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Abstract

Pretraining followed by fine-tuning has proven to be ef-
fective in visual recognition tasks. However, fine-tuning
all parameters can be computationally expensive, partic-
ularly for large-scale models. To mitigate the computa-
tional and storage demands, recent research has explored
Parameter-Efficient Fine-Tuning (PEFT), which focuses on
tuning a minimal number of parameters for efficient adap-
tation. Existing methods, however, fail to analyze the im-
pact of the additional parameters on the model, resulting
in an unclear and suboptimal tuning process. In this pa-
per, we introduce a novel and effective PEFT paradigm,
named SNF (Shortcut adaptation via Normalization Flow),
which utilizes normalizing flows to adjust the shortcut lay-
ers. We highlight that layers without Lipschitz constraints
can lead to error propagation when adapting to down-
stream datasets. Since modifying the over-parameterized
residual connections in these layers is expensive, we fo-
cus on adjusting the cheap yet crucial shortcuts. Moreover,
learning new information with few parameters in PEFT can
be challenging, and information loss can result in label in-
formation degradation. To address this issue, we propose
an information-preserving normalizing flow. Experimental
results demonstrate the effectiveness of SNF. Specifically,
with only 0.036M parameters, SNF surpasses previous ap-
proaches on both the FGVC and VTAB-1k benchmarks us-
ing ViT/B-16 as the backbone. The code is available at
https://github.com/Wang—-Yaoming/SNF

1. Introduction

The conventional paradigm in visual recognition has
been to fine-tune deep neural networks that are pretrained
on large-scale datasets, leveraging general visual repre-
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Method Params FGVC VTAB-1k ImagNet DG

VPT-deep [16] 0.60  89.1 69.4 70.5 26.0
LoRA [15] 0.25 - 72.3 70.8 274
NOAH [42] 0.39 - 73.2 715 328
SNF-shallow  0.036  89.8 73.5 785 340

Figure 1. Illustration of (a) Adapter-based approach (b) Adapting
shortcut with SNF (¢) SNF. The bottom table is the overview of av-
erage accuracy vs. the number of learnable parameters on FGVC,
VTAB-1k, ImageNet, and Domain Generalization (DG) tasks.

sentations to achieve impressive gains for downstream
tasks [4]. However, as the size of these models continues
to scale up, fine-tuning all of their parameters has become
memory costly and even prohibitive. To address this issue,
Parameter-Efficient Fine-Tuning (PEFT) approaches have
emerged as a prevalent paradigm. These approaches [3,

,42] achieve consistent performance gains by only tuning
a small set of parameters.

One pioneering PEFT approach is Visual Prompt Tun-
ing (VPT) [16], which injects learnable prompt tokens into
the input image tokens and trains these prompt tokens with
pretrained model weights being frozen. Despite the im-
proved performance compared with linear probing, VPT ig-
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nores the data distribution shift between the pretrained and
downstream data, which would mislead the feature extrac-
tion and propagate the error through the model. On the
other hand, adapter-based approaches [3, 14, 15] leverage
memory-efficient bottleneck design to adjust the features
learned in pretrained models and can alleviate distribution
shift to some extent. However, its bottleneck design sac-
rifices the information learned from the pretrained model
and results in inferior performance. Besides, since it is hard
to influence the over-parameterized model with very few
parameters, these approaches inevitably require a certain
amount of parameters to perform the feature adjustment for
over-parameterized residual connection. This violates the
original intent of PEFT, i.e., tuning the pretrained model
with as few parameters as possible.

In this paper, we instead pay attention to the shortcut
and revisit it from the perspective of the Lipschitz [39] con-
straint. We reveal that most layers of the pretrained models
meet the Lipschitz constraint due to the implicit Lipschitz
regularization used in pretraining [21], e.g., the weight
decay loss and data augmentation, while the implicit reg-
ularization cannot guarantee all the layers are Lipschitz-
constrained. In the close-set pretraining stage where the
input distribution is fixed, models can still be robust in per-
formance in such a limited input field. However, this robust-
ness can be disrupted when applied to various downstream
datasets, as the data distribution may differ from that of the
close-set pretraining stage. In this case, layers that are not
Lipschitz-constrained may propagate errors throughout the
entire frozen model. Thus, to ensure a stable and robust
feature extraction procedure, we need to adapt the output of
these layers. However, adapting the output from the over-
parameterized residual part using limited parameters can be
challenging. As a result, we choose to adapt the simple
shortcut feature instead, which can also help to regularize
the Lipschitz constant for the model.

