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Abstract

The state of the arts in vision-language pretraining
(VLP) achieves exemplary performance but suffers from
high training costs resulting from slow convergence and
long training time, especially on large-scale web datasets.
An essential obstacle to training efficiency lies in the entan-
gled prediction rate (percentage of tokens for reconstruc-
tion) and corruption rate (percentage of corrupted tokens)
in masked language modeling (MLM), that is, a proper cor-
ruption rate is achieved at the cost of a large portion of
output tokens being excluded from prediction loss. To ac-
celerate the convergence of VLP, we propose a new pre-
training task, namely, free language modeling (FLM), that
enables a 100% prediction rate with arbitrary corruption
rates. FLM successfully frees the prediction rate from the
tie-up with the corruption rate while allowing the corrup-
tion spans to be customized for each token to be predicted.
FLM-trained models are encouraged to learn better and
faster given the same GPU time by exploiting bidirectional
contexts more flexibly. Extensive experiments show FLM
could achieve an impressive 2.5× pretraining time reduc-
tion in comparison to the MLM-based methods, while keep-
ing competitive performance on both vision-language un-
derstanding and generation tasks. Code will be public
at https://github.com/TencentARC/FLM .

1. Introduction

Vision-language pretraining (VLP) has recently demon-
strated impressive performance on a handful of vision-
language tasks [7,10,14,18,19,22], e.g., visual question an-
swering, cross-modal retrieval, and image captioning. Sev-
eral factors are responsible for the success: the availabil-
ity of large-scale image-text datasets collected from the
web [30], high-capacity model architectures like Trans-
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Figure 1. (a) Large prediction rate accelerates training. Given
a fixed corruption rate, we vary the prediction rate by randomly
selecting a subset of output tokens for prediction loss. The learn-
ing rate schedule follows METER [10]. (b) The proposed FLM
achieves competitive performance compared with MLM mean-
while significantly accelerating the pretraining stage. The down-
stream performance on NLVR2 [32] is reported. We show accu-
racy curves before convergence for better visualization.

former [34], and effective pretraining objectives for cross-
modal learning.

One of the dominant pretraining objectives is masked
language modeling (MLM), which was first introduced in
natural language processing [9] and has been applied to
vision-language areas in recent years [19]. MLM is a
generative pretraining task designed to reconstruct a few
(usually 40% for VLP) masked text tokens via reasoning

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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among the context of the remaining texts and the paired
image. While effective in capturing cross-modal interac-
tions, MLM-based methods [7,15,21] suffer from slow con-
vergence and long training time, especially for large-scale
models and noisy web data.

We argue that the limited prediction rate in MLM im-
pedes the convergence speed of pretraining, since a large
portion of tokens accompanied by corruption are excluded
from prediction loss. As shown in Fig. 1 (top), under the
same corruption rate , a larger prediction rate for MLM
results in faster convergence of validation loss and down-
stream performance. It is intuitive to set a prediction rate
of 100% to fully exploit text tokens. However, a paradox
emerges where a large prediction rate can only be achieved
with a greater corruption rate in MLM, but an extremely
large corruption rate leads to an extremely tough pretrain-
ing task that may cause training collapse.

Autoregressive language modeling (AR) provides a
workable solution to enable a 100% prediction rate. It pre-
dicts the next token given the observation of previous to-
kens. As shown in Fig. 1 (bottom), AR performs favor-
ably in training efficiency against MLM, i.e., 6.1×speed-up
for convergence. However, the converged performance by
AR is, unfortunately, much inferior to MLM. It is probably
caused by the sub-optimal unidirectional corruption pattern,
which is insufficient for downstream understanding tasks
that usually rely on bidirectional contexts.

A natural question arises, can we accelerate the conver-
gence of VLP by predicting 100% tokens like AR mean-
while achieving competitive performance with MLM? To-
wards this end, we introduce a new pretraining task, dubbed
free language modeling (FLM), for VLP, that enjoys an ex-
treme 100% prediction rate and flexible bidirectional con-
textualized representations. We for the first time break up
the entanglement between corruption and prediction rates,
making the two factors freely determined. Furthermore, for
each output token to be predicted, we allow independent and
arbitrary-length spans (from one to 100% tokens) as cor-
rupted connections. Rather than the suffix-like corruption
pattern as in AR (as well as PrefixLM [37]), the corruption
span of FLM is primarily distributed in the middle of the
sequence, establishing a flexible perception of bidirectional
contexts for better adaptation to VL understanding tasks.
The comparison between different pretraining objectives is
illustrated in Fig. 2.

