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Abstract
Continual learning aims to enable a model to incre-

mentally learn knowledge from sequentially arrived data.
Previous works adopt the conventional classification
architecture, which consists of a feature extractor and a
classifier. The feature extractor is shared across sequen-
tially arrived tasks or classes, but one specific group of
weights of the classifier corresponding to one new class
should be incrementally expanded. Consequently, the
parameters of a continual learner gradually increase.
Moreover, as the classifier contains all historical arrived
classes, a certain size of the memory is usually required
to store rehearsal data to mitigate classifier bias and
catastrophic forgetting. In this paper, we propose a non-
incremental learner, named AttriCLIP, to incrementally
extract knowledge of new classes or tasks. Specifically,
AttriCLIP is built upon the pre-trained visual-language
model CLIP. Its image encoder and text encoder are fixed
to extract features from both images and text. Text consists
of a category name and a fixed number of learnable
parameters which are selected from our designed attribute
word bank and serve as attributes. As we compute the
visual and textual similarity for classification, AttriCLIP is
a non-incremental learner. The attribute prompts, which
encode the common knowledge useful for classification, can
effectively mitigate the catastrophic forgetting and avoid
constructing a replay memory. We evaluate our AttriCLIP
and compare it with CLIP-based and previous state-of-the-
art continual learning methods in realistic settings with
domain-shift and long-sequence learning. The results show
that our method performs favorably against previous state-
of-the-arts. The implementation code will be available at
https://gitee.com/mindspore/models/tree/master/research/
cv/AttriCLIP.

1. Introduction
In recent years, deep neural networks have achieved re-

markable progress in classification when all the classes (or
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tasks) are jointly trained. However, in real scenarios, the
tasks or classes usually sequentially arrive. Continual learn-
ing [13, 21, 28] aims to train a model which incrementally
expands its knowledge so as to deal with all the histori-
cal tasks or classes, behaving as if those tasks or classes
are jointly trained. The conventional continual learning
methods learn sequentially arrived tasks or classes with a
shared model, as shown in Fig. 1(a). Such processing that
fine-tunes the same model in sequence inevitably results in
subsequent values of the parameters overwriting previous
ones [20], which leads to catastrophic forgetting. Besides,
the classification ability on historical data can be easily de-
stroyed by current-stage learning. In the conventional con-
tinual learning methods, a classifier on top of the feature
extractor is employed to perform recognition. As one group
of weights in the classifier is responsible for the prediction
of one specific class, the classifier needs to be expanded
sequentially to make a continual learner able to recognize
novel classes. Moreover, extra replay data is usually re-
quired to reduce the classifier bias and the catastrophic for-
getting of learned features. It is still challenging if we ex-
pect a non-incremental learner, i.e., the trainable parame-
ters of the model do not incrementally increase and no re-
play data is needed to avoid the classifier bias and the catas-
trophic forgetting.

To address the above issues, this paper proposes a con-
tinual learning method named AttriCLIP , which adopts the
frozen encoders of CLIP [19]. It is a typical visual-language
model that conducts image classification by contrasting the
features of images and their descriptive texts. In the face of
increasing instances, we design a prompt tuning scheme for
continual learning. As shown in Fig. 1(b), there are simi-
lar attributes in images with different categories, such as “a
brown-white dog lying on the grass” and “a brown-white
cat lying on the grass”. They belong to different categories
but both have “lying on the grass” and “brown-white” at-
tributes, so the distance between these two images of differ-
ent categories may be close in the feature space. Therefore,
we selectively train different prompts based on the attributes
of the images rather than the categories. In this way, there is
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Figure 1. (a) Traditional framework for continual learning. The encoder and the classifier are trained by tasks in sequence, some of which
even need extra memory data. In the framework, the model parameters of the current task are fine-tuned from the parameters trained by the
previous last task and then are used for the classification of all seen tasks. The total number of categories the model can classify is fixed in
the classifier. (b) Our proposed AttriCLIP for continual learning. AttriCLIP is based on CLIP, which classifies images by contrasting them
with their descriptive texts. The trainable prompts are selected by the attributes of the current image from a prompt pool. The prompts are
different if the attributes of the image are different. The trained prompts are concatenated with the class name of the image, which serve as
a more accurate supervised signal for image classification than labels.

no problem of knowledge overwriting caused by sequential
training of the same model with increasing tasks.

