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Abstract

Model attribution is a critical component of deep neural
networks (DNNs) for its interpretability to complex models.
Recent studies bring up attention to the security of attribu-
tion methods as they are vulnerable to attribution attacks
that generate similar images with dramatically different at-
tributions. Existing works have been investigating empir-
ically improving the robustness of DNNs against those at-
tacks; however, none of them explicitly quantifies the actual
deviations of attributions. In this work, for the first time,
a constrained optimization problem is formulated to derive
an upper bound that measures the largest dissimilarity of
attributions after the samples are perturbed by any noises
within a certain region while the classification results re-
main the same. Based on the formulation, different prac-
tical approaches are introduced to bound the attributions
above using Euclidean distance and cosine similarity un-
der both ℓ2 and ℓ∞-norm perturbations constraints. The
bounds developed by our theoretical study are validated on
various datasets and two different types of attacks (PGD at-
tack and IFIA attribution attack). Over 10 million attacks
in the experiments indicate that the proposed upper bounds
effectively quantify the robustness of models based on the
worst-case attribution dissimilarities.

1. Introduction

Attribution methods play an important role in deep learn-
ing applications as one of the subareas of explainable AI.
Practitioners use attribution methods to measure the rela-
tive importance among different features and to understand
the impacts of features contributing to the model outputs.
They have been widely used in a number of critical real-
world applications, such as risk management [2], medical
imaging [24, 29] and drug discovery [13]. In particular,
attributions are supposed to be secure and resistant to ex-
ternal manipulation such that proper explanations can be
applied to safety-sensitive applications. Regulations are

also deployed in countries to enforce the interpretability
of deep learning models for a ‘right to explain’ [10]. Al-
though attribution methods have been extensively studied
[18,25,28,31,36,39], recent works reveal that they are vul-
nerable to visually imperceptible perturbations that drasti-
cally alter the attributions and keep the model outputs un-
changed [6, 8].

Prior works [3, 4, 12, 23, 30, 32, 33] investigate the attri-
bution robustness based on empirical and statistical estima-
tions over entire dataset. However, current attribution ro-
bustness works are unable to evaluate how robust the model
is given any arbitrary test point, perturbed or unperturbed.
In this paper, we study the problem of finding the worst
attribution perturbation within certain predefined regions.
Specifically, given a trained model and an image sample,
we propose theoretical upper bounds of the attribution de-
viations from the unperturbed ones. As far as we know, this
is the first attempt to provide an upper bound of attribution
differences.

In this paper, the general upper bound for attribution de-
viation is first quantified as the maximum changes of attri-
butions after the samples are perturbed while classification
results remain the same. Two cases are analyzed, including
with and without label constraint, which refers to the classi-
fication labels being unchanged and changed, respectively,
after the original samples are attacked. For each case, two
mostly used perturbation constraints, ℓ2 and ℓ∞-norm, are
considered to compute the upper bound. For ℓ2-norm con-
straint, our approach is based on the first-order Taylor series
of model attribution, and a tight upper bound ignoring the
label constraint is computed from the singular value of the
attribution gradient. ℓ∞-norm constraint is more compli-
cated because the upper bound is a solution of a concave
quadratic programming with box constraints, which is an
NP-hard problem. Thus, two relaxation approaches are pro-
posed. Moreover, a more restricted bound constrained on
the unchanged label is also studied. In this study, Euclidean
distance and cosine distance, which are also employed in
the previous empirical studies [4, 30, 32], are used as dis-
similarity functions to measure attribution difference. We
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summarize the contributions of this paper as follows:

• We formally define the general upper bound for at-
tribution deviation as the optimization problem with
norm constraint and label constraint to find the max-
imum change of attributions after samples being at-
tacked. According to the best knowledge of the au-
thors, it has not been studied before.

• The tight upper bounds for ℓ2-norm constrained at-
tacks with and without classification label constraints
are proposed based on the first-order Taylor series. The
proposed bound without label constraints generalizes
to all gradient-based attribution methods, and the one
with label constraints is applicable to all attribution
methods satisfying the axiom of completeness.

• Two different approaches are provided to bound the
ℓ∞-norm constrained attacks above, which uses an ℓp-
norm relaxation and a mathematical property of the
quadratic form.

• The experimental results show that the upper bounds
derived in this paper can effectively bound the attribu-
tion differences between all 10 million attacked sam-
ples and their corresponding original samples from dif-
ferent models, datasets, attack methods and parameters
choices.

