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Abstract

In recent years, deep learning-based approaches have
shown great strength in multi-view stereo because of their
outstanding ability to extract robust visual features. How-
ever, most learning-based methods need to build the cost
volume and increase the receptive field enormously to get
a satisfactory result when dealing with large-scale tex-
tureless regions, consequently leading to prohibitive mem-
ory consumption. To ensure both memory-friendly and
textureless-resilient, we innovatively transplant the spirit
of deformable convolution from deep learning into the tra-
ditional PatchMatch-based method. Specifically, for each
pixel with matching ambiguity (termed unreliable pixel),
we adaptively deform the patch centered on it to extend
the receptive field until covering enough correlative reliable
pixels (without matching ambiguity) that serve as anchors.
When performing PatchMatch, constrained by the anchor
pixels, the matching cost of an unreliable pixel is guar-
anteed to reach the global minimum at the correct depth
and therefore increases the robustness of multi-view stereo
significantly. To detect more anchor pixels to ensure bet-
ter adaptive patch deformation, we propose to evaluate the
matching ambiguity of a certain pixel by checking the con-
vergence of the estimated depth as optimization proceeds.
As a result, our method achieves state-of-the-art perfor-
mance on ETH3D and Tanks and Temples while preserving
low memory consumption.

1. Introduction

Multi-view stereo (MVS) is one of the core tasks in com-
puter vision which aims to recover the 3D geometry of
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Figure 1. Comparison with the latest learning-based methods [6,
19, 27–29, 32] and traditional methods [12, 36, 37, 39] on Tanks
and Temples [10] and ETH3D [23]. When comparing memory
cost, we set the number of source images to 10 for all methods
and the image size 6, 221 × 4, 146 (ETH3D) as 100% resolution
(8.04% corresponds to Tanks and Temples). Note that learning-
based methods train their models on DTU [1] or BlendedMVS [44]
and only regard the train set of ETH3D as one of their test sets.

a scene using images captured from different viewpoints.
It has been playing an essential role in many downstream
tasks, such as automatic drive and virtual reality. Plentiful
ideas stem from this vein [5,13,20,31,33] and continuously
boost the reconstruction performances to a new level. These
prior arts can be roughly divided into traditional and deep
learning-based methods.

Many existing newly-proposed traditional MVS meth-
ods [22, 37, 39, 47] are extended versions of the Patch-
Match [2] (PM), which calculate the matching cost between
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a fixed-size reference patch and patches in source images
according to a plane hypothesis. These PM-based meth-
ods avoid the construction of cost volume as they employ
a propagation and local refinement strategy to find proper
matches and hence require little memory. Nevertheless, ac-
cording to [14], when a patch lies in a textureless region, the
matching cost will lose credibility since there is no useful
feature information in the receptive field. To mitigate this
problem, attempts [14, 30, 37, 40] either downsample im-
ages or use multiple window sizes to increase the receptive
field. However, they can only handle small areas of texture-
less regions well. To better cope with large-scale textureless
regions, methods such as ACMP [39], PCF-MVS [12], and
ACMMP [36] introduce a coarse fitting plane hypothesis
to the textureless region. Nevertheless, such an approach
suffers from gradual deviation from the provided plane hy-
pothesis, leading to inaccurate depth estimation.

On the contrary, deep learning-based methods [15–17,
34, 38] usually suffer less from the above issue. Benefiting
from the prevalent application of convolution operation, the
receptive field of these methods is much larger than tradi-
tional ones. AA-RMVSNet [32] and TransMVSNet [6] fur-
ther expand the receptive field by introducing deformable
convolution [4]. As the receptive field increases, unreliable
pixels can obtain adequate geometrical information from
surrounding reliable pixels, which results in better depth es-
timation. Nevertheless, as shown in Fig. 1, a larger receptive
field results in more memory consumption, making them
hard to handle datasets with large-scale textureless regions
or high-resolution images using mainstream GPU devices.
Although several recent works have endeavored to reduce
the memory consumption [19, 27, 28], the results are still
not satisfactory compared with traditional methods [36,39].