To perform VLP with FLM, we propose an encode-
corrupt-predict framework, which performs feature encod-
ing once and reconstructs several corrupted versions of the
text sequence in parallel. In the encoding step, bidirec-
tional representations are achieved by learning forward and
reverse unidirectional representations respectively, the or-
der of which is manipulated by (reverse) casual masks in
the same text Transformer. Subsequently, we ensure a

100% prediction rate by customizing corruption-prediction
tasks for predicting each input token. In each corruption-
prediction task, a span of corruption is randomly sampled
and attached to the encoded sequence, followed by a re-
constructor to solve the prediction task by reasoning among
the remaining contexts. Unlike previous works (e.g., MLM,
AR) that adopt pre-encoding corruption, we inject corrup-
tions after one-time feature encoding, encouraging flexible
corruption patterns and efficient parallel prediction.

Our contributions are three-fold. (1) A novel pretraining
objective for VLP, namely, free language modeling (FLM),
is proposed to free the prediction rate from the constraints of
corruption rate, enabling an appealing 100% prediction rate
for accelerating convergence speed during pretraining. (2)
An encode-corrupt-predict framework built upon FLM ob-
jective is proposed, allowing efficient and effective learning
of a set of prediction tasks by merely conducting feature en-
coding once. (3) Extensive experiments on VQA, NLVR2,
image captioning, and image-text retrieval demonstrate the
effectiveness of our FLM, where comparable performances
to MLM are achieved with less than 50% pretraining time.

2. Related Work
Vision-Language Pretraining. Vision-language pretrain-
ing tasks can be divided into two categories: (i) discrimi-
native tasks, e.g., image-text contrastive (ITC), image-text
matching (ITM), and (ii) generative tasks, e.g., masked
language modeling (MLM) and autoregressive language
modeling (AR). Discriminative tasks consider the image-
text pairs as multi-modal views of the same semantics.
Contrastive or multi-view learning is adopted for learning
the alignment between multiple modalities. For example,
CLIP [29], ALIGN [14], and following works [18, 20, 40]
utilize cross-modal contrastive learning by projecting the
image and language information into a joint (structured)
semantic space. Generative tasks aim to reconstruct the
corrupted text (image) with the assistance of visual (text)
modality. The main body of representative works [2, 7, 19,
22, 27, 35, 42, 43], employ the MLM-like objectives, where
input texts(image) are partially masked and then interact
with visual (text) tokens to reconstruct the corrupted part.
SimVLM [37] introduces a single prefix language model-
ing (PrefixLM) objective for exploiting large-scale weak su-
pervision in VLP. CoCa [41] further verifies the represen-
tation ability of autoregressive language modeling (AR) in
the vision-language domain. While most existing methods
combine discriminative and generative tasks for better rep-
resentation learning, BEiT-3 [36] shows a single generative
language modeling (e.g., MLM) could handle the vision-
language interactions and alignments well with the mixture-
of-expert transformer. Although superior performance has
been attained, most existing methods based on MLM suf-
fer from low utilization of output tokens and lead to a slow
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Figure 2. Dependency matrix of different language modeling methods in vision-language pretraining. rpred represents the proportion of
output tokens for reconstruction. rcorr represents the proportion of corrupted inputs for each output token. rcorr is the mean corruption rate
of all reconstruction tokens. FLM has distinct advantages compared with others: 1) Different from MLM and PrefixLM that bind rpred
and rcorr together by r, the unbound prediction rate in FLM could achieve 100% for accelerating training as much as possible. 2) Without
relying on a position-aware unidirectional corruption in AR/PrefixLM or fixed corruption across all positions in MLM (see the right-side
line graph), the corrupted span in FLM for each output token could be different, and the corrupted rate is independent of the position of the
output token, enabling a more flexible corruption pattern for better exploiting the bidirectional context information.

convergence rate. This paper proposes a new generative lan-
guage modeling method targeting pretraining acceleration.
Efficient Pretraining. While early VLP methods [7,22,33,
43] rely on time-consuming pretrained object detectors for
visual representation, PiexlBERT [13] and ViLT [15] di-
rectly apply grid/patch-level visual features to reduce com-
putation complexity of the object-level visual encoder. Be-
yond the design of efficient model architecture, a few re-
search focuses on data-efficient training. Bitton et al. [3]
propose an alternative masking strategy that better focuses
on visually-related physical words to improve VLP in low-
resource settings. DeCLIP [23] enhances the CLIP by ex-
ploring more supervision signals, such as self-supervision
within a single modality or multi-view supervision across
different modalities. The most relevant work to this paper is
GRIT-VLP [5], which assigns a larger mask rate for MLM
and performs grouped in-batch negative sampling for ITC to
accelerate the convergence. However, only half of the out-
put tokens are assigned for the reconstruction task, where
the under-used output tokens impede a further speed-up of
pretraining. Our method decouples the corruption and re-
construction rate, making them freely chosen for a better
combination between performance and efficiency.
Language Modeling. In NLP, MLM [9,12,25] and AR [4,
8] have been the two most popular generative pretraining
objectives. AR aims to estimate the probability distribu-
tion of a given text sequence using the product rule by
an auto-regressive model. However, unidirectional encod-
ing may not be suitable for language understanding tasks
that prefer bidirectional context information. MLM enables
bidirectional contexts for language understanding tasks but
can not be directly adopted into language generation tasks.
Some works [11, 39] unify MLM and AR for better per-
formance on both language understanding and generation
tasks. Wettig et al. [38] study the choice of the mask ratio