Specifically, an attribute word bank is constructed as
shown in Fig 1(b), which consists of a set of (key, prompt)
pairs. The keys represent the local features (attributes) of
images and the prompts represent the descriptive words cor-
responding to the keys. Several prompts are selected ac-
cording to the similarities between their keys and the in-
put image. The selected prompts are trained to capture an
accurate textual description of the attributes of the image.
If images with different labels have similar attributes, it
is also possible to select the same prompts, i.e., the same
prompts can be trained with images of different categories.
Similarly, different prompts can be trained by the images
of the same category. The trained prompts are concate-
nated with the class names and put into the text encoder
to contrast with the image feature from the image encoder.
This process makes our AttriCLIP distinct from all previous
classifier-based framework as it serves as a non-incremental
learner without the need to store replay data. The goal of
our method is to select the existing attributes of the current
image as the text description in the inference process, to
classify the image. In addition, the structure of AttriCLIP
can also avoid the problem of the increasing classifier pa-
rameters with the increase of the tasks and the problem of
the inefficiency about memory data in the traditional con-
tinual learning methods.

The experimental setup of existing continual learning
methods is idealized which divides one dataset into sev-
eral tasks for continual learning. The model can set the
output dimensionality of the classifier according to the to-
tal number of categories in the dataset. In practical appli-
cations, with the continuous accumulation of data, the to-
tal number of categories of samples usually cannot be ob-

tained when the model is established. When the total num-
ber of categories exceeds the preset output dimensionality
of the classifier, the model has to add parameters to classi-
fier and requires the previous samples for fine-tuning, which
greatly increases the training burden. Therefore, the contin-
ual learning approaches are required to have the ability to
adapt to the categories of freely increasing data, i.e., the
model capacity should not have a category upper limit. In
order to measure such ability of continual learning models,
we propose a Cross-Datasets Continual Learning (CDCL)
setup, which verifies the classification performance of the
model on long-sequence domain-shift tasks. The contribu-
tions of this paper are summarized as follows:

• We establish AttriCLIP, which is a prompt tuning ap-
proach for continual learning based on CLIP. We train
different prompts according to the attributes of images
to avoid knowledge overwriting caused by training the
same model in sequence of classes.

• AttriCLIP contrasts the images and their descriptive
texts based on the learned attributes. This approach
avoids the memory data requirement for fine-tuning
the classifier of increasing size.

• In order to evaluate the performance of the model
on long-sequence domain-shift tasks, we propose a
Cross-Datasets Continual Learning (CDCL) experi-
mental setup. AttriCLIP exhibits excellent perfor-
mance and training efficiency on CDCL.

2. Related Work
Continual learning. The existing continual learning

algorithms can be mainly divided into three categories:
regularization-based, architecture-based, and rehearsal-
based methods. Regularization-based methods [1, 8, 13]
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alleviate catastrophic forgetting to some extent by putting
constraints on important parameters related to previous
tasks without any memory replay. The core of architecture-
based approaches is to assign independent parameters to
different tasks, which can be achieved either by expanding
a network [12, 22, 34], or by dividing the model into sub-
networks [15, 25, 29]. However, most methods are not ap-
plicable to task-agnostic settings, where the task identity is
unknown during inference. Even if the problem can be par-
tially solved by recent methods [18, 32, 33], these methods
are not lightweight enough. Rehearsal-based methods store
the data of previous tasks in a so-called rehearsal buffer
to train with the current task. Simple yet effective, these
methods achieve impressive performance on challenging
settings [2, 3]. However, the performance degrades as the
buffer size reduces [3], and the approach to store data limits
the application in privacy-sensitive scenarios [26].

Prompt tuning for continual learning. Recent con-
tinual learning works [30, 31] adopt visual prompt tuning
to continual learning, which applies a small set of learn-
able parameters to the input, so as to provide additional
instructions for the pre-trained model to be better trans-
ferred to downstream tasks [11]. L2P [31] first connects
visual prompting with continual learning, and proposes to
adapt the model to sequential tasks via a shared prompt
pool. Inspired by the complementary learning systems,
DualPrompt [30] proposed a different approach to append
complementary visual prompts to the pre-trained backbone
to learn task-invariant and task-specific instructions, further
boosting the performance.

The prompts of L2P and DualPrompt are only attached to
the image embeddings. Recent progress in vision-language
models (e.g., CLIP [19]) shows that language usually con-
tains information complementary to vision. CLIP adopts
a dual-stream architecture, which encodes image and text
inputs into visual and textual representations in a joint em-
bedding space. CLIP can generalize well across multiple
downstream tasks. However, to the best of our knowl-
edge, there is no work that takes text prompts into consid-
eration in visual continual learning. We propose a CLIP-
based prompt tuning method, which can continuously learn
long-sequence tasks effectively and efficiently based on the
learned attributes of images.

3. Methodology
3.1. Preliminaries

Continual learning formulation. Continual learning
(CL) requires a model to continuously learn new knowl-
edge from sequential tasks without forgetting the knowl-
edge from previous ones. Consider a sequence of tasks D=
{D1, . . . ,DT }, where the t-th task Dt={(xti, yti)}

nt
i=1 con-

tains nt samples xti and the corresponding labels yti . During
training on task Dt, the access to data from {D1, . . . ,Dt−1}

is unavailable or limited. In task-agnostic class-incremental
learning, data Dt of different tasks arrives in sequence
t = {1, . . . , T} without overlapping and the data arriving
at different times comes from different classes. Besides, in
task-agnostic setting, task identity is unknown at inference.
Our AttriCLIP effectively tackles the settings above since it
learns key attributes of images and allows unlimited number
of output classes.