To develop a memory-friendly solution that can well
handle large-scale textureless regions at the same time, in
this paper, we transplant the spirit of deformable convolu-
tion to a traditional PM-based MVS pipeline. Specifically,
for each unreliable pixel, we adaptively deform its corre-
sponding patch to extend the receptive field until covering
enough reliable pixels, as shown in Fig. 2. We then use
RANSAC to filter out unrelated reliable pixels (belonging
to different geometry hyperthesis or gathered due to occlu-
sion). The residual reliable pixels serve as anchor pixels
for the deformable patch. Then we conduct PM based on
the widely-used normalized cross-correlation (NCC) metric
within this deformable patch. As demonstrated in Fig. 2, the
profile of matching cost using our deformable PM reaches
a salient single valley at the ground-truth depth and hence
guides the unreliable pixels to find a correct match.

One remaining and non-trivial issue that affects the suc-
cess of our adaptive patch deformation is how to evaluate
pixel reliability. Many existing approaches [14, 21, 40] rely
solely on the pixel’s intensity, which is unreliable when fac-

Adaptive deformation

Figure 2. The right image is a demo of adaptive patch deforma-
tion. The green point represents the center pixel, the blue points
around it represent the conventional patch, and the red points form
the receptive field of our deformable patch. The left profile shows
matching costs around the ground truth (green dashed line). Com-
pared with conventional PM, our deformable PM has significant
convergence performance around the ground truth for the unreli-
able pixel.

ing repetitive texture or drastic changes in illumination that
can also cause matching ambiguity. Others [36, 39] simply
set a threshold for the pixel’s matching cost to evaluate re-
liability. However, as mentioned before, the matching cost
is unreliable in textureless regions, making it hard to set a
proper threshold. Instead, we propose to evaluate the reli-
ability of pixels by checking the convergence of estimated
depth as optimization proceeds. Specifically, in each itera-
tion, we use conventional PM to calculate the matching cost
of each pixel within a neighboring window of the current
depth and form a matching cost profile. Then we evalu-
ate pixel reliability by analyzing the geometric features of
the profile, including local and global minima. Our eval-
uation approach can help to find more anchor pixels while
maintaining their credibility, bringing better adaptive patch
deformation.

In summary, our contributions are as follows:

• For PM-based MVS, we propose to adaptively de-
form the patch of an unreliable pixel when comput-
ing the matching cost, which increases the receptive
field when facing textureless regions to ensure robust
matching.

• We propose to detect reliable pixels by checking the
convergence of matching cost profiles, maintaining the
accuracy of detection while being able to find more an-
chor pixels, which ensures better adaptive patch defor-
mation.

• We realize a PM-based MVS method, APD-MVS,
which adopts our adaptive patch deformation and an
NCC-based matching metric. Our method achieves
state-of-the-art results on ETH3D dataset and Tanks
and Temples dataset with lower memory consumption.

2. Related Work
Traditional MVS Methods. According to the definition
of [24], traditional MVS algorithms can be roughly cate-
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Figure 3. Pipeline of APD-MVS. This is a typical pyramid architecture. Conventional PM [36, 37] is applied at the coarsest layer to
obtain the initial depth map. Given a current depth estimate, each pixel’s reliability is evaluated (Sec. 3.4), which is used in adaptive patch
deformation (Sec. 3.3). Based on the depth map and the deformable patches from the former layer, deformable PM (Sec. 3.2) is performed
to get the depth estimates at a finer layer.

gorized into four classes: voxel-based [26], surface itera-
tive evolution-based [3], depth map-based [2], and patch-
based [7] methods. Among them, the depth map-based ap-
proach is favored for its wide applicability. In recent years,
[8, 11, 14, 37] have raised the reconstruction effectiveness
of depth map-based methods to a new level. ACMM [37]
applies pyramid structure and geometric consistency into
MVS, which makes it possible to efficiently process rich
textured regions and small textureless regions while still
cannot estimate the depth for large-scale textureless re-
gions very well. Subsequently, [36, 39] provide a coarse
fitting plane hypothesis for large-scale textureless regions
by performing the Delaunay Triangulation of reliable pix-
els. [12, 21] segment images into superpixels and compute
a fit plane for each superpixel. But as the optimization
proceeds, the depth estimation gradually drifts away from
the fitting plane hypothesis. MAR-MVS [40] calculates the
gradient of intensity along the epipolar line to determine the
patch size, which can adaptively increase the feature recep-
tive field. However, the preset patch size cannot cope with
various application scenarios.
Learning-based MVS Method. After [43] applied deep
learning to depth map estimation, methods based on deep
learning have sprung up. Researchers are dedicated to
proposing a more reasonable way of expanding the recep-
tive field to improve the results. By introducing a pyra-
mid structure, methods such as [9, 35, 42, 45] use the depth
range obtained from the previous layer to provide the ini-
tial value of depth for the next layer, further expanding the
receptive field while reducing the size of cost volume. AA-
RMVSNet [32] proposes an adaptive aggregation module