in MLM from the perspective of both corruption and pre-
diction. However, among previous methods, little attention
has ever been devoted to the issue of training efficiency.
We target accelerating vision-language pretraining mean-
while keeping decent performances on vision-language un-
derstanding and generation tasks.

3. Method

In this section, we first recap the representative language
modeling methods for VLP from a corruption-prediction
view in Sec. 3.1. Then we propose the new language mod-
eling method FLM to decouple the prediction rate from the
corruption rate in Sec. 3.2. Finally, we introduce FLM into
VLP and propose a novel encode-corrupt-predict frame-
work for accelerating VLP in Sec. 3.3.

3.1. Language Modeling as Corruption-Prediction

Given an input sequence x = {x1, ..., xL}, MLM aims
to learn a deep bidirectional representation by randomly
replacing part of input tokens with a special mask token,
and then maximize the probability of reconstructing those
masked tokens P (xm|x\m), where xm represents cor-
rupted tokens. AR uses a left-to-right autoregressive fac-
torization to model the density distribution of the sequence∑

i=1:L logP (xi|x<i). PrefixLM enables bidirectional
perception between prefix tokens and left-to-right autore-
gressive factorization to model the density distribution of
the remaining sequence

∑
i=Lp:L

logP (xi|x[Lp,i], x<Lp
)

where Lp represents the prefix length.
Note that all the above methods could be interpreted as a

corruption-prediction problem because each prediction to-
ken only has a partial observation of the input data, i.e., the
interactions between output tokens and some input tokens
are corrupted. Therefore, their pretraining objectives could
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be unified as maximizing the reconstruction probability:

EM∼B(r)

∑
i=1:L

1mii=0 logP (xi|{xj |mij=1}), (1)

where M = [mij ]1≤i≤L,1≤j≤L represents the dependency
matrix between the input and the prediction target, mij =
1/0 represents that xj is visible/invisible when predict-
ing xi. B(r) represents a distribution parameterized by r,
which is customized by specific models. The dependency
matrices M of different language modeling methods are as
follows (also illustrated in Fig. 2):

• For MLM, m1,:= · · ·=mL,:=p∼Binomial(rmask).
The corruption for predicting all xi is the same and it
is sampled from a Binomial distribution.

• For LM, mij = 1j<i. The corruption for predicting
xi depends on the position i, which gets shorter with a
larger i.

• For PrefixLM, mij = 1j<max(i,Lp), where prefix
length Lp=(1− rspan) ·L and rspan∼Uniform(0, 1)
represents the length ratio of the corrupted span.

3.2. Free Language Modeling (FLM)

From the above analysis, the representative MLM or
AR/PrefixLM methods have limited freedom of the depen-
dency matrix, which is prone to the following issues: 1) the
tie-up between the prediction and corruption rate in MLM
may lead to a low convergence speed during training; 2)
inflexible and non-customizable contexts for each predic-
tion target result in sub-optimal context learning. For ex-
ample, the suffix-like corruption in AR disables the bidirec-
tional context modeling which is essential for downstream
understanding tasks. Moreover, the autoregressive prior in
AR results in uneven distribution of corruption rate. Latter
tokens are always assigned with a smaller corruption rate,
thus being easy-predictable compared with former ones.
The position-related distribution of the corruption rate may
cause a sub-optimal difficulty degree of pretraining tasks.