When the data distribution changes, the feature extracted
by the frozen model becomes biased. In addition to reg-
ularizing the Lipschitz constant, we need to adjust the bi-
ased distribution to improve the feature extraction capa-
bility. However, learning new information from down-
stream data with limited learnable parameters is challeng-
ing, and conducting adaptation in an information-losing
way like adapter-based approaches [3, 14, 5] is not a fea-
sible option. To this end, we propose a novel and effec-
tive PEFT paradigm, namely Shortcut adaption via Nor-
malization Flow (SNF), that leverages normalizing flows to
adapt the shortcut. Specifically, we freeze the residual part
and compute the transformation of the shortcut using planar
flow layers. The planar flow has a wonderful property that
its Jacobian determinant is easy to compute, allowing us to
constrain the Lipschitz constant by regularizing the log Ja-
cobian determinant.

Experimental results demonstrate that SNF achieves re-
markable performance improvements compared to linear
probing and even outperforms full fine-tuning with only
0.036M learnable parameters. Our approach also outper-
forms state-of-the-art PEFT approaches, achieving better
performance with fewer parameters. Specifically, on FGVC
datasets, our 1-layer flow model outperforms VPT-deep
with only 5% learnable parameters (0.036M vs. 0.66M).
Additionally, extensive experiments on the VTAB bench-
mark and few-shot learning demonstrate that SNF can sur-
pass existing approaches in the low-data regime. Further-
more, SNF is a general approach that can be applied to vari-
ous pretrained backbones, including both vision transform-
ers and convolutional neural networks.

The contributions of this paper are summarized below:

* We reveal that the unconstrained Lipschitz in the pre-
trained model will cause error propagation when trans-
ferred to downstream datasets and directly adapting the
over-parameterized residual part is hard.

* We analyze that the loss of feature information under-
mines the learning of label information when adjusting
the feature distribution in PEFT.

* We propose a novel PEFT framework that leverages nor-
malizing flows to learn an invertible transformation of
shortcuts. The proposed method boosts PEFT with ex-
tremely few parameters.

2. Related Work

Parameter-Efficient Fine-Tuning. Parameter-Efficient
Fine-Tuning (PEFT) has dominated recent advances in Nat-
ural Language Processing (NLP) [10, 14,15,19,22,43]. The
pioneer works can be categorized into the token-based [ 19,
] and adapter-based [ 14, 15,31, 32]. Recently, PEFT has
gradually gained attention in visual recognition tasks as
the growing model size and the growing downstream tasks.
Similar to PEFT in NLP, existing visual PEFT approaches
can also be divided into token-based and adapter-based. For
token-based, Visual Prompt Tuning (VPT) tries to replicate
the success of NLP in visual recognition. Specifically, VPT
injects prompt tokens to the input sequence of vision trans-
formers (ViTs) and then trains these prompt tokens while
freezing the origin ViT. Pro-tuning [26] further replaces
prompt tokens with learnable small networks.
Adapter-based approaches leverage memory-efficient
bottleneck architecture after each block [14] or as the ad-
ditional residual [3, 15] of the frozen model and can achieve
much better performance compared with token-based ap-
proaches. However, the bottleneck design will sacrifice
the information learned by the pre-trained model and result
in poor performance. Besides, adapter-based approaches
pay attention to adapting residuals and need sufficient pa-
rameters, which violates the principle of PEFT: tuning
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the model with as few parameters as possible. Recently,
some work [42] proposes to combine the token-based and
adapter-based approaches with neural architecture search.
However, the costly search process still hinders the devel-
opment of PEFT. Concurrent work [20] performs scaling
and shifting on each operation in pretrained models, which
is memory-costly and rough. In this paper, we propose to
utilize normalizing flow to adapt shortcuts and achieve im-
pressive performance with extremely few parameters.
Normalizing Flow. Generative methods encounter signifi-
cant challenges due to the high dimensionality and complex
structure of the underlying data distribution. Normalizing
Flow based models [5, 6, 18, 35] provide a promising solu-
tion, that parameterizes a complex distribution via multiple
layers of invertible transformations. In this paper, we fo-
cus on how to transform a distribution into the desired form
without loss of information. Thus we introduce invertible
normalizing flow to parameter efficient fine-tuning.