implemented by deformable convolution to achieve a more
robust feature extraction. [6, 29] go a step further by intro-
ducing the transformer structure into the MVS task to ob-
tain global feature information. As opposed to traditional
methods, which are always limited by the size of the recep-
tive field, deep learning-based methods are more feature-
aware. As a result, their reconstruction results often out-
perform traditional methods. However, even if numerous
works [19,27,28] try to reduce GPU memory consumption,
they still can not well handle large-scale scenes with high-
resolution images such as ETH3D [23].

3. Method
3.1. Overview

Given a set of images {Ii}Mi=1 and the corresponding
camera parameters {Pi}Mi=1, our algorithm needs to esti-
mate the depth map of each image. The algorithm pipeline
is shown in Fig. 3.

For each reference image I0 with its source images
{Ii}N−1

i=1 (N ≤ M), we obtain a pyramid structure by scal-
ing at different layers {Li}Ki=1, where the 1-st layer cor-
responds to the raw image. At the K-th layer, we adopt
conventional PM to get the initial depth map, which is
subsequently used to evaluate the reliability of each pixel
(Sec. 3.4). For each unreliable pixel, we adaptively deform
its corresponding patch to cover enough anchor pixels with
high reliability (Sec. 3.3). At the middle layer, depths are
inherited from the previous layer by upsampling. Depend-
ing on the reliability of the pixel, different matching strate-
gies are applied. For reliable pixels, a conventional PM is
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applied, and for unreliable pixels, its match strategy is re-
placed by deformable PM (Sec. 3.2). Similarly, after ob-
taining the depth, the pixel’s reliability and the deformable
patch of the unreliable pixel are calculated again, which are
then fed to the next layer. Finally, at the 1-st layer, depth
estimations are fused to get a dense point cloud. In addi-
tion, we make some changes to propagation and refinement
to better exploit pixels’ reliability (Sec. 3.5).

3.2. Deformable PatchMatch

It is necessary to start with a review of the conven-
tional PM method. Given a plane hypothesis, we can ob-
tain the projected patch on the source image for a fixed-
size patch centered on a pixel in the reference image. The
matching cost between the two patches is usually calcu-
lated based on the NCC metric. Specifically, suppose
that the reference image Ii with camera parameters Pi =
{Ki,Ri,Ci} has source image Ij with camera parameters
Pj = {Kj ,Rj ,Cj}, where K is the intrinsic parameters,
R is the rotation matrix, and C is the camera center. For a
pixel p in Ii with homogeneous coordinate p = [u, v, 1]T ,
suppose its plane hypothesis is given by fp = [nT , d]T ,
where n represents the plane’s normal and d is the depth.
According to [25], we can define homography as

Hij = Kj(RjR
−1
i +

Rj(Ci −Cj)n
T

nT dK−1
i p

)K−1
i . (1)

We set a square window Bp centered on pixel p to represent
the reference patch. For Bp, we can find its corresponding
patch Bj

p in the source image Ij using Hij .The matching
cost is computed as one minus the NCC score

mj(p, fp,Bp) = 1−
cov(Bp,B

j
p)√

cov(Bp,Bp)cov(B
j
p,B

j
p)
, (2)

where cov(X,Y) = E(x − E(x))E(y − E(y)), x and y
is the color value in X and Y, E(·) is the expected value.
Then we can get m(p, fp,Bp) considering all the source
images by aggregation using view weights [37].

