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Abstract

3D lane detection which plays a crucial role in vehicle
routing, has recently been a rapidly developing topic in au-
tonomous driving. Previous works struggle with practical-
ity due to their complicated spatial transformations and in-
flexible representations of 3D lanes. Faced with the issues,
our work proposes an efficient and robust monocular 3D
lane detection called BEV-LaneDet with three main contri-
butions. First, we introduce the Virtual Camera that unifies
the in/extrinsic parameters of cameras mounted on differ-
ent vehicles to guarantee the consistency of the spatial re-
lationship among cameras. It can effectively promote the
learning procedure due to the unified visual space. We sec-
ondly propose a simple but efficient 3D lane representation
called Key-Points Representation. This module is more suit-
able to represent the complicated and diverse 3D lane struc-
tures. At last, we present a light-weight and chip-friendly
spatial transformation module named Spatial Transforma-
tion Pyramid to transform multiscale front-view features
into BEV features. Experimental results demonstrate that
our work outperforms the state-of-the-art approaches in
terms of F-Score, being 10.6% higher on the OpenLane
dataset and 4.0% higher on the Apollo 3D synthetic dataset,
with a speed of 185 FPS. Code is released at https:
//github.com/gigo-team/bev_lane_det.

1. Introduction

As one of the fundamental guarantees for autonomous

driving, lane detection has recently received much attention

from researchers. Robust lane detection in real-time is one

of the foundations for advanced autonomous driving, which

can provide substantial amounts of useful information for
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Autonomous Driving Systems (ADS), vehicle self-control,

localization, and map construction.
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Figure 1. End-to-end framework illustrated. The original image

in bottom-right is transformed to an input image by the Virtual
Camera module. The input image is then encoded into front-view

features by the backbone. Multiscale features from the backbone

are put into the Spatial Transformation Pyramid (STP) to obtain

BEV features. Given the BEV features, the 3D Head called Key-
Points Representation generates BEV output and Z, the height of

BEV lanes. At last, with the BEV output and Z, we can obtain 3D

lanes.

2D lane detection methods have demonstrated remark-

able performances [4, 18, 20, 22]. Moreover, their outputs

are usually projected to the flat ground plane by Inverse Per-

spective Transformation (IPM) with the camera in/extrinsic

parameters, and then curve fitting is performed to obtain the

BEV lanes. However, the pipeline might cause other prob-

lems in the actual driving process [1, 20] for challenging

situations like uphill and downhill.

In order to overcome these problems, more recent meth-

ods [3, 6, 8, 9, 14] have started to focus on the more com-

plicated 3D lane perception domain. There are two signif-

icant challenges in 3D lane detection: an efficient spatial

transformation module to obtain BEV features and a robust

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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representation for 3D lane structures. The acquisition of

BEV features is heavily dependent on camera in/extrinsic

parameters, and previous methods have chosen to incor-

porate camera in/extrinsic parameters into the network to

obtain BEV features. Moreover, unlike obstacles on the

road, lane structures are slender and diverse. These meth-

ods [3, 8, 9] carefully design the 3D anchor representation

for lane structures with strong priors. However, they lack

sufficient flexibility in some specific scenarios, as shown in

Figure 5. Moreover, the anchor-free method [6] proposes a

3D lane representation based on the hypothesis that a line

segment in each predefined tile is straight. This representa-

tion is complicated and inaccurate.

Towards the issues, we introduce BEV-LaneDet, an ef-

ficient and real-time pipeline that achieves 3D lane detec-

tion from a single image, as shown in Figure 1. Different

from incorporating camera in/extrinsic parameters into the

network to get BEV features, we establish a Virtual Cam-
era, which is applied to images directly. The module unifies

the in/extrinsic parameters of front-facing cameras in differ-

ent vehicles by the homography method [2] based on BEV.

This module guarantees the consistency of the spatial rela-

tionship of front-facing cameras in different vehicles and re-

duces variance in data distribution. Therefore, it can effec-

tively promote the learning procedure due to the unified vi-

sual space. We also propose a Key-Points Representation as

our 3D lane representation. We demonstrate that it is a sim-

ple but effective module to represent 3D lanes and is more

expandable for complicated lane structures in some special

scenarios. Moreover, the cost of computation and the chip’s

friendliness are also crucial factors in autonomous driving.