3. Methodology
3.1. Preliminary: Shortcut Connection

Given a model F'(-) that consists of L residual layers as
F(-,W;),i = 1,---, L. Denote the input of layer [ as x;,
then the output of the /th layer can be defined as:

2141 = h(xy) + F(x, W). 1)

Here h(-) is the shortcut connection function. To avoid gra-
dient vanishing, skip connection is usually adopted for h(-),
the final output y of model F' is:

L
y=z+ Y Fla, Wy). (@)

i=l

Considering a little distortion ¢ for feature z;, which is nat-
ural in neural network training. Let 2} and 7 to be any two
points in the d-neighborhood of the input ;. Then we have
the deviation of the output of [ layer as:

ety =i || = llaf —ai + F(af, W) = F (o, Wi)l| 3)

Since the model parameters are pretrained on large datasets
with data augmentation and weight decay, which implies an
implicit Lipschitz constraint [9], we assume that most layers
of the model meet the K-Lipschitz constraint:

|| F(2f, W) — Flap, W)l < K|z} — || 4

Where K] is usually the Frobenius norm of the parameter
W, which is the upper bound of the spectral norm [39].
Then the output of layer [ also meets the Lipschitz con-
straint as:

llafy = @i ll < 1+ K)lJaf — i ®)
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Figure 2. The illustration of Assumption 1, i.e., the Venn diagram
for input X, label Y, and representation Z (Best viewed in color).

Bring Eq. 5 into Eq. 2, we can get that the output meets

L
ly? — '] < (H(HK») -l ©

i=l

When layer j cannot meet K-Lipschitz constraint, i.e., K is
not a constant, then the output is not stable with distortion.

3.2. Adapting Shortcut for Lipschitz Constraint

For the pre-trained dataset, the unconstrained layers usu-
ally result in a limited impact on performance, as the model
is robust in a with-in dataset training manner. However, in
parameter efficient fine-tuning, the model needs to fit the
unseen downstream dataset when most of the model param-
eters are frozen. Then the unconstrained layers will cause
catastrophic error propagation in the model. To resolve this
problem, an intuitive approach is to adapt the residual layer
F(-, W) to reduce error propagation. Unfortunately, since
the residual layer is frozen, it is hard to adapt the over-
parameterized residual layer with few parameters.

Different from the over-parameterized residual layer, the
shortcut is simple but can be used to alleviate error propa-
gation. Specifically, if we map the shortcut with function
9o (-). Then Eq. 6 can be rewritten as:

L
ly? =o'l < (H(K:,b"‘Ki)) lai =zl D

i=l

Regularizing I ? can gradually mitigate error propagation
throughout the model.

3.3. Adapting Shortcut with Normalizing Flow

As the data distribution is changed, the feature extracted
by the frozen model is also biased. Then we need not only
to regularize the Lipschitz constant but also adapt the fea-
ture distribution. In this subsection, we first analyze that
the biased posterior distribution hinders migration perfor-
mance. Then we shed light on the property that needs to be
satisfied for the transformation of the biased posterior dis-
tribution. Specifically, the transformation should not lose
the information of the pre-trained representation. Finally,
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Figure 3. The illustration of Proposition 1. Learning new represen-
tation information is hard with few learnable parameters while los-
ing representation information leads to losing information about
the label (Best viewed in color).

we propose that the normalizing flow meets this property,
and use it to adjust the biased distribution for PEFT.