Unliking the conventional PM that only considers pix-
els in the square window, we propose the deformable PM,
which calculates the matching cost for an unreliable pixel
within a deformable patch that covers enough anchor pix-
els with high reliability. Suppose that p is an unreliable
pixel with a deformable patch that contains anchor pixels
S. Given the plane hypothesis fp, we define the matching
cost computed by deformable PM as

mD(p, fp,S) =λm(p, fp,Bp)

+ (1− λ)

∑
s∈S m(s, fp,Bs)

|S|
,

(3)

where λ is a weight value used to adjust the effect of anchor
pixels on the center pixel p. Bp’s window size is set to

Unreliable pixel Reliable pixel / Square window

Figure 4. Visualization for computation of deformable PM. The
green point represents the central unreliable pixel. The red dashed
lines form our deformable patch with anchor pixels s(i = 1...8)
represented using red points. The matching cost of the center point
is obtained by a weighted aggregation form.

w × w, the increment is set to θ, Bs’s window size is the
same as Bp’s, but the increment is set to w

2 , which speeds
up computation. In experiments, we set λ = 0.25, w = 11,
θ = 2 and |S| = 8.

The computation of mD(p, fp,S) is visualized in Fig. 4.
In order to obtain robust local features, we generate a lo-
cal window Bs(s ∈ S) for each anchor pixel s to get
m(s, fp,Bs). Then we apply separate calculations for each
window Bp,Bs(s ∈ S), which are finally aggregated by
weight to retain more feature information. The reason why
we adopt an aggregation by weight instead of calculating
m(p, fp,Ball),Ball = Bp ∪{Bs|s ∈ S} is that usually the
number of unreliable pixels contained in Ball will exceed
that of reliable pixels. Directly calculating m(p, fp,Ball)
will result in the feature information from reliable pixels
being filtered out as noise (More experiments in Sec. 4.5).

3.3. Adaptive Patch Deformation

Patches need to be adaptively deformed in advance to
facilitate the calculation of the matching cost for unreliable
pixels. When deforming a patch, the following principles
should be observed as much as possible:

• The deformable patch of an unreliable pixel should
adaptively cover enough nearby anchor pixels;

• Depths in the deformable patch should be continuous,
ensuring pixels in the patch are correlative;

• Anchor pixels should try to be closer to the unreliable
pixel to provide a better-fitting deformable patch;

• Anchor pixels should be found in various directions to
increase the robustness of deformable PM.

1624



Thus, we propose an adaptive patch deformation algo-
rithm using a spoke-like approach and RANSAC to satisfy
the above requirements. To facilitate the subsequent pro-
cessing, the nearest reliable pixel for each pixel is obtained
in advance as

N (p) =

 p ifR(p) = 1;

argmin
q∈Ω,R(q)=1

||q− p|| ifR(p) = 0, (4)

where Ω is a search range centered on p (in experiments,
we define Ω as a 100 × 100 square window), R(p) is an
indicator for p, where 1 indicates reliable while 0 means
unreliable.

The main idea of our algorithm is to obtain ϕ candidate
reliable pixels {Ci}ϕi=1, and then retain the well-adapted
ones by RANSAC. When searching for candidate pixels for
central pixel p in all directions, we adopt a spoke-like ap-
proach that slices the searching space into ϕ sectors with
the same angle. For each sector, given an initial searching
radius, a random direction vector in this sector is generated
to obtain the searched pixel q. If a valid N (q) exists and
N (q) is within the sector, mark that a suitable candidate
reliable pixel has been found in this sector. Otherwise, sev-
eral more random searching under this radius is performed.
If no candidate is still found, enlarge the radius and repeat
the above process as shown in Fig. 5. This algorithm en-
sures that one reliable pixel exists in each direction and that
candidate pixels are as close to the center as possible.

After obtaining {Ci}ϕi=1, the filtering process is per-
formed by the RANSAC algorithm, which aims to improve
the anti-occlusion ability. Since our method is based on PM,
the pixels in the deformable patch are implicitly required
to have the same plane hypothesis. If there are candidates
that can not fit into an accordant plane, we consider them
outliers. Thus, for each iteration, three candidate pixels are
randomly sampled, and the fitting plane π is formed by their
3D points. The central pixel is required to be inside the tri-
angle formed by these three candidate pixels, ensuring that
anchor pixels are in various directions of the central pixel.
After that, the distances {Di}ϕi=1 between π and the 3D
points corresponding to the candidate pixels are calculated.
Then the cost(π) for this random sample is obtained by

cost(π) =

[
α

β

]
=


ϕ∑

i=1

I(Di > ε)