Therefore, a light-weight and easy-to-deploy spatial trans-

formation module based on MLP is our preference. Mean-

while, inspired by FPN [17], we present the Spatial Trans-
formation Pyramid, which transforms multiscale front-view

features to BEV and provides robust BEV features for 3D

lane detection. In our experiments, we perform extensive

studies to confirm that our BEV-LaneDet significantly out-

performs the state-of-the-art PersFormer [3] in terms of F-

Score, being 10.6% higher on the OpenLane real-world test

set [3] and 4.0% higher on the Apollo simulation test set [9]

with a speed of 185 FPS.

In summary, our main contributions are three-fold:
1) Virtual Camera, a novel preprocessing module to unify

the in/extrinsic parameters of cameras, ensuring data distri-

bution consistency. 2) Key-Points Representation, a simple

but effective representation of 3D lane structures. 3) Spa-
tial Transformation Pyramid, a light-weight and easy-to-

deploy architecture based on MLP to realize transformation

from multiscale front-view features to BEV. Experiments

demonstrate that our BEV-LaneDet achieves the state-of-

the-art performance compared to other 3D lane detection

algorithms.

2. Related Work
2D Lane Detection. In recent years, there have been sig-

nificant advancements in the field of 2D lane detection using

deep neural networks (DNN). These works are divided into

four categories according to pixel-wise segmentation, row-

wise methods, anchor-based methods, and curve parame-

ters. Some recent works [15, 20, 22, 32] consider 2D lane

detection as a segmentation task based on pixel-wise, which

the computing cost is expensive. Some methods [18,24,31]

focus on the row-wise level to detect the 2D lanes. By set-

ting the row anchors in the row direction and setting the grid

cells in the column direction to model the 2D lanes on the

image space, row-wise methods greatly improve the speed

of inference. [27, 28] represent the lane structures with pre-

defined anchors and regress offsets between sampled points

and predefined anchor points to predict 2D lanes. These

methods lack sufficient flexibility to accommodate complex

lanes due to fixed anchors design. [7,29] argue that the lane

can be fitted by specific curve parameters on the 2D image

space. So it is proposed that the 2D lane detection can be

converted into the problem of curve parameter regression

by detecting the starting point, ending point, and curve pa-

rameters. However, these methods need to combine camera

intrinsic and extrinsic parameters for IPM projection to the

ground in post-processing, which is based on the flat ground

hypothesis. As mentioned in Section 1, this pipeline is not

suitable for complicated road scenarios.

3D Lane Detection. In order to obtain more accurate

road cognition results, many researchers have turned their

attention to lane detection in 3D space. [3, 8, 9, 14] present

remarkable results to prove the feasibility of using a CNN

network for 3D lane detection in monocular images. 3D-

LaneNet [8] firstly introduces a unified network for encod-

ing 2D image information, spatial transformation and 3D

lane detection in two path-ways: the image-view path en-

codes features from the 2D image, while the top-view path

provides translation-invariant features for 3D lane detec-

tion. 3D-LaneNet+ [6] constructs the shape of lane seg-

ments in the predefined grid cells based on the straight seg-

ment hypothesis, which is complicated and might cause an

error between the predicted segments and the actual lanes.

Gen-LaneNet [9] proposes an extensible two-stage frame-

work that separates the image segmentation subnetwork and

the geometry encoding subnetwork. PersFormer [3] pro-

poses a unified 2D and 3D lane detection framework and

introduces Transformer [30] into the spatial transformation

module to obtain more robust features. It also proposes a

real-scene-based and large-scale annotated 3D lane dataset,

OpenLane. These methods deploy intra-network feature

maps IPM projection with camera in/extrinsic parameters,

implicitly or explicitly. Different from applying IPM pro-

jection to features, we construct a Virtual Camera module,

trying to project all images onto the view of a standard vir-

1003



tual common camera. This approach ensures that the dis-

tribution of images is as consistent as possible. The distri-

bution here includes the position, angle, and height of the

camera from the ground. As for 3D lane representation,

they carefully design 3D anchors with strong priors, which

are complicated and lack expressiveness for some specific

scenarios, as shown in Figure 5. We present our 3D lane

representation, which is simple but robust, and it is more

expandable for special scenarios.