Prompt learning based on CLIP. CLIP [19] consists of
an image encoder fθ(·) and a text encoder gψ(·). Specifi-
cally, the image x∈RH×W×C and the text t∈RD are fed
into fθ(·) and gψ(·) respectively to obtain the image embed-
ding z ∈ RD and the text embedding w ∈ RD, where t is
the input word token. In CLIP, t is obtained via one of the
hand-crafted prompts which have a template like “a photo
of a [CLS]”, where [CLS] is the class name of the testing
image. Thus, the probability of predicting the testing image
x as the class yi can be computed as:

p(yi|x) =
e⟨z,wyi ⟩/τ∑K
k=1 e

⟨z,wk⟩/τ
, (1)

where τ is a temperature parameter learned by CLIP, ⟨·, ·⟩
denotes the cosine similarity, wk is the embedding derived
from tk of the k-th class, and K is the total number of
downstream dataset classes.

To bring about further improvements of CLIP’s perfor-
mance on downstream tasks, prompt learning has been pro-
posed to replace the hand-crafted prompt templates with a
set of continual learnable vectors P. The knowledge of
downstream data is encoded into these vectors to instruct
the model to better perform downstream tasks. Specifically,
CoOp [35] concatenates P with the embedding of a class
name, formulating the text description tk(P) of the k-th
class as:

tk(P) = [p]1[p]2 . . . [p]M [CLS]k, (2)

where each [p]m ∈ RD, m ∈ {1, . . . ,M}, is a learnable
token of P, and P ∈ RD×M is shared among all classes.
[CLS]k is the text embedding of the k-th class name, which
can also appear at the start and middle of the prompt. In
this way, wk in Eq. 1 is replaced by gψ(tk(P)), and the
probability of predicting the testing image x as the class yi
is computed as:

p(yi|x) =
e⟨z,gψ(tyi (P))⟩/τ∑K
k=1 e

⟨z,gψ(tk(P))⟩/τ
, (3)

3.2. Framework of AttriCLIP
In CoOp, each class embedding corresponds to only one

group of prompt vectors. However, images from the same
class contain diverse attributes. Encoding these diverse
attributes into the same group of prompts leads to catas-
trophic knowledge forgetting. Besides, the encoded knowl-
edge in the prompts of CoOp cannot interact among differ-
ent classes. However, the attributes of one class may help
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Figure 2. Framework of AttriCLIP. The image keys ki and the textual prompts Pi in the attribute word bank are trainable parameters. The
blue and green boxer represent the image and text streams, respectively. The attribute word bank is optimized by three loss functions. Lm
is the classification loss adopted to maximize the similarity between image feature z and the corresponding text features w. Lk is designed
to shorten the distance between the selected keys (e.g., k2 and kn) and the image feature z, so that the keys learn generalizable attributes.
Lp makes the embeddings of the prompts gψ(Pi) orthogonal to increase the diversity of the prompts.

to identify another class with similar attributes. For exam-
ple, given an image of a dog lying on the grass, the attribute
“on the grass” in this image may also be found in images
of other animals (e.g., a cat lying on the grass). We believe
that prompt tuning based on the image attributes can help
the prompts learn the textual descriptions of these attributes,
which generalize better among tasks.

Therefore, we propose AttriCLIP as shown in Fig. 2,
which contains an attribute word bank to let the image it-
self decide which prompts to learn based on the attributes it
has. Only a part of the prompts that are relevant to the cur-
rent image attributes are selected and trained at a time. The
attribute word bank stores visual and textual information,
which consists of N (key, prompt) pairs:

{K,P} ≜ {(k1,P1), . . . , (kN ,PN )}, (4)

where {K,P} denotes the attribute word bank, each ki ∈
RD has the same dimensionality as the image embedding
z, and each Pi = [pi]1 . . . [pi]M ∈ RD×M is composed
of M learnable vectors. Denoting the set of all keys as
K = {ki}Ni=1 and the set of all prompts as P = {Pi}Ni=1.
K indicate the image attributes, and P indicate the prompt
words. Ideally, we expect that the image itself can decide
which prompts should be chosen based on the attributes it
contains to guide the prediction. To this end, given an input
image xj , we first obtain its image embedding zj=fθ(xj),
where j is the index of the image. Then, by scoring the
match between zj and ki via a scoring function γ (e.g., co-
sine distance), we select the top-C keys that match zj most
by:

Kj = Top-Cmin{γ(zj ,kji)}Ni=1, (5)

where Top-Cmin denotes the operation of choosing the top-
C minimal values for a set. Kj denotes the subset of top-C
keys selected from K specifically for the j-th image. We
then choose the corresponding prompts that are paired with
these keys, denoted as Pj = {Pji}Ci=1, where Pji is the i-
th prompt selected specifically for xj . These prompts are

attached to the class name embedding of xj as illustrated in
Fig. 2, and tk(P) in Eq. 2 is then denoted as:

tk(Pj) = concat(Pj1 ; . . . ;PjC ; [CLS]k), (6)

where concat(·) denotes concatenation. Therefore, given
test image xj and the prompts Pj selected according to the
attributes of xj , the probability of predicting the image as
class yi is finally computed as:

p(yi|xj) =
e⟨z,gψ(tyi (Pj))⟩/τ∑K
k=1 e

⟨z,gψ(tk(Pj))⟩/τ
. (7)

From a high-level perspective, the proposed attribute
word bank serves as a bridge between the output of the im-
age encoder and the input of the text encoder. The keys are
optimized to be close to the matched image embeddings,
which contain rich high-level information, i.e., image at-
tributes. The prompts are optimized to include textual in-
formation related to the corresponding image attributes, so
as to better guide the model predictions along with the class
name embeddings. Since the proposed attribute word bank
connects the image stream and the text stream, our prompts
serve more as the textual descriptions of the image attributes
compared with DualPrompt [30]. In addition, since the gen-
eralizable attributes are learned, the memory is no longer
needed to fine-tune the classifier based on previous tasks,
which makes AttriCLIP more efficient under the long se-
quence setting.

3.3. Optimization Objective of AttriCLIP

Based on Eq. 7, the image classification loss is formu-
lated as:

Lm = E[−log
e⟨z,gψ(tyi (Pj))⟩/τ∑K
k=1 e

⟨z,gψ(tk(Pj))⟩/τ
]. (8)

In addition to Lm, a matching loss is needed to pull the
matched top-C keys Kj closer to the image embedding zj ,
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so that the keys learn rich attributes from the samples. The
matching loss adopted to optimize the keys is defined as:

Lk =

C∑
i=1

γ(zj ,kji). (9)

We test three distance functions (i.e., cosine distance [23],
mean square error (MSE) [16] and triplet loss [5]) for γ, and
find that the cosine distance works the best (see Sec. 4.4).
Finally, in order to make the learned prompts more seman-
tically diverse, we adopt a third loss to orthogonalize the
embeddings of different prompts to increase the diversity of
the prompts:

Lp =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

|⟨gψ(Pi), gψ(Pj)⟩|, (10)

where ⟨·, ·⟩ denotes the cosine similarity. In this way, the
overall optimization objective is defined as:

L = Lm + λkLk + λpLp, (11)

where λk and λp are balance factors. The keys are opti-
mized by Lk, and the prompts by Lm and Lp.

4. Experiments
In this section, the implementation details are first de-

scribed. We then compare the proposed AttriCLIP with
other methods in the conventional class-incremental task-
agnostic setting, and the proposed Cross-Datasets Contin-
ual Learning (CDCL) setting. Finally, we perform ablation
studies to evaluate the effect of different components of At-
triCLIP. We implement our model using the MindSpore Lite
tool [17].

4.1. Implementation Details
Datasets. The experiments are conducted on CIFAR-

100 [9] and ImageNet100 [4]. CIFAR100 consists of 60k
images with a size of 32×32 from 100 classes, which are
split into 10 tasks with 10 classes in each task. Each class
consists of 500 training and 100 testing samples. Ima-
geNet100, as a subset of ILSVRC2012 [10], contains sam-
ples sized 224×224 from 100 classes. Each class consists
of about 1,300 training and 50 test samples. We split Ima-
geNet100 into 10 tasks with 10 classes in each task. More
details of ImageNet100 are provided in the supplementary.

Baselines. We compare the proposed AttriCLIP with
existing CLIP-based methods (CoOp [35] and continual-
CLIP [27]), prompt-based methods (DualPrompt [30]) and
typical continual learning methods (LwF [13], iCaRL [21],
DER [33], iTAML [20] and ARI [28]). The prompts of
CoOp are trained in a sequence of tasks and store partial
data from previous tasks in the memory for the prompts
fine-tuning on subsequent tasks. The continual-CLIP eval-
uates a frozen pre-trained CLIP model in continual learning

settings. iCaRL is a classic method of continual learning
with memory data. ARI is the current state-of-the-art for
non-prompt-based continual learning methods. We adopt
ViT-L-14 [7] as the backbone for CoOp, continual-CLIP,
DualPrompt and our AttriCLIP, and adopt ResNet [6] for
other methods. All the methods are evaluated under the
task-agnostic setting, and our proposed AttriCLIP does not
need any memory, which makes the setting more practical
and challenging.