Given the feature z, the classification model predicts
the distribution p(y|z) that indicates the probability of
the input belongs to the ground truth label. Thus, the
loss function of maximum likelihood estimation (MLE) is
Ey(2) log(p(y|z)), where q(2) is the posterior distribution
learned from data. In traditional fine-tuning, the distri-
bution can be directly learned by a powerful neural net-
work. However, in parameter-efficient tuning, the powerful
neural network is trained on other datasets and is frozen,
then the learned posterior distribution is biased. Therefore,
how to adjust the biased posterior distribution is the key to
parameter-efficient tuning.

Assumption 1. For pretrained model, the learned feature
z is the minimal sufficient representation for learning in-
Sormation of label y from input z as I(x,y) = I(x,z) =
1(y, z). The intuitive diagram is illustrated in Fig. 2.

This assumption is natural for well pre-pretrained models
as the bottleneck architecture and the regularization tricks,
e.g., drop-path are employed during pre-training.

Assumption 2. For downstream datasets, the label infor-
mation ys is assumed to contain the label information y; of
the pretrained large dataset as y1 C ys. And the mutual
information I(x,y,) < I(x,y2) for input x.

This assumption is natural in visual recognition tasks. As
downstream datasets are usually subdivisions under existing
categories of the large pretrained dataset.

Proposition 1. For downstream datasets, we can hardly
learn new information about the input when most features
are frozen, then if we learn representation zpeq, in a way
that information is lost, i.e., I(zpew, ) < I(z,x), the rep-
resentation will also lose information about the label yo as
I(znew, y2) < I(z,92).

Proof. Please refer to the supplementary material. U

We also illustrate this proposition in Fig. 3. This means
we need to adjust the posterior distribution without loss of
information. To this end, We leverage normalizing flow,
an ideal family of variational distributions that is flexible
enough to map any complex distribution with invertible
mapping, to adjust the distribution.

Proposition 2. For z,zo € RN, the mutual informa-
tion I(z1, z2) equals to I(z1,z1) when the mapping zo =
fo(21), fy : RY — RN is invertible and smooth.

Proof. Please refer to the supplementary material. U

The normalizing flow describes the transformation of a
probability density 20 — 27 with a chain of K invertible
and smooth mapping f; as:

= fro---0 fyo f1(z%) (8)

And the new probability density z; is:

Ing(z") = Ing(2") — ©

Here, ln‘det affl

larize the log Jacobian to control the K-Lipschitz constraint
(details in Sec. 3.5) as elaborated in Sec. 3.2.

‘ is the log Jacobian and we can regu-

3.4. Implementation Details

In this subsection, we introduce the implementation de-
tails of the proposed paradigm that utilizes normalizing
flows for adapting shortcuts. For each layer of the pro-
posed paradigm, we adopt planar flow for adapting short-
cuts Given the feature z € RV*¢ we consider a family of
transformations of the form:

f)=z+X-h(y" 2+ 5) (10)

And the log Jacobian for planar transformation is

In

det‘ In|I+XT-h'(y"z248)-4] AD

where \,7, 8 € RY, - is the Hadamard product and h(-) is
a smooth non-parametric non-linearity. In practice, the pa-
rameters \, 7y, § would be broadcast to keep the same shape
with z. Following the practice of [35], we also employ one
affine transformation at the beginning as f(z) =7 -2+ f3,
where 7, 3 € R? and - is still the Hadamard product. The
log Jacobian for affine transformation is ln ‘det % ‘ =lIn~.

During the training procedure, we freeze the residual
part and compute the transformation of the shortcut through
the proposed flow in each layer. Specifically, for the I-th
layer, we transform the shortcut feature from ¢(2?) to q(z;)
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through J flow layers. Then, for the L layer model, the pos-
terior distribution is factorized as:

L

q(z) = [J a(=) (12)

=1

The final objective function is:

Eq(z) 10g<p(ylz)) = Eq(z;’)---q(zg) log(p(ylzzJ? R Zi))
13)
Given the ground truth of the label y, the objective function
can be calculated like common visual recognition tasks.