The rest of this paper is organized as follows. We start
with an introduction to notations and related works. The
formulation of the general upper bound for attribution de-
viation is defined in Sec. 3. Specific methods to find the
upper bounds in different scenarios are provided in Sec. 4.
In Sec. 5, detailed experimental results are presented and
the paper concludes in Sec. 6.

2. Preliminaries and related works
We consider a twice-differentiable classifier f that maps

the input set D =
{
(x(i), y(i))

}n

i=1
to the logits, f : Rd →

Rk, where x(i) ∈ Rd and y(i) ∈ {1, . . . , k} represent the
i-th sample and its ground truth label. The non-bold version
xk represents the k-th feature of x and fy is the logit at label
y. The model attribution of the input sample given label y is
computed by gy : Rd → Rd, and we denote the attribution
of x by gy(x).

2.1. Model attribution

The model attribution studies the importance of each in-
put feature xi that contributes to the final output fy(x).
We can classify the most used attribution methods into
two categories, perturbations-based methods [36, 39] and
backpropagation-based methods [1, 25], which include
gradient-based methods. In particular, in this paper, we fo-
cus on the most commonly used gradient-based attribution

methods, saliency map (SM), gradient*input and integrated
gradient (IG). Saliency map [28] is defined as the gradi-
ents of output with respect to the input. Gradient*input [26]
is computed by element-wise multiplication of input fea-
tures and the gradients. Integrated gradients [31] is de-
fined as line integral of gradients from a baseline image a
to the input image x weighted by their difference1. It is
worth noting that IG satisfies the axiom of completeness,∑

i g
y
i (x) = fy(x), which builds a direct connection be-

tween the attributions and model outputs. The mathemati-
cal expressions and examples of the attribution methods are
given in Table 1.

2.2. Attribution robustness

It has been discovered in the literature that model at-
tributions can be easily sabotaged by adversaries. Similar
to adversarial examples [9], human-indistinguishable per-
turbations can be also augmented to natural images that,
though classification results remain unchanged, misdirect
the model attributions towards meaningless interpretations
[8] or any predefined arbitrary patterns which are unrelated
to the original images [6].

To mitigate the threat of being attacked, researchers have
also worked on training attribution robust models. The most
considered techniques are adapted from adversarial train-
ing [19], and they minimize the differences between origi-
nal and the worst-case perturbed attributions. Boopathy et
al. [3] and Chen et al. [4] consider the ℓ1-norm distance to
measure the difference between attributions, and Ivankay et
al. [12] uses Pearson correlation coefficient. Singh et al.
[30] and Wang et al. [33] choose ℓ2-norm distance, where
the former minimizes the spatial correlation between im-
age and attribution using a soft-margin triplet loss, and the
latter shows the smoothness of the decision surface is re-
lated to attribution robustness based on a geometric under-
standing. Wang & Kong [32] emphasizes the directions of
attributions using the relationship between Kendall’s rank
correlation and cosine similarity and protects the attribution
based on the latter. However, none of the aforementioned
methods defines a quantitative measurement to the attribu-
tion changes after perturbation. More clearly, the attribu-
tions are not guaranteed to be protected for all perturbations
within the allowable region that do not alter the classifica-
tion outputs.

3. Formulation of general upper bound for at-
tribution deviations

In this section, we formally define the general upper
bound for attribution deviation as a measurement of at-
tribution robustness. Recall that adversaries incapacitate

1The baseline is chosen to be a black image (a = 0) in this paper if
not specifically stated. Without loss of generality, fy(a) = 0.
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Table 1. Mathematical expressions and visual examples of the selected attribution methods. Attributions have been taken absolute values
and are presented heatmaps to reflect relative importance among pixels. The baseline a of IG is chosen as a black image. ⊗ denotes the
element-wise multiplication.

Original image Saliency map Input*gradient Integrated gradients
∇fy(x) x⊗∇fy(x) (x− a)⊗

∫ 1

0
∇fy(a+ α(x− a)) dα

the attributions of neural networks by adding impercepti-
ble noises to natural images. For an attributional robust
model, on the contrary, the imperceptible noises should not
change the interpretability of attributions, i.e., images per-
turbed by noises should provide similar attributions as the
original ones. To evaluate such resistance against adver-
saries, it is essential to find an upper bound that represents
the worst-case dissimilarity of attributions after the original
images being perturbed. Thus, we define the general upper
bound for attribution deviations as follows.