Training details. We train the model for 10 epochs on
each incremental task for all datasets. SGD is adopted as
the optimizer with the initial learning rate set to 0.001 and
following a cosine decay schedule. The weight decay is 0,
the batch size is 32, and the loss weights λk and λp are
0.7 and 0.3 respectively. The prompt length M = 12, the
number of attributes in the bank N =10 and the number of
selected attributes C = 3. The average results over 3 runs
are reported for all methods.

4.2. Results of Class-Incremental Learning
In this section, we take the average accuracy [14], as the

metric to measure the performance. The buffer size of data
from previous tasks is denoted as Memory. We compare
the proposed AttriCLIP with the prior arts on CIFAR100,
and the results are reported in Table 1. From the results,
we see that AttriCLIP achieves the best average accuracy
compared with the recent state-of-the art methods such as
ARI and Continual-CLIP. Besides, compared with previ-
ous CLIP-based methods (i.e., CoOp and Continual-CLIP),
AttriCLIP outperforms them by a large margin. Specifi-
cally, AttriCLIP outperforms CoOp by 13.8% without the
need for any memory. It also outperforms Continual-CLIP
by 14.7%. Note that “Upper-bound” in Table 1 denotes
the standard supervised training on the data from all tasks,
which is usually regarded as the upper bound of the perfor-
mance one method can achieve. Compared with the upper-
bound, the accuracy of AttriCLIP drops only 4.9%, demon-
strating the effectiveness of learning image attributes for
mitigating catastrophic forgetting.

We also compare our method with previous arts on Im-
ageNet100, and report the results in Table 2. AttriCLIP
still outperforms other memory-based methods without any
memory needed. For example, AttriCLIP outperforms ARI,
which was the state-of-the-art, by 4.0%. Compared with
CLIP-based models, our method again outperforms CoOp
and Continual-CLIP by 4.0% and 7.9% respectively. The
accuracy of AttriCLIP decreases by 8.1% compared with
the upper-bound. The results suggest that the effectiveness
of our method over different datasets.

4.3. Results of Cross-Datasets Continual Learning
To simulate the practical setting where the model contin-

uously learns long sequence tasks, we propose a new set-
ting for evaluation, i.e., Cross-Datasets Continual Learning
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Table 1. Average accuracy [14] of different continual learning methods on CIFAR100 [9]. The accuracy of Task t, t ∈ {1, 2, . . . , 10}
reported here is the test accuracy averaged over all the previous tasks (i.e., Tasks 1, 2, . . . , t).

Method Memory Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task9 Task10

LwF 0 89.3 70.1 54.3 45.8 39.8 36.1 31.7 28.9 24.4 23.9
iCaRL 2000 88.7 78.1 72.4 67.2 63.7 60.2 56.4 54.4 51.9 49.5
iTAML 2000 89.2 89.0 87.3 86.2 84.3 82.1 80.7 79.1 78.4 77.8

ARI 2000 88.6 86.9 85.8 84.6 83.1 81.8 81.6 81.0 80.2 80.9
CoOp 1000 95.8 90.7 85.2 83.4 80.8 75.8 74.7 71.7 71.3 67.6

Continual-CLIP 0 96.7 92.2 86.0 80.4 77.5 75.8 73.0 71.4 69.8 66.7

AttriCLIP 0 97.8 93.7 91.0 87.5 84.7 82.5 82.3 81.9 81.7 81.4

Upper-bound - - - - - - - - - - 86.3

Table 2. Average accuracy [14] of different continual learning methods on ImageNet100 [4]. The accuracy of Task t, t∈ {1, 2, . . . , 10}
reported here is the test accuracy averaged over all the previous tasks (i.e., Tasks 1, 2, . . . , t).

Method Memory Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task9 Task10

iCaRL 2000 82.1 80.6 75.5 70.1 68.1 65.8 62.5 61.3 60.7 59.5
DER 2000 81.7 80.6 76.0 72.1 74.4 71.8 70.5 68.3 67.3 66.7
ARI 2000 87.6 85.4 83.1 82.6 80.4 80.8 80.5 80.1 79.6 79.3

CoOp 1000 89.2 83.2 76.7 79.8 79.9 82.34 79.7 80.1 80.3 79.3
Continual-CLIP 0 93.3 87.6 83.1 81.7 80.5 80.2 79.3 78.5 76.9 75.4

AttriCLIP 0 95.4 89.4 84.5 86.7 84.4 86.6 85.9 85.6 86.9 83.3

Upper-bound - - - - - - - - - - 91.4

Table 3. Accuracy of different methods on CIFAR100. The mod-
els are either trained from scratch on CIFAR100 (CIFAR100),
or fine-tuned on CIFAR100 after being continually trained from
scratch on ImageNet100 (CIFAR100-I2C).