Spatial Transformation. A vital module of 3D lane de-

tection is the spatial transformation from front-view fea-

tures to BEV features. The spatial transformation mod-

ule [12] is a trainable module that is flexibly inserted into

the CNN to implement the spatial transformation of the in-

put features, and it is suitable for converting front-view fea-

tures into BEV geometric features. There are four kinds of

commonly used spatial transformation modules. IPM-based

methods [8, 9, 26] rely heavily on the camera in/extrinsic

parameters and ignore ground surface undulations and ve-

hicle vibrations. The MLP-based methods [15,21] are fixed

spatial mapping, which are difficult to be integrated with

the camera in/extrinsic parameters, resulting in poor perfor-

mance. However, it is chip-friendly and rapid. Transformer-

based spatial transformation modules [3, 16] are more ro-

bust, but they are not easy to deploy into autopilot chips due

to the large amount of computation. The spatial transforma-

tion methods based on depth [11, 23] have a large amount

of calculation and are thus not suitable for deployment. In

combination with the Virtual Camera module, we can over-

come the drawbacks of the MLP-based approaches and ap-

ply them to our method. We also introduce a feature pyra-

mid inspired by FPN [17] to provide more robust BEV fea-

tures.

3. Methodology
As shown in Figure 2, the whole network architecture

consists of five parts: 1) Virtual Camera: a preprocessing

method for unifying camera intrinsic and extrinsic parame-

ters; 2) Front-view Backbone: a front-view features extrac-

tor; 3) Spatial Transformation Pyramid: Projecting front-

view features to BEV features; 4) Key-Points Representa-
tion: a 3D head detector based on key-points; 5) Front-view

Head: a 2D lane detection head to provide auxiliary super-

vision.

Firstly, all in/extrinsic parameters of input images are

transformed into unified in/extrinsic parameters through the

Virtual Camera. This process ensures the consistency of

the spatial relationship of front-facing cameras in different

vehicles. We then use a feature extractor to extract the fea-

tures of the front-view image. We carry out experiments

with ResNet18 and ResNet34, respectively [10]. In order

to promote the ability of the network to extract front-view

features, a front-view lane detection head is added to serve

as auxiliary supervision. Inspired by [17], we design the

Spatial Transformation Pyramid, a fast multiscale spatial

transformation module based on [21]. This module is re-

sponsible for the transformation from front-view features to

BEV features. Finally, we forecast the lane on the plane tan-

gent to the local road surface Proad. Proad is the plane with

z = 0 in the road ground coordinates Croad = (x, y, z). We

divide the Proad into s1× s2 cells. Inspired by YOLO [25]

and LaneNet [20], we predict the confidence, the embed-

ding used for clustering, the offset from the cell center to

the lane in the y direction of Croad and the height of each

cell. In the inference, we use a fast clustering method to

fuse the results of each branch to obtain 3D lanes.

3.1. Virtual Camera

The in/extrinsic parameters of different vehicles are var-

ious, which has a significant impact on the results of 3D

lanes. Different from the methods that integrate the cam-

era intrinsic and extrinsic parameters into the network fea-

tures [3, 23], we realize a preprocessing method of quickly

unifying the camera in/extrinsic parameters by establishing

a Virtual Camera with standard in/extrinsic parameters.

We assume Proad to be the plane tangent to the local

road surface. Because the 3D lane detection pays more at-

tention to the plane Proad, we use the coplanarity of ho-

mography to project the image of the current camera to the

view of the Virtual Camera through the homography ma-

trix Hi,j . Therefore, the Virtual Camera achieves consis-

tency of the spatial relationship of different cameras. As

shown in Figure 3, the intrinsic parameters Kj and extrin-

sic parameters (Rj ,Tj) of the Virtual Camera are fixed,

which are derived from the mean value of the in/extrinsic

parameters of the training dataset. In the training and infer-

ence stages, the homography Hi,j is calculated according to

the camera intrinsic parameters Ki and extrinsic parameters

(Ri,Ti) provided by the current camera and the in/extrinsic

parameters of the Virtual Camera. We refer [2] to calculate

Hi,j . Firstly, we select four points xk = (xk, yk, 0)T where

k = 1, 2, 3, 4 on the BEV plane Proad. We then project

them to the image of the current camera and the image of

Virtual Camera respectively to obtain uki = (uk
i , v

k
i , 1)

T

and ukj = (uk
j , v

k
j , 1)

T . Finally, Hi,j is obtained by least

square method, as shown in Eqn 1.