Definition 1 (General upper bound for attribution devia-
tions). Given a trained neural network f , a fixed allowable
region for perturbation δ, Bε = {δ : ∥δ∥p ≤ ε}, and an in-
put sample x, the general upper bound for attribution devi-
ations T (ε;x) is defined that, for all perturbations δ ∈ Bε,
if argmaxk fk(x) = argmaxk fk(x + δ), then their cor-
responding attributions satisfy that D(gy(x), gy(x+ δ)) ≤
T (ε;x).

In the above definition, D(·, ·) is a dissimilarity met-
ric that measures the difference between two attributions,
where a smaller value indicates that two attributions are
more similar and represent closer meaningful interpreta-
tions. T is a function with respect to the threshold ε and
x. The definition formalizes the guarantee of attribution ro-
bustness, where when the model is more robust, the model
attributions being attacked are less likely to be misled. More
precisely, when being attacked, the change of attribution is
bounded above and the smaller upper bound indicates the
more attributional robust model.

Based on the above definition, the general upper bound
for attribution deviations T (ε;x) can be found by solving
the following optimization problem

max
δ

D(gy(x), gy(x+ δ))

s.t. ∥δ∥p ≤ ε

argmax
k

fk(x) = argmax
k

fk(x+ δ)

(1)

We refer the first constraint ∥δ∥p ≤ ε to the norm con-
straint and the second one to the label constraint as it re-
quires the unchanged label after being perturbed. In fol-
lowing sections, we attempt to solve the optimization prob-
lem (1) using the two mostly used norm constraints on the
perturbations, ℓ2 and ℓ∞, i.e., ∥δ∥2 ≤ ε and ∥δ∥∞ ≤ ε.
For the dissimilarity metric, we choose from previously
used attribution measurements, the Euclidean distance and
the cosine distance. An alternative formulation of this
problem is to find the maximum perturbation ε subject to
D(gy(x), gy(x + δ)) ≤ ω where ω is a predefined thresh-
old. The results obtained from problem (1) can be converted
directly to the alternative formulation, and we defer the pro-
cedures to Appendix E.

4. A practical upper bound for attribution de-
viations

4.1. Upper bound under ℓ2-norm constraint without
the label constraint

To start with, the upper bound without label constraints is
studied. This will provide a looser bound since, intuitively,
stronger adversaries are allowed to perturb the samples that
may change the classification results. While perturbations
are restricted in a small region and indistinguishable to hu-
man, they could be enough to cause huge difference in attri-
butions. The upper bound for ℓ2-norm constrained case is
a straightforward derivation of the first-order Taylor series
of attribution functions. The following theorem provides a
tight bound for attribution robustness assuming that the at-
tribution function is locally linear.

Theorem 1. Given a twice-differentiable classifier f :
Rd → Rk, and its attribution gy on label y, assume that
gy is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥2 ≤ ε}, then for all perturbations ∥δ∥2 ≤ ε,

∥gy(x+ δ)− gy(x)∥2 ≤ ξmaxε,

where ξmax is the largest singular value of H = ∇gy(x).
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Proof. Based on the Taylor series of gy(x) and the above
condition, we have

∥gy(x+ δ)− gy(x)∥22 ≤ ∥δ⊤∇gy(x)∥22 (2)

= δ⊤∇gy(x)∇gy(x)⊤δ (3)

=
δ⊤

∥δ∥2
P

δ

∥δ∥2
· ∥δ∥22 (4)

≤ λmax∥δ∥22 ≤ λmaxε
2 (5)

where λmax is the largest eigenvalue of P = HH⊤ =
∇gy(x)∇gy(x)⊤, and vmax is the corresponding eigenvec-
tor. The equality in Eq. (5) is achieved when δ is εvmax or
−εvmax. Since the singular values of H are equal to the
square root of the eigenvalues of P , then,

∥gy(x+ δ)− gy(x)∥2 ≤
√
λmaxε = ξmaxε. (6)

Note that the local linearity of attribution function is a
weak assumption for both attribution and adversarial robust
models since most of the defense methods [22, 33] attempt
to smoothen the functions. In addition, when the magnitude
of perturbation δ is constrained to small size, the magni-
tude of the higher-order Taylor remainders is negligible. We
include the empirical results evaluating this assumption in
Appendix B. Furthermore, we also provide a generalization
of the theorem that bounds the attribution differences as a
function of a constant c ≥ 1 that measures the error margin
of the first-order Taylor series in Appendix B.2, which can
be applied similarly to all other results in this work.

