as also reflected in the CD and IOU metrics.
Specifically, Points2Surf [11] tends to generate more holes
and UNDC [7] produces rougher, oscillatory surfaces. Con-
vONet [25] is relatively stable but holes also appear with
512-point inputs. By contrast, ARO-Net yields the highest
level of robustness both visually and quantitatively.

Reconstruction on ShapeNet V1. For our experiments on
the ShapeNet V1 dataset, we train ARO-Net on 4K chairs
and test it on other object categories: airplanes and rifle
in ShapeNet V1 and animals in PSB [17]. Quantitative
comparisons are shown in Table 2, with some visual results
in Figure 8. It is clear that implicit models employing global
features do not generalize well. Compared to UNDC [7],

CD 3.382
IOU 0.9035

CD 4.232
IOU 0.5924

UNDC ARO-NetInput Points2Surf

2048

1024 CD (↑4.7%)
IOU (↓16%)

CD (↑3.8%)
IOU (↓3.0%)

CD 3.508
IOU 0.8591

CD (↑10%)
IOU (↓8.2%)

512

ConvONet

CD (↑10%) 
IOU (↓14%)

CD (↓ 0.6%)
IOU (↓18%)

CD (↑1.5%)
IOU (↓1.2%)

CD 5.572
IOU 0.5843

CD (↑2.9%)
IOU (↓ 3.0%)

CD (↑3.6%) 
IOU (↓2.1%)

Figure 7. ARO-Net exhibits superior robustness to sparsity of input
point clouds compared to its close competitors.

ConvONet [25], and Points2Surf [11], ARO-Net performs
the best overall, quantitatively, especially with the test on
airplanes, showing its strong generalizability. Visually, ARO-
Net produces the most complete, artifact-free results with
faithful reconstruction of fine details. In the airplane results
in second row, it is worth observing that ARO-Net managed
to reconstruct the left-side turbine from extremely sparse
points, while other methods all completely missed it.

One-shape training. As a stress test, we train the networks
using only one 3D shape, Fertility (see Figure 1), with ro-
tation and scaling. From the comparisons in Figure 9, we
see that SPR suffers from noise and under-sampling (e.g.,
chair and human hand), as expected. OccNet clearly over-
fit to the training shape. ConvONet generalizes better but
produces overly smoothed results. In contract, ARO-Net re-
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IM-Net GT meshARO-NetOccNet Points2SurfBPS UNDCInput ConvONetSPR

Figure 8. Visual comparisons on ShapeNet V1 and PSB datasets to show reconstruction quality and generalizability of different methods.
All methods (except SPR) were trained on chairs in ShapeNet and tested on chairs, airplanes, and rifles in ShapeNet V1 and animals in PSB.
Zoom-ins highlight contrasts in details and artifacts in the reconstructions. More results can be found in supplementary material.

Trained on chairs, tested on chairs

Method LFD↓ HD↓ CD↓ EMD↓
IM-Net [8] 3.18 9.04 13.84 15.40
OccNet [23] 2.59 7.77 12.36 13.47
BPS [26] 4.31 12.28 20.51 23.30
ConvONet [25] 2.12 6.22 11.20 12.30
Points2Surf [11] 2.51 6.46 8.60 7.34
UNDC [7] 2.19 5.60 6.06 6.80
ARO-Net 1.92 5.33 7.14 7.70

Trained on chairs, tested on airplanes

Method LFD↓ HD↓ CD↓ EMD↓
IM-Net [8] 14.30 19.50 44.84 41.38
OccNet [23] 12.31 18.86 39.75 38.57
BPS [26] 13.73 19.48 38.10 36.61
ConvONet [25] 5.69 15.98 13.50 10.75
Points2Surf [11] 5.48 4.70 4.86 5.76
UNDC [7] 3.62 4.40 3.98 3.98
ARO-Net 3.56 4.32 4.61 4.73

Table 2. Quantitative comparisons to state-of-the-art methods on the
ShapeNet V1 dataset. Number in bold means ranking the first and
the one with underline means ranking the second in each column.

constructs both global structures and fine details better than
the alternatives, with consistence over the shape variety.