The goal of FLM is to disentangle the prediction and cor-
ruption rate for fully utilizing training signals to accelerate
VLP. The model after disengagement has a more flexible
corruption pattern that benefits bidirectional contextual rep-
resentation learning. Following the unified formulation of
the corruption-prediction problem in Eqn. 1, we introduce
the dependency matrix of FLM:

mij = 1 if mij /∈ spani, otherwise 0. (2)

where spani is random span corruption with length Li
span

that satisfies i ∈ spani. The starting position and length
of spani could be customized or randomly sampled from
a distribution. In our implementation, we sample Li

span ∼
Bernoulli(L, rcorr) for each i, rcorr is the hyperparameter
indicating the expected corruption rate.
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Figure 3. Overview of the proposed VLP framework with free
language modeling (FLM). First, the image is patchified and en-
coded by a vision transformer into a sequence of vision tokens.
Then, the text transformer performs uni-modal text feature encod-
ing in the bottom layers and multimodal fusion between visual and
text features in the top layers. Bidirectional multimodal represen-
tations are achieved by learning forward and reverse unidirectional
representations, respectively, the order of which is manipulated by
(reverse) causal masks in the same text transformer. After feature
encoding, we construct a set of independent corruption-prediction
tasks. For each task, we inject a random span corruption into
the multimodal representation and then introduce a reconstruction
query that gathers informative contexts from the corrupted fea-
tures for reconstructing a single target token. Benefiting from the
flexibility of post-encoding corruption, 100% text tokens could be
efficiently reconstructed in parallel.

Note that the corrupted span in FLM could differ for
different predictions, hopefully increasing the flexibility of
bidirectional contextualized interactions and helping opti-
mization. Since the choice of spani does not interfere with
each other for different i, the prediction rate could increase
to 100% which allows all input tokens to be reconstructed.
As for the corruption rate, we note that the minimal corrup-
tion rate is 1/L, since at least one token should be corrupted
to reconstruct itself to avoid information leakage.

3.3. Vision-Language Pretraining with FLM

Built upon FLM, a new encode-corrupt-predict pretrain-
ing framework is proposed for efficient pretraining with de-
coupled prediction and corruption rates. Given the input se-
quence x = {x1, ..., xL}, we formulate the reconstruction
of all input tokens as L independent corruption-prediction
tasks. For i-th task, the learning objective is to maximize
P (xi|{xj |mij = 1}) by reasoning upon uncorrupted bidi-
rectional tokens. Fig. 3 depicts the pipeline of the model.

Decomposed Bidirectional Encoding. Since FLM estab-
lishes a customized corruption span for each prediction task,
a naive solution of repeating the MLM-style feature en-
coding (transformer with fully-visible attention mask) for
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each task becomes time-consuming. Instead, we propose
to share the intermediate features of different tasks for ef-
ficient inference by decomposing the token representation
into two complementary views, left-to-right, and right-to-
left features. The former adopted a text transformer with a
casual mask, enforcing the latter tokens attending on previ-
ous tokens. The latter adopted the same transformer with a
reverse causal mask for a right-to-left context flow.

Specifically, we first encode image features by a CLIP
image transformer. For the text input, the Nbottom bot-
tom layers of the text transformer perform the decomposed
bidirectional encoding with the language input only, while
Ntop top layers further receive image features and fuse the
multimodal features by cross-attention layers. After en-
coding, we obtain the bidirectional representation in text
transformer, denoted as En = {en1 , · · · , enL}, where ei =

{el2r,ni , er2l,ni } is the token representation for xi comprised
of features from forward and reverse flow at the n-th layer.
Reconstructor. Following the description in Sec. 3.2,
we sample a dependency matrix M to construct several
corruption-prediction tasks. As a consequence of the span
corruption, some elements in En that rely on corrupted in-
puts need to be neglected to avoid information leakage. To
reconstruct xi, we gather context from uncorrupted features
in E by cross-attention:

qn+1
i =CrossAttention(qni , E

n
i )

En
i ={el2r,nj |mij=1 ,j<i}∪{er2l,nj |mij=1 ,j>i},

(3)

where En
i represents all uncorrupted elements in En given

M . qi is a learnable reconstruction query, which is initial-
ized as the i-th positional embedding in the first layer. The
selection process from En to En

i is implemented as a spe-
cific attention mask in cross-attention layers, as illustrated
in Fig. 3. By forwarding on stacked cross-attention layers,
qni aggregates deep bidirectional contexts for effective re-
construction of xi. The output features of the last layer in
the reconstructor are input into an MLP for final prediction.

Note that qni works independently from each other, mak-
ing a flexible addition or removal of some tasks. By shar-
ing feature encoding, all reconstruction tasks run in parallel
with low computation consumption.
Pretraining Objectives. The reconstruction objective is to
minimize the negative log-likelihood of predicted tokens:

LR=−EM∼B(r)

∑
i=1:L

logP (xi|{xj |mij=1}), (4)

To further enhance the model’s representability, we intro-
duce an intermediate prediction loss upon the EN that
improves the local temporal dependency between words,
where N represents the last layer of the text transformer.
We supervised the forward/reverse sequence el2r,Ni /er2l,Ni

by their next/previous tokens. The intermediate loss

is the summation of two unidirectional prediction prob-
lems: Linter = Ll2r + Lr2l =

∑
i=1:L logP (xi|x<i) +∑

i=1:L logP (xi|x>i). The overall pretraining objective of
FLM is calculated by LFLM = LR + Linter.