It is also noticed that the above theorem uses the gradi-
ent of attribution H = ∇gy(x), which is also the Hessian
matrix ∇2fy(x) when the attribution is chosen as saliency
maps and can be computed easily for other gradient-based
attribution methods. Moreover, the second-order deriva-
tives can be zeros for ReLU networks [6]. In this work,
the non-linearity functions are replaced by softplus function
f(x;β) = 1

β log(1 + eβx) as in Dombrowski et al. [6]. A
2D example of the upper bound is illustrated in Fig. 1a. The
optimum solution is in the same direction as the semi-major
axis of the ellipse, which represents δ⊤Pδ. The circle rep-
resents the 2D Euclidean ball bounded by T (ε;x), which is
derived from the length of the semi-major axis.

4.2. Upper bound under ℓ∞-norm constraint with-
out the label constraint

The upper bound for ℓ∞-norm constrained case is more
complicated as ∥δ∥∞ ≤ ε defines a box constraints inequal-
ity system that −ε ≤ δi ≤ ε for all i. If we still consider
the quadratic form derived from the first-order Taylor se-
ries as in Sec. 4.1, the above optimization problem (1) turns
into a concave quadratic programming with box constraints,

which is NP-hard [21]. In order to compute the upper bound
efficiently, we consider a loose relaxation of p-norms.

Corollary 1. Given a twice-differentiable classifier f :
Rd → Rk, and its attribution gy on label y, assume that
gy is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥p ≤ ε}, then for all perturbations ∥δ∥p ≤ ε that
p > 2, ∥gy(x+ δ)− gy(x)∥2 ≤ d

1
2− 1

p ξmaxε, where ξmax

is the largest singular value of H = ∇gy(x).

The proof of the relaxation of p-norm and Corollary 1
can be found in Appendix A.1. Note that this corollary
not only avoids the NP-hard problem for ℓ∞-norm con-
straint, but it is also a general upper bound for p-norm con-
straint on δ for all p > 2. However, it is also noticed that
the upper bound increases with respect to the input sam-
ple dimension. The multiplication factor for ℓ∞ is

√
d.

For high-dimensional input samples, the provided method
would scale up to an extremely loose upper bound that can
be trivial but meaningless. To better bound the attribution
deviations in the ℓ∞-norm case, we provide a tighter upper
bound using the sparsity of attribution gradients.

Theorem 2. Given a twice-differentiable classifier f , its
attribution on label y, gy , and the gradient H = ∇gy , as-
sume that gy is locally linear within the neighborhood of
x, Bε(x) = {x+ δ|∥δ∥∞ ≤ ε}, then for all perturbations
∥δ∥∞ ≤ ε,

∥gy(x+ δ)− gy(x)∥2 ≤ ε

√∑

i,j

|Pij |. (7)

where P = HH⊤ and the equality is taken at δ =
(±ε, . . . ,±ε)⊤.

The proof is deferred to Appendix A.2. This upper
bound as the summation of absolute values of the matrix
P = ∇gy(x)∇gy(x)⊤ is shown to be tighter than that
given in Corollary 1 since P is a diagonal-dominated and
positive semi-definite matrix (see Fig. 1b), which implies
that |Pii| ≈ λi.

4.3. Upper bound with the label constraint

In this section, we extend our study of the upper bound
to the case that labels are not changed after the samples are
perturbed. Here, only attribution methods satisfying the ax-
iom of completeness are studied as the axiom provides a
direct connection between attributions and model outputs,
i.e.,

∑
i g

y
i (x) = fy(x). The following proposition gives

a sufficient condition to ensure that the classification result
remains unchanged after the sample is perturbed.

Proposition 1. Denote the gradient-based attribution sat-
isfying the completeness axiom of x on ground truth la-
bel y by gy(x), and the attribution on a different label
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gy(x)

A

O

H
M⊤δ < b (Eq. 8)B

θ = sin−1
(

ξmaxε
∥gy(x)∥2

)
(Eq. 10)

ξmaxε (Eq. 5)

δ⊤Pδ (Eq. 3)

gy1 (x)

gy2 (x)

(a) (b)

Figure 1. (a) 2D illustration of the proposed upper bound on Euclidean distance and cosine distance. (b) Visualization of the absolute
values of gradient IG as a heat map. The gradient is generated using CIFAR-10 (3072 × 3072), and the values are normalized to [0, 1].
Here the first 100 dimensions of each axis are plotted for better visualization. More figures and the mathematical analysis are given in
Appendix C.

y′ by gy
′
(x). Given the perturbation δ, assume that gy

is locally linear within the neighborhood of x, Bε(x) =
{x+ δ|∥δ∥p ≤ ε}, the classification result of x + δ does
not change from y to y′ if
((

∇gy
′
(x)−∇gy(x)

)
∆
)⊤

δ < fy(x)− fy′(x), (8)

where ∆ is an all one vector, ∆ = (1, . . . , 1)
⊤ ∈ Rd.