Dp

 , (5)

where ε is a threshold to filter outliers, I(·) is an indicator
function such that I(true) = 1 and I(false) = 0, Dp is
the distance of center pixel p’s 3D point to the fitting plane
π. When comparing costs of different selections, α is first
considered, with smaller α representing a better planar fit.
If two costs are equal in the α dimension, then the effect

p a
b

c

z
x

yRadius 1
Radius 2

Radius 3

Candidate for sector Unreliable pixel Reliable pixel

Figure 5. A demo of spoke-like searching. For the unreliable
pixel p, the black dashed lines form the searching sectors. The red
dashed curves represent different searching radii. For Sectori,
at radius 1, unreliable pixel a doesn’t have nearby reliable pixel
N (a). At radius 2, b has N (b)=x, but x is out of this sector. At
radius 3, c has reliable pixel y and z nearby, since y is closer to c
than z, so N (c)=y, which will be selected as the candidate pixel
for this sector.

of β is considered. After a certain number of iterations, if
the best-fitting plane πbest can be found (sufficient points
distributing near the plane), up to |S| reliable pixels from
{Ci|Di ≤ ε, i = 1...ϕ} are selected based on their dis-
tance to the fitting plane πbest. Then they form a deformable
patch. Otherwise, the central pixel may lie in a non-planar
area. In this case, we remain to adopt conventional PM to
obtain the matching cost.

To better cope with non-planar areas, we initially relax
the planar fit threshold ε, treating them as planar areas,
and gradually shrink the fitting threshold as the optimiza-
tion proceeds so that the non-planar areas can get rid of the
imposed planar constraint. By such means, it is easier for
non-planar areas to find the correct depth estimation under
a good initialization from the deformable PM. In experi-
ments, we set ϕ = 32 and gradually decrease ε from 1%
depth range of the scene to 0.5%.

3.4. Pixel Reliability Evalution

Now there is only one problem left: how to evaluate
the reliability of pixels. It is inappropriate to strictly di-
vide pixels into two categories (reliable and unreliable) at
the beginning. As optimization proceeds, the depth estima-
tion of more pixels will fall into the searching range where
no matching ambiguity exists, making them stable enough
to serve as anchor pixels for deformable PM. More anchor
pixels can bring a better-fitting deformable patch, further
improving depth estimation accuracy. Thus we propose a
mechanism for pixel reliability evaluation by checking the
distribution of matching costs with the proceeding of opti-
mization. Specifically, for each pixel, we use the matching
costs computed by conventional PM in the vicinity of the
current depth estimation to form a matching cost profile.
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Algorithm 1: Pixel reliability evaluation
input : Profile P(D) for pixel p, D′ and η
output: pixel p’s state

1 {P(DLM)} ← FindLMins(P(D));
2 P(DGM)← FindGMin (P(D));
3 if |DGM −D′| > η or P(DGM) > t1 then
4 return Unreliable;

5 if |{P(DLM)}| == 1 then
6 if P(DGM) < t2 then return Reliable;
7 else return Unreliable;

8 var← 0;
9 foreach P in {P(DLM)} do

10 var += (P − P(DGM))2;

11 var =
√

var/(|{P(DLM)}| − 1);
12 if var > t3 then return Reliable;
13 else return Unreliable;

Then the reliability is evaluated by checking the valleys and
convergence of the profile.

Since the depth range varies in different scenes, sampling
directly on it doesn’t have universality, so we perform the
sampling operation under disparity space. For each pixel
p in the reference image I0, given the plane hypothesis
fp = [nT , d]T and the camera focal length f , the average
disparity is calculated as

D′ =
f ∗ E(bIj )

d
, Ij ∈ Sgood, (6)

where Sgood is a subset of {Ii}N−1
i=1 , which is selected by

joint view selection [37], bIj is defined as the length of base-
line between reference image I0 and source image Ij , E(·)
is the expected value. Then we compute the matching cost
by conventional PM to get a profile P(D)

P(D) = m(p, [nT ,
f ∗ E(bIj )

D
]T ,B),

D ∈ [D′ − δ,D′ + δ], Ij ∈ Sgood,

(7)

where B is a conventional square window centered on p, δ
is the sample range. After obtaining the matching cost pro-
file, we can evaluate the pixel’s reliability according to the
geometric properties of the matching cost profile, as shown
in Algo. 1. The main idea of the algorithm is to calculate the
distinctiveness of the global minimum compared with other
local minimums. For reliable pixels, the global minimum
should be more distinctive than that of unreliable pixels.