Hi,ju
k
i = ukj (1)

During the inference, it is only necessary to perform

the transformation, invoking warpPerspective if in OpenCV,

with the already obtained Hi,j .

3.2. MLP Based Spatial Transformation Pyramid

The depth-based [11, 23] and Transformer-based meth-

ods [3, 16] are computationally expensive and unfriendly in
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Figure 2. Our network structure consists of five parts: Virtual Camera, Backbone, Spatial Transformation Pyramid, Key-Points Represen-
tation, Front-view Head. S32: 32x downsampling of the input image.
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Figure 3. Schematic diagram of the Virtual Camera. The core

aspect of the Virtual Camera is that the current camera and virtual

camera are co-planar on Proad after Inverse Perspective Mapping

(IPM).

deployment to autopilot chips. To address the issue, we in-

troduce a light-weight and easy-to-deploy spatial transfor-

mation module referred to View Relation Module (VRM)

[21] based on MLP. The module learns the relationships be-

tween any two pixel positions in the flattened front-view

features and flattened BEV features using a view relation

module R. However, the VRM is a fixed mapping that

ignores the variations brought by different camera param-

eters. Fortunately, the Virtual Camera, which unifies the

in/extrinsic parameters of different cameras, makes up for

this deficiency. The VRM is sensitive to the position of the

front-view feature layer. We analyze the effect of differ-

ent scales of front-view features in the VRM. Low resolu-

tion features are found to be more suitable for spatial trans-

formation in the VRM through experiments. We consider

that the low resolution features contain more global infor-

mation. And since the MLP-based spatial transformation

is a fixed mapping, the low-resolution features need fewer

mapping parameters, which are easier to learn. Inspired by

the FPN [17], we design a Spatial Transformation Pyramid
based on VRM, as shown in the red box of Figure 2. By

experimental comparison, we ultimately use the 1/64 reso-

lution feature of the input image, S64 and the 1/32 resolu-

tion feature named S32 to be transformed, respectively, and

then concatenate the results of both.

ft[i] = concate(RS32
i (fS32[1], . . . , fS32[HWS32]),

RS64
i (fS64[1], . . . , fS64[HWS64]))

(2)

where RS32
i denotes the VRM of S32, ft[i] denotes pixel

value of BEV features, HWS32 denotes the shape of S32,

and fS32[j] denotes pixel value on S32.
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Table 1. Comparison with other open-sourced 3D methods on the OpenLane. Our method achieves the best F-Score on the entire validation

set and every scenario set.

Method All Up&
Down Curve Extreme

Weather Night Intersection Merge&
Split

3D-LaneNet [8] 40.2 37.7 43.2 43 39.3 29.3 36.5

Gen-LaneNet [9] 29.7 24.2 31.1 26.4 19.7 19.7 27.4

PersFormer [3] 47.8 42.4 52.8 48.7 37.9 37.9 44.6

Ours 58.4 48.7 63.1 53.4 53.4 50.3 53.7

Table 2. Comprehensive 3D lane evaluation under different metrics. Our Method outperforms previous 3D methods on the metrics of

F-Score and speed.

Method F-Score X error near X error far Z error near Z error far Pytorch TensorRT
3D-LaneNet [8] 40.2 0.278 0.823 0.159 0.714 - -

Gen-LaneNet [9] 29.7 0.309 0.877 0.16 0.75 54FPS -

PersFormer [3] 47.8 0.322 0.778 0.213 0.681 21FPS -

Ours 58.4 0.309 0.659 0.244 0.631 102FPS 185FPS

3.3. Key-Points Representation

The representation of 3D lanes has a significant impact

on the results of 3D lane detection. In this subsection, we

propose a simple but robust representation to predict 3D

lanes on BEV, referring to YOLO [25] and LaneNet [20].