The full proof can be found in Appendix A.3. Note
that the inequality is linear to δ and we denote M =
(∇gy

′
(x) − ∇gy(x))∆ and b = fy(x) − fy′(x) for sim-

plicity, i.e., M⊤δ < b. To bound the attribution differences
after the sample is perturbed by noise δ in ℓ2-norm ball, i.e.,
∥δ∥2 ≤ ε, the upper bound can be formulated by rewriting
the optimization problem (1) as the optimal value of the fol-
lowing quadratic programing with concave objective func-
tion and a system of linear constraints for all labels different
from y,

max
δ

δ⊤Pδ s.t. ∥δ∥2 ≤ ε and M⊤δ < b. (9)

To simplify the computation, in this work, we
only consider the second best label y′, i.e.,
y′ = argmaxk∈{1,...,c}\y fk(x). In such case, the
constraint M⊤δ < b defines a half-space. Recall that
Theorem 1 states that the upper bound in ℓ2-norm case
without label constraint is ξmaxε, and we noticed that this
bound is achieved at two opposite vectors δ∗ = εvmax or
δ∗ = −εvmax. Thus, at least one of these two vectors lies

in the half-space defined by the linear constraint (see point
A and B in Fig. 1a. Therefore, the upper bound provided
in Theorem 1 is also achieved even if the label constraint is
added, i.e., the optimal value of optimization problem (9) is
also ξmaxε.

The bound of ℓp-norm constrained case can be derived
similarly. The less tight upper bound is still achievable at
d

1
2− 1

p ξmaxε as in Corollary 1. Generalizing the ℓ∞-norm
constrained upper bound using Eq. 7 is simpler. According
to Theorem 2, there are 2d different optimal solutions that
achieve the optimum and they are the corners of the ℓ∞-
norm box. As long as the feasible region is non-empty, there
exists at least one corner of the box lying inside the feasible
region, and the optimum value is achieved. Similarly, given
a d-dimensional ℓ∞-norm box, and k label constraints that
each separates the entire space into two half-spaces, if at
least one corner of the box lies within the feasible region,
the optimum value is attainable.

4.4. Upper bound based on cosine distance

In the previous parts of this section, we discussed sev-
eral practical upper bounds based on Euclidean distance.
It is noticed that Wang & Kong [32] claims that cosine
similarity (Ds) is a better metric to measure the differ-
ence of attributions as it emphasizes the relative importance
among different features rather than the absolute magni-
tude of each individual feature. Our method can be triv-
ially extended to the scenarios using cosine distance (Dc =
1−Ds(g

y(x+ δ), gy(x))) as the dissimilarity function D
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defined in the formulation (1) with simple modifications.

Corollary 2. Given a twice-differentiable classifier f :
Rd → Rk and its attribution gy on label y, for all per-
turbations ∥δ∥p ≤ ε, if the Euclidean distance of gy(x+δ)
and gy(x) is upper bounded by T (ε;x), and 0 ≤ T (ε;x) ≤
∥gy(x)∥2, then their cosine distance (Dc) is upper bounded
by

Dc(g
y(x+ δ), gy(x)) ≤ 1−

√
1− T (ε;x)2

∥gy(x)∥22
. (10)

This upper bound is valid when the assumption that
0 ≤ T (ε;x) ≤ ∥gy(x)∥2 is satisfied, i.e., the variation
of attribution distance is smaller than the original attribu-
tion. As shown in Fig. 1a, the angle between original and
perturbed attributions is bounded by θ computed from the
corollary.

5. Experimental results
In this section, we evaluate the effectiveness of proposed

upper bounds by numerical experiments under both ℓ2 and
ℓ∞-norms. In the following results, we compute the theo-
retical upper bounds for adversarial robust models and at-
tributional robust models, including Adversarial Training
(AT) [19], IG-NORM [4], Adversarial Attributional Train-
ing with robust training loss (AdvAAT) [12], Attributional
Robustness Training (ART) [30], TRADES [37] and Inte-
grated Gradients Regularizer (IGR) [32]. We follow previ-
ous attribution robustness studies to use ResNet-18 to eval-
uate CIFAR-10 [15], and use the neural network with four
convolutional layers followed by three fully-connected lay-
ers to evaluate MNIST [17] and Fashion-MNIST [34]. The
proposed upper bounds are also scalable to datasets with
larger images, but due to the scalability problem of exist-
ing attribution defense methods, we provide evaluations of
Flower [20] and ImageNet [5] on attributional non-robust
models in Appendix D.3.