3.5. Analysis on the Jacobian Determinant

In this subsection, we come back to the Lipschitz con-
straint. We hope the Lipschitz constraint of the flow model
is tighter than that of shortcuts as discussed in Sec. 3.2.
Specifically, the Lipschitz constant of the flow layer is ex-
pected to be no more than 1. For traditional neural net-
works, this constraint is difficult to apply because the Lips-
chitz constant is related to the spectral norm of the parame-
ter matrix, which is difficult to compute. Fortunately, our
flow model has an easy-computed Jacobian determinant,
which is helpful for regularizing the Lipschitz constant.

Proposition 3. When In|det 9| < 0 holds, the Lipschitz
constant for f will meet the constrain as K(f(-)) < 1.

Proof. Please refer to the supplementary material. U

From this way, we can regularize the log Jacobian de-
terminant to be negative to meet the K-Lipschitz con-
straint.  Specifically, we add the regularization loss as
ReLU(In |det 4E|) after the objective function in Eq. 13.
Here ReLU is the ReLU activation.

4. Experiments
4.1. Experimental Setup

Pre-trained Backbones. Following VPT [16], we choose
ViT-B/16 [7] pretrained on ImageNet-21k as the backbone
in most experiments. Besides, we also generalize our
method to several different shortcut-equipped backbones,
including CNN-based ResNet [! 1] backbone, and Swin
Transformer(Swin-B) [23]. We also explore the effective-
ness of tuning large models using ViT-L/16. The details of
the different backbones are shown in Sec. 4.6.

Amount of Parameters. Since the linear layer is used for
all approaches, including linear probing and fine-tuning,
we do not consider the linear layer when calculating the
amount of parameters for a more intuitive comparison.
Implementation Details. We implement the codes with
the Pytorch [30] framework and use 1 Nvidia-V100 GPU
for training. An AdamW [24] optimizer and a cosine decay

learning rate schedule are used with 2 x 10~ initial learning
rate and 1 x 10~* weight-decay for the default setting, ex-
cept for VTAB-1k benchmark. The total training epochs are
set to 100 with 10 warm-up epochs. We employ random re-
sized crop and random horizontal flip as data augmentation
for all the datasets following VPT [16]. For most exper-
iments, we perform both SNF-shallow, which use 1-layer
planar flow for adaption and SNF-deep, which use 5-layer
planar flow. More details are in supplementary materials.

4.2. Experiments on FGVC Datasets

Datasets. FGVC Benchmark consists of 5 Fine-Grained
Visual Classification tasks including CUB-200-2011 [37],
NABirds [36], Oxford Flowers [28], Stanford Dogs [17] and
Stanford Cars [8]. The details of these datasets are provided
in supplementary materials.

Results. Tllustrated in Tab. 1, SNF-shallow achieves bet-
ter average accuracy (89.78% vs. 89.11%) with only 5%
parameters compared to VPT-deep. Besides, our SNF-
deep can further boost the average accuracy to 90.74% and
achieve 4 sota results among five datasets.

4.3. Experiments on VTAB-1k Benchmark

Datasets. VTAB-1k [40] benchmark is composed of 19
visual classification tasks, which are clustered into three
groups: Natural, Specialized, and Structured. The Natu-
ral group contains natural images that come from various
kinds of visual common concepts, including generic and
fine-grained objects. The Specialized group is composed of
images captured via specialized equipment, such as medical
imaging equipment and remote sensing imaging equipment.
The structured group is uncommon and often abstract clas-
sification concepts, essentially depth estimation or object
counting. Top-1 accuracy is the performance metric.
Results. Illustrated in Tab. 2, our SNF-shallow achieves
73.5% averaged top-1 accuracy with only 0.036M params,
which already outperforms other sota approaches like
NOAH (73.2% accuracy, 0.39M params) and VPT-deep
(69.4% accuracy, 0.60M params). Note that it is ex-
tremely challenging to tune the pretrained backbone with
less than 0.1 M params on difficult VTAB-1k Benchmark,
e.g., VPT-shallow uses 0.07M params to tune the model
but only achieves 64.9% averaged top-1 accuracy. While
SNF-shallow exhibits very impressive performance, which
proves that adaption on shortcut with flow model is direct
to the essence of PEFT. Besides, our SNF-deep can further
improve the performance and achieves a new state-of-art
(sota) performance of 74.1% averaged top-1 accuracy and
achieves 10 sota and 6 sub-sota out of 19 tasks.