4. Experiments
4.1. Experimental Setting

Pretraining Data. Following previous work [10, 18], the
pretraining data comes from four commonly used datasets,
including COCO [24], Visual Genome [16], SBU Cap-
tions [28], and Conceptual Captions 3M [30], totally 4M
images. An enlarged version of ∼13M images is further
used to boost performance by including Conceptual Cap-
tion 12M [6] 1.

Downstream Tasks. During finetuning, we append a spe-
cial [CLS] token into the reconstructor and use its out-
put features as the global cross-modal representation. We
follow [7] to adapt the pre-trained model to four down-
stream vision-language understanding tasks, visual ques-
tion answering (VQA) [1], natural language for visual rea-
soning (NLVR2) [32], image-text retrieval (TR), text-image
retrieval (IR). We also test the performance on vision-
language generation tasks, i.e., image captioning [24]. For
image captioning, we drop the reconstructor and use the
text transformer with a causal mask for sequence genera-
tion. More details can be found in supplementary materials.

Pretraining Details. Following ALBEF [18] and ME-
TER [10], the visual transformer is initialized by CLIP-
ViT [29] pretrained on 400M noisy image-text pairs. The
visual transformer with ViT-B/32 is used as our base ar-
chitecture for ablation study, and the one with ViT-L/14
is for scaling up to compare with other methods. We
denote models with ViT-B image encoder as Ours and
ViT-L as OursLARGE. The bottom six layers of the text
transformer are initialized by the bottom six layers of
RoBERTaBASE [25]. The reconstructor is implemented by
a 12-layer (Nbottom = Ntop = 6) transformer decoder
(remove self-attention layers and only keep cross-attention
layers) with a hidden size of 768 and a head number of 12.
The default corruption rate of FLM is 1/L, i.e., in each
corruption-prediction task, only a single token is corrupted
and then reconstructed from their contexts. While minimal
corruption achieves decent performance, we further explore
the choice of corruption rates in Sec. 4.3.

We pretrain the model for a maximum of 30k steps, with
a total batch size of 4096 on 16 TITAN V100 GPUs by
AdamW [26] optimizer and gradient accumulation. Mixed-
precision training is used to reduce memory consumption
and accelerate training. We use a 5% warm-up schedule
with a maximum learning rate of 4e-4. Following [10], we

1Only 8.7M images of CC12M are accessible due to expired URLs.
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Method rcorr rpred
VQA NLVR2 Retrieval (Flickr30K) COCO Captioning

GPU Days (speed-up)
test-dev dev test IR@1 TR@1 BLEU METER CIDEr

AR 50% 100% 72.85 75.79 76.29 66.59 84.10 35.70 28.86 120.6 9.6 (6.1×)
PrefixLM 25% 50% 72.64 75.73 76.17 66.21 82.70 35.50 28.79 119.4 10.0 (5.9×)
MLM 15% 15% 73.52 77.46 78.28 71.33 88.40 34.90 28.50 117.5 58.7 (1×)
MLM 40% 40% 73.95 77.62 78.60 73.41 89.20 35.50 28.79 120.3 58.7 (1×)
FLM (Ours) 1/L 100% 73.85 77.99 78.63 72.81 87.40 36.68 29.17 123.0 22.7 (2.5×)

Table 1. Performance Comparison between different language modeling methods. rcorr and rpred refer to the corruption and prediction
rates. All models are based on CLIP-B/32 image encoder and a text transformer initialized by RoBERTa. Note that the default rcorr of
FLM is set to 1/L for better efficiency, while FLM’s performance will be further improved by an optimal rcorr, as indicated in Table 3d.

Method
VQA NLVR2 Captioning

GPU Days
test-dev dev test CIDEr

CLIP-B/32 on 13M data
AR 73.46 76.60 77.21 121.5 21.3 (5.4×)
MLM 74.25 78.63 79.19 122.6 116.0 (1×)
FLM 74.28 78.73 79.52 122.6 32.0 (3.6×)
CLIP-B/16 on 4M data
AR 75.05 77.38 78.79 126.0 12.3 (5.0×)
MLM 75.76 79.93 79.83 125.4 61.4 (1×)
FLM 75.95 79.02 80.03 126.5 16.1 (3.8×)

Table 2. Performance comparison of different pretraining objec-
tives with a larger data scale (from 4M to 13M) or a larger number
of patches (patch size from 32 to 16). For 13M data, we extend the
training iteration of MLM to 200k.

assign a lower learning rate of 8e-5 for all pretrained layers.
The text sequence length is limited to 50 subwords. More
details are in the supplementary materials.