For each selected model, the theoretical upper bounds for
both Euclidean distance and cosine distance are computed.
We convert the cosine values to degrees for easier compari-
son. The theoretical bounds are compared with correspond-
ing distance between original sample and attacked sample
to verify the effectiveness of the bounds. We denote the the-
oretical upper bounds for Euclidean distance and cosine dis-
tance as Te and Tc, respectively. The ℓ2 PGD-20 attack [19]
is implemented for ℓ2-norm bounded case. The 200-step
IFIA with the top-k intersection as dissimilarity function [8]
is implemented for ℓ∞-norm bounded case, where k is 100
for MNIST and Fashion-MNIST and 1000 for CIFAR-10.
Each sample is attacked 20 times and the mean distance
is computed. The sample mean Euclidean and cosine dis-
tances of the entire dataset under corresponding attacks are

denoted by T̂e and T̂c, respectively. All the experiments are
implemented on NVIDIA GeForce RTX 3090.

In addition, we also provide a generalization of the pro-
posed bounds based on the generalization of Theorem 1
(Appendix B.2) that adaptively multiply a scalar c for an
given input x in case that the weak assumption is violated
in rare cases. Explicitly, the adaptive value of c for i-th
sample is given as follows (details in Appendix B.3)

c(i) = max

{
1,

∥gy(x(i) + εv
(i)
max)− gy(x(i))∥2
ξ
(i)
maxε

}
.

(11)

5.1. Evaluation of upper bounds without the label
constraint

We first evaluate the upper bounds without label con-
straints, which can be applied to any gradient-based attri-
bution method. Here three methods are evaluated, saliency
map, input*gradient and integrated gradients. The upper
bounds computed from TRADES+IGR on CIFAR-10 are
presented in Table 2, and results from other models are de-
ferred to Appendix D.1. We use the unlabelled upper bound
introduced in Theorem 1 and 2 to compute Te = ξmaxε and
extend it to Tc using Eq. 10. The perturbation size is cho-
sen to be 0.1 for ℓ2 and 0.25 for ℓ∞. The generalized upper
bound T ′

e = cξmaxε (Eq. 11) is also provided for ℓ2 case,
and is not necessary for ℓ∞ case. As observed in the table,
the proposed upper bounds are valid for different attribu-
tion methods and both Euclidean and cosine distances are
well-bounded. More precisely, none of the ℓ∞ perturbed at-
tributions is outside the theoretical bound and none of the
ℓ2 perturbed attributions is outside the generalized bound.

5.2. Evaluation of upper bounds under ℓ2-norm con-
straint and label constraint

To evaluate the upper bound of attribution deviations af-
ter samples being attacked by ℓ2-norm constrained pertur-
bations, we use the method provided in Sec. 4.3 and 4.4
to obtain the theoretical upper bounds for both Euclidean
distance (Te = ξmaxε) and cosine distance (Tc in Eq. 10).
Integrated gradients (IG) is chosen here as the theoretical
bound with the label constraint is based on the axiom of
completeness. Besides, as discussed in Sec. 4.1, the per-
centages of attacked attribution outside Te are provided,
and the generalized bound is also calculated and denoted
by T ′

e = cξmaxε. Since T ′
e bounds all the attacked at-

tributions, i.e., 100% for all the models, we do not report
the percentages in the table. From Table 3, we observe the
following results. (i) The percentages are low, which sup-
ports our assumption in Sec. 4.1 that gy is locally linear. (ii)
The computed values for both Euclidean (T ′

e) and cosine
distance (Tc) successfully bound the attribution differences
above for every dataset and every model. In addition, we
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Table 2. Evaluation of upper bound without the label constraint.

SM Input*gradient IG

T̂e Te T ′
e T̂c Tc T̂e Te T ′

e T̂c Tc T̂e Te T ′
e T̂c Tc

ℓ2 0.09 0.31 0.34 6.88 7.41 0.07 0.46 0.46 0.51 2.60 0.02 0.17 0.17 1.80 3.84
ℓ∞ 0.41 0.85 - 21.87 27.09 0.07 0.69 - 7.03 50.59 0.25 0.52 - 23.24 35.00

Table 3. Evaluation of upper bounds under ℓ2-norm constraint and
label constraint. The numbers in the brackets indicate the percent-
ages that attacked attribution is outside the Te.