4.4. Experiments on Few-Shot Learning

Datasets. Following [42], we choose five fine-grained vi-
sual recognition datasets including Food101 [I], Stand-
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Table 1. Per-task fine-tuning results on FGVC datasets. The backbone is ViT-B/16, and we ignore the linear layer when calculate the
amount of learnable parameters. Bold represents the best performance, underlined represents the second best performance.

Methods Params(M) CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean
Linear probing 0 85.3 75.9 97.9 86.2 51.3 79.32
Full-tuning 85.8 87.3 82.7 98.8 89.4 84.5 88.54
Sidetune [41] - 84.7 75.8 96.9 85.8 48.6 78.35
Adapter [14] 0.23 87.1 84.3 98.5 89.8 68.6 85.67
VPT-shallow [16] 0.08 86.7 78.8 98.4 90.7 68.7 84.62
VPT-deep [16] 0.66 88.5 84.2 99.0 90.2 83.6 89.11
Results of our methods
SNE-shallow 0.036 90.0 86.7 99.6 89.3 83.3 89.78
SNF-deep 0.25 90.2 874 99.7 89.5 86.9 90.74

Table 2. Per-task fine-tuning results on VTAB-1k benchmark. The backbone is ViT-B/16, and we ignore the linear layer when calculate
the amount of learnable parameters. Bold represents the best performance, underlined represents the second best performance.

Natural Specialized Structured

g s IS - z g - 7 g 2

HEE S P RS R R

S8 5 E 2833 5|8 2Es5|8eE8&E8 Qs
Methods ¥ 10O U ALK A »n |0 M ¥ |0 U A X B B % %<
Traditional Fine-tuning
Full 85.8 [68.9 87.7 64.3 97.2 86.9 87.4 38.8|79.7 95.7 84.2 73.9|56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1/65.57
Linear 0 ]63.485.063.297.0 86.3 36.6 51.0/78.5 87.5 68.5 74.0|34.3 30.6 33.2 55.4 12.520.0 9.6 19.2|52.94
Other approaches
Bias [2] 0.10 |72.8 87.0 59.2 97.5 85.3 59.9 51.4|78.7 91.6 72.9 69.8|61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1| 62.1
VPT-shallow [16] 0.07 |77.7 86.9 62.6 97.5 87.3 74.5 51.2|78.2 92.0 75.6 72.9|50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1| 64.9
VPT-deep [16]  0.60 |78.8 90.8 65.8 98.0 88.3 78.1 49.6/81.8 96.1 83.4 68.4|68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8| 69.4
LoRA [15] 0.25 [67.1 91.4 69.4 98.8 90.4 85.3 54.0(84.9 95.3 84.4 73.6(82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0| 72.3
NOAH [42] 0.3969.6 92.7 70.2 99.1 90.4 86.1 53.7|84.4 95.4 83.9 75.8(82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2| 73.2
Ours
SNF-shallow 0.036|84.3 93.5 72.7 99.3 91.3 89.5 54.3|85.7 96.2 85.5 74.1|81.1 61.0 48.9 82.3 75.4 49.3 31.1 41.7| 73.5
SNF-deep 0.25 [84.0 94.0 72.7 99.3 91.3 90.3 54.9(87.2 97.3 85.5 74.5|82.3 63.8 49.8 82.575.8 49.2 31.442.1| 74.1

fordCars [8], OxfordFlowers102 [27], OxfordPets [29],
and FGVCAircraft [25] for few-shot evaluation. We fol-
low [33,42,45] and use 1, 2, 4, 8, and 16 samples from each
class for training and perform the evaluation on the whole
test sets. We use the few-shot sample partition file provided
by NOAH [42] for fair comparisons.