We classify the pixels into two states: Reliable and
Unreliable. Function FindLMins aims to find local min-
imums in the profile, and FindGMin aims to find the
global minimum. Parameters t1, t2, t3 are the threshold,

which we set to 0.50, 0.15, 0.20, respectively, in our exper-
iments. η (< δ) is a threshold to determine whether the
optimization of depth estimation has converged. As the op-
timization proceeds, η will be dynamically reduced to make
the determination of reliable pixels more stringent. In ex-
periments, we set δ = 30 and η = max(6− 2 ∗ i, 2), where
i is the iteration number.

3.5. Propagation and Refinement

We improve the propagation and refinement process
based on [37] to better utilize the deformable patch infor-
mation of unreliable pixels.

When performing joint view selection on unreliable pix-
els, we directly use anchor pixels in the deformable patch
to calculate the cost matrix M proposed by [37], which im-
proves the robustness of view selection.

During propagation, the candidate plane hypotheses
propagated to the unreliable pixel are replaced by those of
anchor pixels. Besides, the fitting plane hypothesis from
the deformable patch is added to the candidates in the re-
finement step to speed up the convergence. The above man-
ners make the depth estimation of unreliable pixels partially
rely on that of reliable pixels. Thus, the reliable pixels are
processed first, and later for the unreliable pixels in each
iteration.

When the optimization for depth estimation of a truly re-
liable pixel has not converged yet, i.e., |DGM −D′| > η in
Algo. 1, the reliable pixel will adopt deformable PM as if
it were an unreliable pixel. On the one hand, this is to ex-
ploit the surrounding information to speed up convergence
and, on the other hand, to prevent such kind of reliable pix-
els from impairing the unreliable pixel’s adaptive patch de-
formation. However, imposed planar constraints will cause
a decrease in accuracy for depth estimation at such kinds
of pixels. So a local refinement is added at the end of the
optimization. By performing a small sampling around the
original depth, we obtain the optimum depth based on the
cost value from the conventional PM. If the cost of the opti-
mum depth is much smaller than that of the original depth,
the optimum depth will be adopted, increasing the accuracy
at truly reliable pixels while having little influence on those
truly unreliable pixels.

4. Experiments
4.1. Datasets and Implementation

Datasets. To verify the effectiveness of our method, we use
ETH3D [23] dataset and Tanks and Temples [10] dataset
in our experiments. The ETH3D dataset is used to test the
performance when processing large-scale scenes with high-
resolution images. The Tanks and Temples dataset also con-
tains large-scale scenes but has a smaller resolution (about
1,920 × 1,080) and we use this dataset to demonstrate the
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IterMVS-LS EPP-MVSNet ACMMP APD-MVS (ours)

Figure 6. Qualitative results of pipes on ETH3D. It is obvious that the completeness of our results is better.

Train Test
2cm 10cm 2cm 10cmMethod

F1 Comp Acc F1 Comp Acc F1 Comp Acc F1 Comp Acc
PatchmatchNet [28] 64.21 65.43 64.81 85.70 83.28 89.98 73.12 77.46 69.71 91.91 92.05 91.98

GBi-Net [19] 70.78 69.21 73.17 90.21 86.16 95.21 78.40 75.65 82.02 91.35 86.67 96.99
IterMVS-LS [27] 71.69 66.08 79.79 88.60 82.62 96.35 80.06 76.49 84.73 92.29 88.34 96.92
MVSTER [29] 72.06 76.92 68.08 91.73 91.91 91.97 79.01 82.47 77.09 93.20 92.71 94.21

EPP-MVSNet [18] 74.00 67.58 82.76 92.13 87.72 97.29 83.40 81.79 85.47 95.22 93.75 96.84
Colmap [22] 67.66 55.13 91.85 87.61 79.47 98.75 73.01 62.98 91.97 90.4 84.54 98.25
ACMM [37] 78.86 70.42 90.67 91.70 86.40 98.12 80.78 74.34 90.65 92.96 88.77 98.05