Baselines. We also pretrain some generative language
modeling methods for comparison, including MLM, AR,
and PrefixLM [37]. Specifically, we directly input the (cor-
rupted) text sequence into the text transformer and then
build an MLP layer upon the last layer of the text trans-
former for reconstructing the original input. For AR and
PrefixLM, we follow the same learning rate schedule as
FLM. For MLM, we follow [10] to train the model for
100k iterations with a maximum learning rate of 5e-5 and a
warm-up rate of 10%. To compare the convergence speed of
different methods, we report the GPU days when reaching
the best validation performance (i.e., reconstruction accu-
racy on the COCO validation set).

4.2. Comparison with Language Modeling Methods

As shown in Table 1, compared with MLM, the proposed
FLM achieves a 2.5×speed-up while keeping the compara-
ble performance on VL understanding tasks and superior
performance on VL generation tasks.

AR achieves decent performance on image captioning
generation but inferior performance on other VL under-
standing tasks, due to the lack of ability to capture bidi-
rectional interactions among sequences. Moreover, AR
has a faster convergence rate and high training efficiency.

Although PrefixLM enables bidirectional interactions be-
tween partial inputs, which is beneficial for VL classifi-
cation tasks, the performance of PrefixLM is similar to
AR. However, the reconstruction target mainly falls on the
right side of the sequence, where the uneven distribution
may push the learned representation towards an unsatis-
factory language prior. For MLM, we found a corruption
rate of 40% achieves the best VQA performance among
{10%, 20%, ..., 80%}, indicating an appropriate corruption
rate is essential to control the task difficulty. However, the
convergence rate of MLM is slow, making larger training
steps necessary to achieve decent performance. Our method
FLM surpasses MLM on NLVR2 and image captioning,
also showing an impressive 2.5×speed-up of training time.

In Table 2, we show that the superiority of the proposed
FLM consistently holds with a larger data scale or with
more powerful visual features. The reason may be that FLM
learns bidirectional context patterns by encoding the text se-
quence once and densely predicting the 100% input in par-
allel, while MLM usually needs more pretraining steps to
see such diverse patterns. Therefore, FLM is a friendly pre-
text task for accelerating training under low-resource sce-
narios, which to some extent, enjoys the high efficiency of
AR/PrefixLM and the high performance of MLM.

As for underperformed retrieval performance compared
with MLM, we conjecture that FLM with span corruptions
has fewer corruption variants than MLM with random cor-
ruptions but focuses more on local semantics, which favors
fine-grained tasks like VQA/captioning more than retrieval.

4.3. Ablation Studies

FLM Loss. The ablation study for the loss terms in FLM
is shown in Table 3a. With merely reconstruction loss LR,
our model achieves better performance (73.04 on VQA)
compared with AR (72.85) or PrefixLM (72.64). When
further introducing left-to-right or right-to-left intermediate
caption loss, the model gains consistent improvements over
two downstream tasks. Note that left-to-right loss shows
non-trivial superiority to the right-to-left one, verifying the
effectiveness of the causal relationships between words.
By combing bidirectional caption loss, the model achieves
0.81/1.45 absolute gains over the model with merely recon-
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Loss VQA NLVR2

LR 73.04 77.18
LR + Lr2l 73.38 77.59
LR + Ll2r 73.67 78.00
LR + Linter 73.85 78.63

(a) Loss term. Intermediate losses are effec-
tive and complementary to FLM loss.

Text Encoder VQA NLVR2

Unshared text encoder 73.46 77.51

Shared text encoder 73.85 78.63

(b) Parameter sharing. Sharing two uni-
directional encoders is effective and efficient.

Prediction rate VQA NLVR2

50% 73.74 77.47
75% 73.89 77.65
90% 74.00 78.17
100% 73.85 78.63

(c) Prediction rate. FLM with a larger predic-
tion rate improves performance.

Corruption VQA NLVR2

span corruption (1/L) 73.85 78.63
span corruption (30%) 73.96 78.83
span corruption (40%) 74.04 78.82
span corruption (50%) 74.01 77.84
random corruption (15%) 73.93 78.38
random corruption (30%) 73.69 77.74

(d) Corruption Rate. FLM enables a flexible choice of
the corruption rate.

Bottom Top VQA NLVR2

× 1 73.46 77.49
× 3 73.62 78.20
× 6 73.74 78.14
3 6 73.69 78.20
6 6 73.85 78.63

(e) Number of reconstruction Layers. FLM benefits
from a deeper reconstructor.