Results. Our few-shot experiment is based on SNF-shallow
(0.036M params) and the results are summarized in Fig. 4.
Overall, SNF shows clear advantages in all settings over
other PEFT methods and almost achieves the best perfor-
mance on each dataset under each few-shot setting, ex-
cept for 2-shot, 4-shot, and 8-shot on FGVCAircraft. Note
that when the training examples are extremely few, e.g., 1-
shot, SNF-shallow achieves more significant performance

gains (more than 10% performance gain on Flowers102,
Food101, and OxfordPets), while Adapt-based approaches,
such as NOAH, LoRA, and Adapter, exhibit very poor per-
formance. This phenomenon proves that the information
loss in adapt-based approaches injures the classification
ability significantly, while SNF adapts the feature distri-
bution without losing information, thus can leverage a few
samples for performance improvement.

4.5. Experiments on Domain Generalization

Datasets. The DG experiment is designed to investigate
whether the generalized features can be learned without the
labels of the downstream datasets. Following [42, 44, 45],
We first tune our model on the ImageNet-1k dataset with
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Figure 4. Results of few-shot learning on five daily visual recognition datasets (Best viewed in color).

Table 3. Results on domain generalization, the source domain is
ImageNet-1k. The backbone is ViT-B/16.

Method Source — Dyo — Dsketeh — Da — Dr
Adapter [14] 70.5 59.1 16.4 5.5 22.1
VPT [16] 70.5 58.0 18.3 46 232
LoRA [15] 70.8 59.3 20.0 6.9 233
NOAH [42] 71.5 66.1 24.8 119 285
Ours 785  66.4 27.0 122 304

16-shot examples per class, and then directly evaluate the
model on four variants of ImageNet: ImageNetV2 [34],
ImageNet-Sketch [38], ImageNet-A [13], and ImageNet-
R [12], processed with various domain shifts.

Results. Illustrated in Tab. 3, we implement SNF-shallow
using ViT-B/16 as the backbone. SNF-shallow achieves
a nearly 10% performance improvement on ImageNet-1k
compared with other PEFT approaches, and when directly
tested on four variants of ImageNet, SNF-shallow outper-
forms other approaches on all the target datasets. This indi-
cates that SNF can help the model to adapt the feature dis-
tribution and the adaption is also general for domain shift.

4.6. Experiments on Different Backbones

We perform experiments on different backbones includ-
ing ViT-B/16, ViT-L/16, Swin-B and CNN-based ResNet-
50, ResNet-101 to verify the generalization of our method.
We choose DTD and EuroSAT for comparisons.

Results. Illustrated in Tab. 4, our SNF-shallow can out-
perform the full-tuning performance on all the transformer-
based backbone, i.e., ViT-B, ViT-L and Swin-B, and SNF-
deep can further improve the performance on both two
datasets. Note that on large-size ViT-L/16, which has 306 M
parameters, our SNF-shallow only tunes 0.1 M parameters
and outperforms full-tuning significantly. Since fine-tuning
becomes more expensive as model size increases, the gener-
ation ability of our SNF on large models is more important
and the results are more impressive.

For CNN models, i.e., ResNet-50 and ResNet-101, SNF
can also achieve competitive results towards full-tuning
with only a few parameters. The experiments prove that
our approach is generalizable to all kinds of backbones with
short-cut designs, while approaches like VPT and NOAH
are only suitable for transformer-based frameworks.

4.7. Ablation Study

The length of the flow model. We first perform ablation
studies on NABirds and Stanford Cars to explore the influ-
ence of the length of flow layers. Illustrated in Tab. 5, we
experiment with 1, 3, 5, and 7 layers flow model respec-
tively. Results show that as the number of layers increases,
the flow model would have stronger distribution learning
abilities, thus the accuracy of the two datasets is gradually
improving. We finally choose the 1-layer flow for SNF-
shallow and the S-layer flow for SNF-deep for better pa-
rameters and accuracy trade-off.

Shortcut or Residual. To further verify the effectiveness of
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Table 4. Results on different backbones.SNF-st and SNF-df are the abbreviation of SNF-shallow and SNF-deep, respectively.