4.3. Ablation study

Anchor visibility vs. point occupancy. To verify whether
ARO-Net can learn the close correlation between anchor vis-
ibility and point occupancy with the help of a visualization,
we implemented a 2D vision of ARO-Net with implemen-
tation details provided in the supplementary material. We
train ARO-Net using the letter “G” with anchors distributed

Input GT meshSPR OccNet ConvONet ARO-Net

Figure 9. Visual comparison on the results obtained by training
only on the “fertility” model with rotation and scaling.

as shown in Figure 4(c). Figure 10 visualizes the activation
of each anchor by masking out the other anchors’ radial ob-
servations. The output with all seven anchors considered are
shown in the top-left corner. The probability of each point
being inside the shape is drawn using the blue to yellow col-
ormap, and the anchors are shown in white dots. We can see
that the decision boundary of each anchor closely follows
its visible region, without having that information specifi-
cally passed to ARO-Net. Another noteworthy observation
is that for regions invisible to the anchor, points closer to
the visibility boundary are assigned higher probability of
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Figure 10. Visualization of ARO-Net activation, trained on a single
letter “G” with seven anchors (top-left). The activation for each
anchor is closely-related to its visible region.

being inside the shape. This offers evidence that ARO-Net
does implicitly learn to predict the point occupancy based
on anchor visibility.

Anchor placement strategy. Other than our layered Fi-
bonacci sampling, we also tried two different sampling strate-
gies: uniform and grid-based sampling. In uniform sampling,
we randomly sample m points in a unit sphere as anchors. In
grid-based sampling, we randomly sample m grid points of
a unit cube as anchors. We found that our layered Fibonacci
sampling achieves the best performance. More detailed com-
parison can be found in the supplementary material.

Anchor count. There is a trade-off between reconstruc-
tion performance and computational cost when choosing, m,
the number of anchors. We tested m = {24, 48, 96} and
report results in the top half of Table 3. We found that the
performance gain by m = 96 is marginal, while the com-
putation cost doubles. With m = 24, ARO’s performance
drops significantly due to lack of sufficient shape coverage.

Decoder architecture. The last two rows of Table 3 com-
pare the current ARO-Net with a version by replacing our
attention module and implicit decoder with the much simpler
MLPs by IM-Net [8]. The similar performance numbers indi-
cate that the superior results by ARO-Net are predominantly
owing to ARO rather than the decoder architecture.

Fixed vs. adaptive anchors. When computing the radial
observations, we perform top-k selection (pooling) on the
cosine and Euclidean distances between the anchors and
input points. Therefore, our network loss function is differ-
entiable with respect to anchor coordinates: the gradients
are passed through the indices that form the top k values,
and then passed to anchor coordinates. While this does offer
the possibility of fine-tuning the anchor positions during
training and testing, we have found that optimizing anchor
positions along with the network parameters can make the
training process unstable and lead to worse results. Overall,

Setting LFD↓ HD↓ CD↓ EMD↓ IOU↑
m = 24 1.48 2.33 5.94 1.28 8.66
m = 96 1.30 2.16 5.31 1.03 8.92
MLP 1.44 2.30 5.90 1.14 8.75
Default 1.35 2.25 5.46 1.12 8.79

Table 3. Ablation studies on ABC to evaluate our choices for the
anchor count (m) and decoder architecture. Default: m = 48 with
attention modules in implicit decoder.

we believe that with the anchors fixed, it is easier for the
network to learn the mapping from ARO to point occupancy.

During inference, it is possible to adjust the anchor lo-
cations to obtain a larger coverage of the shape surface to
improve reconstruction. However, we found the improve-
ments to be marginal; see supplementary material.

Distance and direction information in ARO. At last,
we have confirmation that the r and ∥r∥ play an important
role as input to ARO-net. The reconstruction performance
by the network drops significantly when we remove such
information, with only the PointNet features. Again, more
details can be found in the supplementary material.

5. Conclusion, limitation, and future work

We introduce a novel neural implicit representation for 3D
shapes that is conditioned on Anchored Radial Observations
(ARO). We use ARO to train our reconstruction network,
ARO-Net, that outputs an occupancy at any query point
in space. ARO is query-specific, defined by a set of local
descriptors from the perspective of a set of fixed anchors
to provide a global context. ARO-Net is category-agnostic
and provides superior reconstruction results to alternative
methods. It also has strong generalization capabilities and
can even be used to learn from a single shape.

Some current limitations and future works are as follows.
The quality and efficiency of the resulting representation
are dependant on the number and placement of the anchors.
We tested a number of configurations and settled on a fixed
set of 48 anchors via Fibonacci sampling. However, further
research into anchor selection, even learning, is needed. In
addition, the ARO-Net representation still requires storing
the original input point set and therefore is less memory
efficient than pure network-based representations. Lastly,
both training and inference of ARO-Net are slower than
prior implicit models based on simpler and less contextual
shape encodings (e.g. ConvONet). This can be alleviated by
adaptive sampling of the anchors and using more efficient
spatial search data structures to find closest points.
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