PCF-MVS [12] 79.42 75.73 84.11 92.98 90.42 95.98 80.38 79.29 82.15 91.56 91.26 92.12
MAR-MVS [40] 79.21 77.19 81.98 92.71 90.44 95.51 81.84 84.18 80.24 94.22 94.43 94.21

ACMP [39] 79.79 72.15 90.12 92.03 87.15 97.97 81.51 75.58 90.54 92.62 88.71 97.47
ACMMP [36] 83.42 77.61 90.63 95.54 93.32 97.99 85.89 81.49 91.91 96.27 94.67 98.05

APD-MVS (ours) 86.84 84.83 89.14 97.12 96.79 97.47 87.44 85.93 89.54 96.95 96.95 97.00

Table 1. Quantitative results on ETH3D benchmark. Best results are marked in bold. Our method ranks first in terms of the F1-score.

generalization ability.
Implementation. We take [37] as our basline and form a
pyramid structure by image scaling. The number of pyra-
mid layers is related to the image resolution, divided into
four layers on ETH3D and three on Tanks and Temples. At
each layer, we perform four iterations on each image. We
adopt an NCC-based matching metric when implementing
our PM-based MVS method, APD-MVS.

4.2. Results on ETH3D

We followed the fusion method of [36] to obtain point
clouds. Fig. 6 shows a qualitative comparison, and it is ev-
ident that our method achieves higher completeness while
containing fewer outliers. Tab. 1 shows the quantitative
analysis, where the first group is learning-based and the sec-
ond is traditional. Methods such as [12,36] can not guaran-
tee the convergence of the optimization for depth estimation
in textureless regions since they only regard the fitting plane
hypothesis as prior information, resulting in an incomplete
point cloud. Furthermore, due to the high resolution of im-
ages, only a few learning-based methods can accomplish the
reconstruction task on this dataset, such as [18, 19, 28, 46].
However, their performance is still not satisfactory.

4.3. Results on Tanks and Temples

There are more learning-based methods tested on this
dataset, and to ensure fairness, we use the fusion strat-

egy of learning-based methods [20, 41]. Tab. 2 shows the
quantitative analysis. We have the best performance among
the latest traditional methods. Meanwhile, our method can
achieve competitive performance compared with the latest
learning-based methods. Especially when dealing with tex-
tureless scenes, such as Horse and Auditorium, our method
can exceed learning-based methods significantly. Qualita-
tive results are in supplementary materials.

4.4. Memory Comparison

We test the memory cost on NVIDIA TITAN. As shown
in Fig. 1, despite the effort of [19, 27, 28], learning-based
methods still can not well balance memory consumption
and reconstruction results. On the contrary, traditional
methods typically don’t cost much GPU memory. Tab. 3
gives a quantitative comparison. CasMVSNet [9] is a
widely-used learning-based baseline, while Patchmatch-
Net [28], GBi-Net [19] and IterMVS [27] are designed to
reduce memory consumption. Compared with the latest tra-
ditional method ACMMP [36], the performance of these
learning-based methods is still unsatisfactory. Considering
all these latest methods, our APD-MVS can achieve lower
memory consumption and better reconstruction results.

4.5. More Experiments

The weighted aggregation form of deformable PM. As
mentioned in Sec. 3.2, mD(p, fp,S), termed weighted
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Method Intermediate Advanced
Mean Fam. Fra. Hor. Lig. M60. Pan. Pla. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.

PatchmatchNet [28] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
CasMVSNet [9] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11

AA-RMVSNet [32] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 33.53 20.96 40.15 32.05 46.01 29.28 32.71
EPP-MVSNet [18] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75

GBi-Net [19] 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89 37.32 29.77 42.12 36.30 47.69 31.11 36.93
MVSTER [29] 60.92 80.21 63.51 52.30 61.38 61.47 58.16 58.98 51.38 37.53 26.68 42.14 35.65 49.37 32.16 39.19

TransMVSNet [6] 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62
Colmap [22] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94