Method Memory CIFAR100 CIFAR100-I2C FT

iCaRL-1 2000 49.5 49.7 +0.2
iCaRL-2 2000 49.1 46.5 -2.6
CoOp-1 1000 67.6 61.1 -6.5
CoOp-2 1000 67.6 59.0 -8.6
ARI-1 2000 80.9 74.5 -6.4
ARI-2 2000 79.7 59.9 -19.8

Continual-CLIP 0 66.7 66.7 0
DualPrompt-1 0 86.5 80.7 -5.8
DualPrompt-2 0 84.1 74.7 -9.4

AttriCLIP 0 81.4 82.3 +0.9

(CDCL). In CDCL, the model is continually trained on sev-
eral datasets one by one in a sequential manner, and then
the accuracy on each dataset is evaluated.

Learning attributes helps the model to generalize bet-
ter to a new dataset. For comparison, we train two bench-
marks for each method in Table 3: (1) CIFAR100 bench-
mark, where the model is trained from scratch on CI-
FAR100 under the same setting (10 tasks) as in Table 1,
then evaluated on CIFAR100. (2) CIFAR100-I2C bench-
mark, where the model is first trained from scratch on Im-
ageNet100 under the same setting (10 tasks) as in Table 2,
then fine-tuned on CIFAR100 under the same setting (10
tasks) as in Table 1, and finally evaluated on CIFAR100. We
define FT (Forward Transfer) in Table 3 as the accuracy on

CIFAR100-I2C minus the accuracy on CIFAR100, which
indicates the model’s superior ability to transfer knowledge
from the previous dataset to the new dataset.

Conventional continual learning methods adopt the typ-
ical classification architecture, which includes a classifier
with a preset output dimensionality. However, in practi-
cal settings, the number of sequentially arriving classes is
unlimited. Therefore, the classifier needs to be incremen-
tally expanded to learn new tasks or classes. In this experi-
ment, we use two schemes to expand the classifier for each
classifier-based continual learning method: (1) Method-1,
i.e., increase the number of classifiers as the number of ar-
riving classes increases; (2) Method-2, i.e., directly increase
the output dimensionality of a classifier so that it can handle
more classes of data.

In our experiments, for Method-1, after training a classi-
fier (with the output dimensionality as 100) on CIFAR100,
we incrementally train another classifier (with the output di-
mensionality also as 100) on ImageNet100. These two clas-
sifiers share the same feature extractor. Besides, when train-
ing the classifier for ImageNet100, the data from CIFAR100
is unavailable in the memory bank for memory-based meth-
ods. On the other hand, for Method-2, we directly train one
classifier but double its output dimensionality (i.e., 200), so
that it can jointly predict data from both CIFAR100 and Im-
ageNet100. Besides, when training on ImageNet100, the
data from CIFAR100 is available in the memory bank for
memory-based methods. Note that the CoOp model does
not have a classifier, so the only difference between CoOp-
1 and CoOp-2 is whether the data from the previous dataset
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Table 4. Accuracy of different methods on ImageNet100. The
models are either trained from scratch on ImageNet100 (Ima-
geNet100), or fine-tuned on CIFAR100 after being continually
trained from scratch on ImageNet100 (ImageNet100-I2C).

Method Memory ImageNet100 ImageNet100-I2C BT

iCaRL-1 2000 59.5 34.5 -25.0
iCaRL-2 2000 58.7 50.9 -7.8
CoOp-1 1000 79.3 57.6 -21.7
CoOp-2 1000 79.3 75.9 -3.4
ARI-1 2000 79.3 51.2 -28.1
ARI-2 2000 77.9 61.8 -16.1

Continual-CLIP 0 75.4 75.4 0
DualPrompt-1 0 85.4 63.6 -21.8
DualPrompt-2 0 81.9 77.8 -4.1

AttriCLIP 0 83.3 90.3 +7.0

Table 5. Comparison among different methods on ImageNet100
+ CIFAR100 where each model is continually trained on Ima-
geNet100 and CIFAR100 in sequence.

Method Memory
CIFAR100+

ImageNet100

iCaRL-1 2000 30.7
iCaRL-2 2000 37.6
CoOp-1 1000 46.6
CoOp-2 1000 55.4
ARI-1 2000 32.5
ARI-2 2000 57.3

Continual-CLIP 0 54.9
DualPrompt-1 0 35.4
DualPrompt-2 0 67.1

AttriCLIP 0 78.3

is available in the memory bank.
We report the experimental results in Table 3. The re-

sults demonstrate that AttriCLIP is outperformed by Du-
alPrompt-1 and DualPrompt-2 on CIFAR100. It is to be
noted that the encoder of DualPrompt-1 and DualPrompt-2
is pre-trained on ImageNet-21k [6]. AttriCLIP still signif-
icantly exceeds the remaining methods. Specifically, Attri-
CLIP outperforms CoOp-1 and CoOp-2 by 13.8%. More-
over, we find that among all methods, AttriCLIP is the only
one that effectively transfers the knowledge learned from
ImageNet100 to improve the performance on CIFAR100
(i.e., FT>0), and exceeds all other methods under the
CIFAR100-I2C setting. This indicates that AttriCLIP ef-
fectively learns crucial image attributes into the prompts in
the previous dataset, which helps it to generalize better to a
new dataset.