ViT-B ViT-L Swin-B ResNet-50 ResNet-101

- s £ S £ S £ S £

A ¢ :E |8 ¢ E|8 & 5|/ & 5|8 ¢ &

Methods | @ @ % A A & |la &8 |2 @ % |»a & %
Linear | 632 875 0 | 677 946 0 |771 940 0 |605 884 0 |587 8.8 0
Full 643 957 858 | 685 957 306 | 765 96.6 87.1 | 61.1 959 245|603 956 426
SNF-st | 727 962 0.036 | 73.5 96.6 0.10 | 77.4 96.8 005 | 62.8 956 003 | 62.5 95.6 0.06
SNE-df | 727 973 025 | 747 97.0 0.9 | 781 973 034 | 635 957 0.18 | 634 95.1 0.43

Table 5. Ablation study on the length of flow model.

Table 8. Experiments on performing SNF in different location.

Methods Params(M) NABirds Stanford Cars Mean

Methods Params(M) SNF-shallow Params(M) SNF-deep

1-layer 0.036 86.7 83.3 85.00
3-layer 0.14 87.2 84.9 86.05
5-layer 0.25 87.4 86.9 87.15
7-layer 0.36 87.4 87.5 87.45

First 0.003 90.8 0.021 91.3
Middle 0.003 88.5 0.021 89.3
Last 0.003 87.6 0.021 87.8
All 0.036 93.5 0.25 94.0

Table 6. Experiments on adapting on shortcut or residual. Here
SNF-s is the abbreviation of SNF-shallow and SNF-d is the abbre-
viation of SNF-deep.

Method Caltech101 Cifar100
etho SNF-s  SNF-d _ SNF-s _ SNI-d

on shortcut 93.5 94.0 84.3 84.0

on residual 90.8 92.2 83.2 83.7

Table 7. Experiments on bottleneck. The backbone is ViT-B/16.

Method Caltech101 Cifar100 #Params
SNF-shallow 93.5 84.3 0.036
SNF-deep 94.0 84.0 0.25
Bottleneck on shortcut 90.9 79.6 0.29

adapting on shortcut rather than the residual connection, we
perform ablation study in Tab. 6. Overall, adapting on short-
cut outperforms adapting on residual significantly. Specifi-
cally, when there are only a few learnable parameters (SNF-
shallow), the gap between the adaptation shortcut and the
residual is large. Introducing a large amount of learnable
parameters (SNF-deep) can reduce the gap but it will re-
duce the parameter efficiency. This trend proves that we
can hardly adapt residual connection especially when the
learnable parameters are few.

Bottleneck or invertible flow. Adapter-based approaches
tend to apply a bottleneck design, where one down-up ar-
chitecture along with ReLU activation is used. We argue
that this information-losing design is harmful to PEFT. To
verify, we conduct ablations in Tab. 7. For a fair compar-
ison, the middle dimension of the bottleneck is settled as
8 and the amount of learnable parameters is 0.29 M. Obvi-
ously, the bottleneck design is much inferior compared with

SNF (more than 3% deficiencies).

Error propagation in PEFT. We further perform experi-
ments to explore whether there exists error propagation in
PEFT. Illustrated in Tab. 8, we perform SNF in different lo-
cations of the backbone. Here, *First’, "Middle’, and ’Last’
indicates using SNF in the first, middle, and last layer of the
backbone, respectively. All the experiments are performed
on Caltech-101. As shown, the performance is worse when
SNF is used in the later layers of the backbone, which
proves that error propagation exists in PEFT.

5. Conclusion

In this paper, we focus on Parameter-Efficient Fine-
Tuning (PEFT) and identify the issues arising from the
data distribution shift and Lipschitz unconstrained lay-
ers, which can lead to error propagation. Additionally,
we demonstrate that information loss during adaption can
harm PEFT performance. To address these challenges, we
propose SNF, which leverages normalization flows with
information-keeping transformations to adapt the shortcut.
We conduct extensive experiments on various datasets, in-
cluding FGVC, VTAB-1k, and Domain Generalization, and
demonstrate the effectiveness of our approach.
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