Model T̂e Te T ′
e T̂c(deg) Tc(deg)

ε = 0.05 MNIST

AT 0.0685 0.1537 [2.25%] 0.1596 3.6935 7.0951
IG-NORM 0.1158 0.2888 [2.00%] 0.2967 3.3174 7.2615
ART 0.0626 0.3591 [6.00%] 0.3702 2.3923 6.8657
AdvAAT 0.0876 0.3269 [6.20%] 0.3404 1.9034 6.8992
TRADES 0.1620 0.5060 [1.68%] 0.5271 2.8374 6.9988
TRADES+IGR 0.1784 0.4964 [1.32%] 0.5145 2.9075 6.9779

ε = 0.05 Fashion-MNIST

AT 0.0659 0.0700 [2.19%] 0.0869 10.1442 12.9577
IG-NORM 0.1181 0.1789 [0.00%] 0.1789 6.6002 8.8043
AdvAAT 0.1115 0.1735 [6.20%] 0.1858 5.8544 9.3692
ART 0.0940 0.1387 [0.94%] 0.1411 5.4507 9.8234
TRADES 0.0626 0.0963 [4.16%] 0.1184 8.3521 12.0991
TRADES+IGR 0.0403 0.0453 [1.91%] 0.0507 7.7302 8.8411

ε = 0.1 CIFAR-10

AT 0.0392 0.2532 [0.09%] 0.2533 2.7335 4.7724
IG-NORM 0.0149 0.1582 [0.42%] 0.1621 1.6505 4.3711
AdvAAT 0.0374 0.2386 [0.06%] 0.2386 0.2847 3.8202
ART 0.0733 0.2278 [0.00%] 0.2278 0.5918 4.2123
TRADES 0.0264 0.1734 [0.16%] 0.1734 1.9084 3.8686
TRADES+IGR 0.0240 0.1692 [0.09%] 0.1692 1.8011 3.8384

also show the minimum Euclidean gaps between samples
and bounds in Section 5.4 to illustrate that the tightness of
the proposed bounds.

5.3. Evaluation of upper bounds under ℓ∞-norm
constraint and label constraint

In this subsection, the upper bounds of attribution de-
viations under ℓ∞ attacks are presented. Instead of the
much looser bound derived from ℓp-norm relaxation (Corol-
lary 1), the upper bound is computed from Te = ε

√∑
|Pij |

as introduced in Sec. 4.3 and 4.4 . Moreover, the empiri-
cal attribution robustness is also provided using Kendall’s
rank correlation [14] for comparison of theoretical and em-
pirical protection. It should be emphasized that all the
previous attribution robustness studies are based on ℓ∞-
norm constraints. Kendall’s rank correlation, which is non-
differentiable, is used as one of the indexes to measure the
difference between the original attributions and the attribu-
tions attacked by IFIA under ℓ∞-norm constraints. From
the results in Table 4, we see that the computed theoret-
ical upper bounds are valid to measure the worst-case at-

Table 4. Evaluation of upper bounds ℓ∞-norm constraint and label
constraint.

Model Kendall T̂e Te T̂c(deg) Tc(deg)

ε = 0.05 MNIST

AT 0.1846 0.3461 0.7752 15.3616 38.7024
IG-NORM 0.1562 0.6836 1.2046 16.4506 31.8791
AdvAAT 0.3791 1.6269 2.1992 11.3173 26.3000
ART 0.1439 1.4193 2.8218 12.8025 64.3115
TRADES 0.2127 1.1779 2.2216 15.9881 33.4681
TRADES+IGR 0.4537 1.2991 2.0386 17.5923 26.5748

ε = 0.05 Fashion-MNIST

AT 0.1516 0.0990 0.2802 18.9720 55.1501
IG-NORM 0.3446 0.2384 0.8819 12.6023 46.4270
AdvAAT 0.5810 0.1938 0.9206 9.4499 44.9184
ART 0.2079 0.1660 0.7215 9.6582 53.7281
TRADES 0.2582 0.1042 0.4536 13.7010 51.6448
TRADES+IGR 0.6565 0.0722 0.2526 15.0947 44.4703