Learning attributes helps the model NOT to forget
the previous dataset. In Table 4, we test the accuracy of
different continual learning methods on ImageNet100 also
under two settings: (1) ImageNet100 benchmark, which
is the same setting as in Table 2. (2) ImageNet100-I2C
benchmark, which is the same as CIFAR100-I2C in train-
ing, but evaluating on ImageNet100. We define BT (Back-
ward Transfer) as the accuracy on ImageNet100-I2C minus
the accuracy on ImageNet100. The smaller the value of

Table 6. Comparison of different loss functions for Lk on CI-
FAR100.

Loss function Triplet loss Cosine loss MSE loss

Average acc. 80.22 81.38 80.81

Table 7. Average acc. of different loss weights λk on CIFAR100.

λk 0.1 0.3 0.5 0.7 0.9

Average acc. 80.28 80.30 81.11 81.38 80.86

BT, the more knowledge from the previous dataset is for-
gotten after the model is trained on the new one. When
BT>0, the model effectively transfers knowledge from the
new dataset to improve the recognition performance on the
previous dataset.

As shown in Table 4, AttriCLIP is the only method which
does not forget the knowledge from the previous dataset,
and even improves the performance on the previous dataset
(BT=+7.0%). This demonstrates that our method effec-
tively learns generalizable attributes from the new dataset,
which can help the model NOT to forget, or even consoli-
date previously learned knowledge.

In addition, Methods-1 in Table 4 forget previous knowl-
edge more seriously than Method-2, which indicates that re-
playing the data from the previous dataset or training a clas-
sifier with large output dimensionality may help to mitigate
catastrophic forgetting cross datasets. However, the output
dimensionality of classifier cannot be expanded endlessly,
and previously trained data is often unavailable in practical
settings. This again highlights the advantage of our method.

Learning attributes helps the model evaluate on cross
datasets. In Table 5, we train the models following the
same setting as in Table 3, and finally evaluate their perfor-
mances on both datasets. For a classifier-based Method-1,
given one testing image, each of its two classifiers outputs
a prediction vector of 100 dimensions. We simply choose
the class with the highest score in these two output vectors
as the prediction result. According to Table 5, AttriCLIP
achieves the highest accuracy (78.3%) without the need for
any memory, demonstrating the effectiveness of our method
in the proposed CDCL setting.

4.4. Ablations
We conduct ablation studies on CIFAR100 following the

same setting as in Table 1. The average accuracy over 10
tasks are reported.

Loss function Lk. We adopt three loss functions (i.e.,
triplet loss, cosine distance loss, and MSE loss) for γ in
Eq. 9. According to Table 6, the best result is obtained
with cosine distance loss adopted for Lk. We also vary the
weight λk of Lk in Eq. 11. The result in Table 7 shows that
the best performance (81.38%) is achieved with λk=0.7.

Loss function Lp. We report the results with different
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Figure 3. Ablation study of (a) the prompt length M , (b) the bank size N , and (c) the number of selected keys C on CIFAR100.

Table 8. Average acc. of different loss weights λp on CIFAR100.

λp 0 0.1 0.3 0.5 0.7 0.9

Average acc. 78.10 79.23 81.38 81.28 81.17 80.88

Figure 4. Visualization of the selected prompts of the same image
using Grad-CAM [24].

P1

P5

Figure 5. Visualization of the same prompts on different images
using Grad-CAM [24].

loss weights λp of Lp in Table 8. Introducing Lp signifi-
cantly improves the performance by increasing the diversity
of prompts. The best result is obtained with λp=0.3.

The length of prompts M . The result in Fig. 3(a) shows
that the model achieves the best performance when M =
12. When the prompt length is too long, both the training
efficiency and the computation budget will be increased.

Bank size N . By varying the number of (key, prompt)
pairs in the attribute word bank, we find in Fig. 3(b) that the
model achieves the best performance when N=10.

The number C of attributes selected. We test the ef-
fect of different values of C in Eq. 5, and find in Fig. 3(c)
that choosing too many keys and prompts to train at the
same time affects the model performance. When C = 3,
the model obtains optimal performance.

Visualization of prompts. To verify that different
prompts do reflect different image attributes, we visualize
the image contents corresponding to different prompts us-
ing Grad-CAM [24]. Specifically, given test image, sev-
eral prompts are first selected based on the image attributes.
Each selected prompt Pi is passed through the text encoder
to obtain the prompt embedding gψ(Pi). The prompt em-

bedding and the image feature z are then used to calculate
Lm, which is adopted to highlight the corresponding image
contents using Grad-CAM.