Table 3. FLM ablation experiments with ViT-B/32 pretrained on 4M data. We report the finetuned accuracy (%) on the VQA test-dev and
NLVR2 test set. Default settings are marked in gray .

struction loss.
Parameter Sharing. During decomposed bidirectional en-
coding, parameter sharing is used in the text transformer
for two unimodal encodings with different attention masks.
Table 3b shows that the shared text transformer clearly sur-
passes the unshared one, indicating that the two unidirec-
tional representations could implicitly benefit each other by
sharing the same feature space.
Number of Reconstruction Layers. The reconstructor
aims to construct several corrupted sequences upon the
high-level representations and reconstruct the corrupted in-
formation in parallel. Table 3e shows that a deep struc-
ture of the reconstructor helps the downstream tasks. The
multi-layer reconstructor gathers text and multimodal fea-
tures from low to high levels, promising to enhance the rep-
resentation ability.
Prediction Rate. We test the converged performance of the
pretrained model with different prediction rates. To this
end, we randomly mask a subset of output tokens from
loss calculation. As shown in Table 3c, a lower prediction
rate tends to achieve poor performance both on VQA and
NLVR2, probably suggesting that the prediction loss con-
taining a larger number of tokens helps the optimization.
Corruption Rate. The corruption rate determines how
much context should be used for predicting the corrupted to-
kens. It controls the difficulty of the reconstruction problem
and closely affects model performance. We study the influ-
ence of corruption strategies in FLM. As shown in Fig. 3d,
First, we test the length of span corruption. With the growth
of span length, the VQA and NLVR2 performance steadily
reach their maximum values at the 30%∼40% corruption
rate. Our method keeps a 100% prediction rate while allow-
ing a customized corruption rate, which is hopeful to serve

as a replacement for the widely-used MLM to improve con-
vergence speed.

Besides the span corruption which occurs after feature
encoding, we also test the influence of pre-encoding cor-
ruption. We assign random corruptions to each token of the
input sequence and then perform FLM to reconstruct all in-
put tokens. With a 15% corruption rate, random corruption
could slightly increase the VQA score. But unfortunately,
the NLVR2 hurts with a larger corruption rate. We found
that the optimal corruption rate may differ for different cor-
ruption methods. How to effectively fuse different types of
corruption may be a promising direction to increase the di-
versity of contexts further.

4.4. Comparsion with State-of-the-Arts

The comparisons on VQA, NLVR2 and image caption-
ing are shown in Table 4, without using complicated pre-
training tasks like ITM and ITC, our method achieves com-
petitive performance by merely using FLM as the pretrain-
ing task. Compared with prior arts, our method has appeal-
ing advantages regarding pretraining time: First, the pro-
posed FLM helps the convergence speed by enabling 100%
token prediction. Second, we leverage FLM as the single
pretraining objective, without relying on additional time-
consuming pretraining objectives like ITM. Third, we use
the patch-level image features instead of a heavy object de-
tection used in [22, 43].

The performance on cross-modal retrieval is shown in
Table 5. Our FLM-trained model performs poorly if directly
fine-tuned on target downstream datasets. Note that re-
trieval is heavily required for cross-modal alignment learn-
ing (e.g., ITM or ITC) on large-scale datasets since negative
samples are essential to learning discriminative features.
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Model Pretrain. Task Pretrain. Time VQAv2 NLVR2 COCO Captioning
(GPU Days) test-dev test-std dev test BLEU4 METEOR CIDEr SPICE

Pre-trained with <10M images
UNITERLARGE [7] MLM, ITM, MVM, WRA 152 (V100) 73.82 74.02 79.12 79.98 - -
UNIMOLARGE [21] MLM, MVM, ITC 640 (V100) 75.06 75.27 - - - -
OSCAR MLM, ITM 220 (V100) 73.61 73.82 79.12 80.37 37.4 30.7 127.8 23.5
VinVLBASE [43] MLM, ITM 320 (V100) 75.95 76.12 82.05 83.08 38.2 30.3 129.3 23.6
VinVLLARGE [43] MLM, ITM 320 (V100) 76.52 76.60 82.67 83.98 38.5 30.4 130.8 23.4
PixelBERT [13] MLM, ITM - 74.45 74.55 76.5 77.2 - - -
CLIP-ViL [31] MLM, ITM, VQA 40 (A100) 76.48 76.70 - - 40.2∗ 29.7∗ 134.2∗ 23.8∗

ViLT [43] MLM, ITM, WRA 192 (V100) 71.26 - 75.70 76.13 - -
ALBEF (4M) [18] MLM, ITM 28 (A100) 71.40 - - 77.51 - -
ALBEF (4M) [18] MLM, ITM, ITC 28 (A100) 74.54 74.70 80.24 80.50 - -
METERBASE [10] MLM, ITM 64 (A100) 77.68 77.64 82.33 83.05 38.8 30.0 128.2 23.0
OursLARGE (4M) FLM 18 (V100) 77.80 77.84 81.77 81.83 38.3 30.2 130.9 -