ε = 0.1 CIFAR-10

AT 0.5578 0.4058 0.7649 26.6195 45.3223
IG-NORM 0.5811 0.1997 0.4783 21.6311 35.2981
AdvAAT 0.5484 0.2293 0.5211 28.7342 39.3981
ART 0.6875 0.3128 0.6734 31.0090 35.6422
TRADES 0.6903 0.2322 0.5001 22.9779 36.3759
TRADES+IGR 0.6940 0.2474 0.5236 23.2356 35.0009

tribution deviations. For each dataset and each model, the
sample mean of attribution distances is strictly smaller than
the theoretical distance. Because of the relaxation, all at-
tacked attributions are bounded by Te. There is no out-
lier, and there is no need to use the generalized bound T ′

e.
Moreover, the results also show that for a model with a
larger Kendall’s rank correlation, the theoretical cosine dis-
tance upper bound is more likely to be smaller (see Fig. 2),
which means that the model is more difficult to be attacked.
This also confirms that cosine similarity is positively corre-
lated to Kendall’s rank correlation as proposed in Wang &
Kong [32].

5.4. Evaluation of the tightness of bounds

In addition, we further report the minimum Euclidean
gaps between samples and theoretical bounds in Table 5 to
measure the tightness of the provided bounds, which is de-
fined as

r = min
0≤i≤n

T (i)
e − T̂ (i)

e (12)
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 2. Comparison between Kendall’s rank correlation and the theoretical bound of cosine distance. For clear comparison, we convert
the cosine distance to angles in degrees.

Table 5. Evaluation of tightness of the bounds in Euclidean distance for ℓ2 and ℓ∞ cases.

MNIST Fashion-MNIST CIFAR-10

ℓ2(ε =) 0.05 0.1 0.2 0.05 0.1 0.2 0.1 0.2 0.3

AT 0.0260 0.0320 0.0140 0.0078 0.0130 0.1207 0.0004 0.0045 0.0134
IG-NORM 0.0391 0.0597 0.0291 0.0121 0.0171 0.0742 0.0016 0.0210 0.0448
AdvAAT 0.0290 0.0465 0.0294 0.0103 0.0167 0.0183 0.0037 0.0090 0.0181
ART 0.0178 0.0115 0.0182 0.0029 0.0239 0.0011 0.0019 0.0031 0.0141
TRADES 0.0014 0.0032 0.0104 0.0037 0.0082 0.0723 0.0028 0.0048 0.0147
TRADES+IGR 0.0010 0.0038 0.0041 0.0064 0.0134 0.0385 0.0016 0.0100 0.0126

ℓ∞(ε =) 0.01 0.03 0.05 0.01 0.03 0.05 4/255 8/255 0.1

AT 0.0021 0.0035 0.0117 0.0004 0.0352 0.0708 0.0025 0.0053 0.1381
IG-NORM 0.0001 0.0062 0.0105 0.0010 0.0590 0.1069 0.0026 0.0145 0.0003
AdvAAT 0.0004 0.0223 0.0901 0.0136 0.0847 0.1665 0.0448 0.1513 0.2078
ART 0.0082 0.0112 0.0233 0.0424 0.1049 0.1467 0.0118 0.0412 0.0870
TRADES 0.0001 0.0046 0.0026 0.0014 0.0337 0.0634 0.0068 0.0043 0.0530
TRADES+IGR 0.0016 0.0143 0.1389 0.0014 0.0375 0.0682 0.0016 0.0090 0.0197

Note that the superscript (i) represents the i-th sample and
T

(i)
e is replaced by T

′(i)
e in ℓ2-norm cases. r is a straight-

forward measurement of the theoretical bound. We notice
that although the mean of theoretical bounds sometimes are
multiple times larger than the sample mean distance, the
tightest bound can be only 10−4 greater than the sample dis-
tance. We also observe that the values of r are all positive,
which also indicates that there is no perturbed attribution
that violates our theoretical bounds.

We also provide the visualizations of the distribution of
the gap between theoretical bounds and attribution differ-
ences from real data in Appendix D. The values are directly
computed using T

(i)
e − T̂

(i)
e . As we can observe from the

figures, all values are positive, which verifies the validity
of our bounds, and most of the values are lying close to 0,
which shows the tightness of the bounds.

6. Conclusion
In this paper, an upper bound that measures the worst-

case attribution deviations is proposed. The bound is for-

mulated as the optimum value of a constrained optimiza-
tion problem. The optimization problem is constrained on
the size of perturbation and the unchanged classification la-
bel after being perturbed. For each of the two metrics of
the attribution difference, Euclidean and cosine distances,
the problem is solved based on the first-order Taylor se-
ries and the estimation of attribution gradients and the so-
lution bounds the attribution deviations under both ℓ2 and
ℓ∞-norm attacks. Experimental results validate the effec-
tiveness of the proposed bounds.
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