In Fig. 4, the image contents in different columns cor-
respond to different prompts. From Fig. 4, it can be seen
that for the same image, different prompts do reflect differ-
ent regions in the image, demonstrating the diversity of the
learned prompts.

To verify whether the learned prompts do reflect image
attributes with high-level semantics, we visualize the con-
tent of the same prompts (e.g., P1 and P5) on different
images in Fig. 5. It can be seen that P1 mainly captures
the background of the images (e.g., the grass), while P5 fo-
cuses more on the foreground (e.g., the ears of the animals).
This demonstrates that the prompts effectively learn key at-
tributes which can generalize across images, thus improving
the performance in continual learning.

5. Conclusion
We propose a novel continual learning method, named

AttriCLIP, which can incrementally learn knowledge with-
out incrementally increasing model parameters or con-
structing extra memory to store replay data. Our framework
is based on the pretrained visual-language model CLIP. We
fix both the image and the text encoders, only updating the
text prompts to adapt to sequentially arrived tasks or classes.
We design a module named attribute word bank to store
attributes of images and their descriptive words. Experi-
ments show that our method performs favourably against
vanilla CLIP, typical prompt learning methods and previous
state-of-the-arts, especially in the long-sequence and cross-
domain settings. We believe our work paves the way for
more practical continual learning, where we need to con-
sider the incremental knowledge in a long task sequence or
face the common domain shift.

Acknowledgements
This work was supported by National Natural Science

Foundation of China under Grant 62076016, 62141604 and
62102151, Beijing Natural Science Foundation L223024
and Shanghai Sailing Program (21YF1411200). We grate-
fully acknowledge the support of MindSpore [17], CANN
(Compute Architecture for Neural Networks) and Ascend
AI Processor used for this research.

3661



References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
2

[2] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In NeurIPS,
2020. 3

[3] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Con-
trastive continual learning. In ICCV, 2021. 3

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 5, 6

[5] Xingping Dong and Jianbing Shen. Triplet loss in siamese
network for object tracking. In ECCV, 2018. 5

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint, 2020.
5, 7

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. In NAS, 2017. 2

[9] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. In Citeseer, 2009. 5, 6

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 5

[11] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi.
Align before fuse: Vision and language representation learn-
ing with momentum distillation. In NeurIPS, 2021. 3

[12] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and
Caiming Xiong. Learn to grow: A continual structure learn-
ing framework for overcoming catastrophic forgetting. In
ICML, 2019. 3

[13] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2935–2947, 2017. 1, 2, 5

[14] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In NeurIPS, 2017.
5, 6

[15] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In CVPR,
2018. 3

[16] Hans Marmolin. Subjective mse measures. IEEE Trans-
actions on Systems, Man, and Cybernetics, 16(3):486–489,
1986. 5

[17] Mindspore. https://www.mindspore.cn/. 5, 8

[18] Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Con-
tinual learning, fast and slow. In NeurIPS, 2021. 3

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 1, 3

[20] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Mubarak Shah. itaml: An incremen-
tal task-agnostic meta-learning approach. In CVPR, 2020. 1,
5

[21] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In CVPR, 2017. 1, 5

[22] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint, 2016. 3

[23] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. In ICLR, 2019. 5

[24] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017. 8

[25] Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In ICML, 2018. 3

[26] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In ACM SIGSAC, 2015. 3

[27] Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad
Khan. Clip model is an efficient continual learner. arXiv
preprint, 2022. 5

[28] Runqi Wang, Yuxiang Bao, Baochang Zhang, Jianzhuang
Liu, Wentao Zhu, and Guodong Guo. Anti-retroactive in-
terference for lifelong learning. In ECCV, 2022. 1, 5

[29] Zifeng Wang, Tong Jian, Kaushik Chowdhury, Yanzhi Wang,
Jennifer Dy, and Stratis Ioannidis. Learn-prune-share for
lifelong learning. In ICDM, 2020. 3

[30] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,
Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, et al. Dualprompt: Complemen-
tary prompting for rehearsal-free continual learning. arXiv
preprint, 2022. 3, 4, 5

[31] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jen-
nifer Dy, and Tomas Pfister. Learning to prompt for continual
learning. In CVPR, 2022. 3

[32] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,
Aniruddha Kembhavi, Mohammad Rastegari, Jason Yosin-
ski, and Ali Farhadi. Supermasks in superposition. In
NeurIPS, 2020. 3

[33] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In CVPR, 2021. 3, 5

[34] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong learning with dynamically expandable net-
works. arXiv preprint, 2017. 3

3662



[35] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Zi-
wei Liu. Learning to prompt for vision-language models.
In International Journal of Computer Vision, pages 1–12.
Springer, 2022. 3, 5

3663