Pre-trained with 10M∼100M images
ALBEF (14M) [18] MLM, ITM, ITC 140 (A100) 75.84 76.04 82.55 83.14 - -
BLIP (14M) [17] AR, ITM, ITC 112 (A100) 77.54 77.62 82.67 82.30 38.6 - 129.7 -
OursLARGE (13M) FLM 75 (V100) 78.18 78.24 82.90 83.86 39.1 30.3 132.7 -

Pre-trained with >100M images
SimVLMBASE (1.8B) [37] PrefixLM - 77.87 78.14 81.72 81.77 39.0 32.9 134.8 24.0
SimVLMHUGE (1.8B) [37] PrefixLM - 80.03 80.34 84.53 85.15 40.6 33.7 143.3 25.4
LEMON (400M) MLM - - - - - 40.3 30.2 133.3 23.3

Table 4. Comparisons with models on visual question answering, visual reasoning, and image captioning tasks. The best scores are in
bold, and the second best scores are in underlined. MVM, ITC, ITM, and WRA represent masked vision modeling, image-text contrast,
image-text matching, and word-region alignment, respectively. OursLARGE are trained with 30k/100k steps on 4M/13M data, respectively.

Model Pretrain. Task Pretrain. Time Flickr30k COCO
(GPU Days) IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with <10M images
UNITERLARGE [7] MLM, ITM, MVM, WRA 152 (V100) 75.56 94.08 96.76 87.30 98.00 99.20 52.93 79.93 87.95 65.68 88.56 93.76
UNIMOLARGE [21] MLM, MVM, ITC 640 (V100) 78.04 94.24 97.12 89.40 98.90 99.80 - - - - - -
VinVLLARGE [43] MLM, ITM 320 (V100) - - - - - - 58.8 83.5 90.3 75.4 92.9 96.2
PixelBERT [13] MLM, ITM - 71.5 92.1 95.8 87.0 98.9 99.5 50.1 77.6 86.2 63.6 87.5 93.6
ViLT [43] MLM, ITM, WRA 192 (V100) 64.4 88.7 93.8 83.5 96.7 98.6 42.7 72.9 83.1 61.5 86.3 92.7
ALBEF (4M) [18] MLM, ITM, ITC 28 (A100) 82.8 96.7 98.4 94.3 99.4 99.8 56.8 81.5 89.2 73.1 91.4 96.0
METERBASE [10] MLM, ITM 64 (A100) 82.22 96.34 98.36 94.30 99.60 99.90 57.08 82.66 90.07 76.16 93.16 96.82
OursLARGE (4M) FLM 18 (V100) 74.53 93.96 97.26 88.10 98.30 99.60 46.46 75.43 85.09 62.84 86.64 93.00
OursLARGE (4M) FLM, ITM 57 (V100) 83.40 97.04 98.72 95.00 99.50 99.90 56.55 82.02 89.63 73.52 91.95 95.97

Pre-trained with >10M images
ALBEF (14M) [18] MLM, ITM, ITC 60 (A100) 85.6 97.5 98.9 95.9 99.8 100.0 60.7 84.3 90.5 77.6 94.3 97.2
BLIP (14M) AR, ITM, ITC 112 (A100) 87.2 97.5 98.8 96.6 99.8 100.0 63.1 85.3 91.1 80.6 95.2 97.6

Table 5. Performance comparisons with models pre-trained on Flickr30k and COCO image retrieval (IR) and text retrieval (TR) tasks in
the finetuning setting. The best scores are in bold, and the second best scores are in underlined.

Therefore, we jointly use ITM and FLM to conduct pre-
training to facilitate cross-modal alignments. By doing so,
we obtain considerable performance gain and reach superior
performance on Flickr30K and competitive performance on
COCO over prior arts, suggesting the complementarity of
FLM and other alignment-oriented objectives.

5. Conclusion
In this paper, we propose free language modeling (FLM),

a new pretraining objective for accelerating vision-language
pretraining. Different from previous language modeling
methods, such as MLM and AR, FLM seamlessly disen-
tangles the prediction rate from the tie-up with the corrup-

tion rate, meanwhile allowing a flexible corruption pattern
for each prediction target. Experiments verify the effective-
ness of the proposed FLM both in accuracy and efficiency.
Our model could converge faster with a decent reduction of
training time compared to MLM, while achieving compara-
ble performance on multiple multimodal downstream tasks.
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