PCF-MVS [12] 55.88 70.99 49.60 40.34 63.44 57.79 58.91 56.59 49.40 35.69 28.33 38.64 35.95 48.36 26.17 36.69
ACMM [37] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
ACMP [39] 58.41 70.30 54.06 54.11 61.65 54.16 57.60 58.12 57.25 37.44 30.12 34.68 44.58 50.64 27.20 37.43

ACMMP [36] 59.38 70.93 55.39 51.80 63.83 55.94 59.47 59.51 58.20 37.84 30.05 35.36 44.51 50.95 27.43 38.73
APD-MVS (ours) 63.64 75.01 63.70 65.22 65.84 60.27 60.10 61.66 57.29 39.91 32.54 42.79 39.24 51.03 33.08 40.77

Table 2. Quantitative results of F-score on Tanks and Temples benchmark. Best results are marked in bold. The second-best results
are marked with an underscore. Our results exceed existing traditional methods and are comparable to the latest learning-based ones.

Method GPU Mem. (GB)
Res. (8.04%) Res. (50.0%) Res. (100%)

CasMVSNet [9] 7.8 - -
GBi-Net [19] 3.6 20.7 -

PatchmatchNet [28] 3.5 18.6 -
IterMVS-LS [27] 2.5 11.2 22.0

ACMMP [36] 1.4 4.5 7.9
APD-MVS (ours) 1.4 3.7 6.6

Table 3. Quantitative comparison of GPU memory cost at dif-
ferent resolution. We set the resolution of ETH3D (6, 221 ×
4, 146) as 100%.

Method 2cm 10cm
F1 Comp Acc F1 Comp Acc

APD-MVS / MF 83.73 81.43 86.39 95.68 94.91 96.51
APD-MVS / WF 86.84 84.83 89.14 97.12 96.79 97.12

Table 4. Quantitative comparison of the weighted form (WF)
and mixed form (MF) on ETH3D.

form, is better than m(p, fp,Ball), termed mixed form. In
experiments, we find that the optimization for depth esti-
mation of some unreliable pixels can not converge when
using m(p, fp,Ball), which can harm the performance of
our APD-MVS. The reason behind the above result is that
Ball usually contains far more unreliable pixels than reli-
able ones, calculating m(p, fp,Ball) will lead to the reliable
pixels being treated as noise due to the anti-interference ca-
pability of NCC used in conventional PM, and the feature
information will be lost. Via the weighted aggregation form,
the feature information from reliable pixels can be retained
appropriately, and the final matching result will be better.
The comparison results are shown in Tab. 4.
Pixel reliability evaluation using the matching cost pro-
file. We propose to utilize the geometric features of match-
ing cost profiles to detect reliable pixels. In such a manner,
more anchor pixels can be found, ensuring better-fitting de-
formable patches are generated. For comparison with other

Method 2cm 10cm
F1 Comp Acc F1 Comp Acc

APD-MVS / SD 81.57 77.19 87.11 94.46 92.21 97.17
APD-MVS / MT 76.71 76.52 77.54 91.66 93.01 90.60
APD-MVS / PA 86.84 84.83 89.14 97.12 96.79 97.12

Table 5. Quantitative comparison of different reliability eval-
uation methods on ETH3D. We combine our APD-MVS with
matching cost profile analyzing (APD-MVS / PA), standard devi-
ation (APD-MVS / SD), and matching cost under a certain thresh-
old (APD-MVS / MT).

evaluation mechanisms combined with our APD-MVS, we
calculate the colors’ standard deviation in a fixed-size win-
dow to evaluate pixels’ reliability similar to [21] (APD-
MVS / SD) while regarding pixels with matching costs un-
der a certain threshold [36] as reliable pixels (APD-MVS /
MT). As shown in Tab. 5, the performances based on them
are much worse than that based on our matching cost profile
analyzing (APD-MVS / PA).

5. Conclusion
In this paper, we propose adaptive patch deformation.

Based on that we realize a traditional PM-based MVS
method, APD-MVS, which can be both textureless-resilient
and memory-friendly. The SOTA performance with lower
memory consumption proves that our approach is ground-
breaking. However, a few problems still need to be solved
when facing large-scale textureless curved surfaces, pre-
venting further improvement. These may be solved in fu-
ture work by introducing a curved surface assumption when
conducting our deformable PM.
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