As shown in Figure 4, we divide the BEV plane Proad,

which is the plane with z = 0 in the road coordinates

Croad = (x, y, z) into s1 × s2 cells. Each cell represents

x × x (x defaults to 0.5m). We directly predict the four

heads with the same resolution, including the confidence,

the embedding used for clustering, the offset from the cell

center to the lane in y direction, and the average height of

each cell. The size of the grid cell has a great influence

on 3D lane prediction. An excessively small grid cell size

affects the balance of positive and negative samples in the

confidence branch. However, if the cell size is too large, the

embedding of different lanes will overlap. Considering the

sparsity of lane tasks, we recommend that the grid cell size

be 0.5× 0.5m2 through experiments. In training and infer-

ence, we predict the lanes of (-10m, 10m) in the y direction

and (3m, 103m) in the x direction in the road ground coor-

dinates Croad = (x, y, z). Thus, four 200 × 40 resolution

tensors, including confidence, embedding, offset and height

are output from the 3D lane detection head. The confidence

branch, embedding branch, and offset branch are merged to

obtain the instance-level lanes under the BEV, as shown in

Figure 4.

3.3.1 Confidence

Similar to YOLO [25], the confidence of lanes is a binary

classification branch. Each pixel represents the confidence

Confidence and Offset 

Embeding 

BEV ResultBEV Feature

Figure 4. Schematic diagram of the Key-Points Representation.

The BEV plane Proad is divided into s1 × s2 grids. Each grid

represents an area of x × x m2. BEV features are convolved to

obtain three branches, including the embedding, confidence and

offset. The three branches are merged to obtain the instance-level

lanes on BEV.

of the cell. If there is a lane through the cell, the confidence

score of the cell is set to one. Otherwise, the confidence

score is set to zero. The confidence loss can be expressed

by the Binary Cross Entropy loss.

L3d
conf =

s1×s2∑

i

(p̂i log pi + (1− p̂i) log(1− pi)) (3)

where pi denotes the probability of the confidence predicted

by the model, and p̂i denotes the ground truth of confidence.
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Table 3. There are results of different models on Apollo 3D Lane Synthetic. Compared with 3D-LaneNet [8], Gen-LaneNet [9], 3D-

LaneNet(1/att) [13], Gen-LaneNet(1/att) [13], CLGO [19], Reconstruct from Top [14], and PersFormer [3], our model is the best on

F-Score and X error.

Scene Method F-Score X error near X error far Z error near Z error far
3D-LaneNet [8] 86.4 0.068 0.477 0.015 0.202
Gen-LaneNet [9] 88.1 0.061 0.496 0.012 0.214

3D-LaneNet(1/att) [13] 91 0.082 0.439 0.011 0.242

Gen-LaneNet(1/att) [13] 90.3 0.08 0.473 0.011 0.247

CLGO [19] 91.9 0.061 0.361 0.029 0.25

Reconstruct from Top [14] 91.9 0.049 0.387 0.008 0.213

PersFormer [3] 92.9 0.054 0.356 0.01 0.234

Balanced

Scence

Ours 96.9 0.016 0.242 0.02 0.216

3D-LaneNet [8] 72 0.166 0.855 0.039 0.521
Gen-LaneNet [9] 78 0.139 0.903 0.03 0.539

3D-LaneNet(1/att) [13] 84.1 0.289 0.925 0.025 0.625

Gen-LaneNet(1/att) [13] 81.7 0.283 0.915 0.028 0.653

CLGo [19] 86.1 0.147 0.735 0.071 0.609

Reconstruct from Top [14] 83.7 0.126 0.903 0.023 0.625

PersFormer [3] 87.5 0.107 0.782 0.024 0.602

Rarely

Observed

Ours 97.6 0.031 0.594 0.04 0.556

3D-LaneNet [8] 72.5 0.115 0.601 0.032 0.23
Gen-LaneNet [9] 85.3 0.074 0.538 0.015 0.232

3D-laneNet(1/att) [13] 85.4 0.118 0.559 0.018 0.29

Gen-LaneNet(1/att) [13] 86.8 0.104 0.544 0.016 0.294

CLGo [19] 87.3 0.084 0.464 0.045 0.312

Reconstruct from Top [14] 89.9 0.06 0.446 0.011 0.235

PersFormer [3] 89.6 0.074 0.43 0.015 0.266

Vivual

Variants

Ours 95.0 0.027 0.32 0.031 0.256

Table 4. Ablation studies on OpenLane, all with 2D supervision.

VC: Virtual Camera; STP: Spatial Transform Pyramid; KPR: Key-
Points Representation; R34: ResNet34; R18: ResNet18.

Backbone VC STP KPR F-Score X error FPS
R34 51.2 0.37/0.79 -

R34 � 54.5(+3.3) 0.32/0.69 -

R34 � 53.2(+2.0) 0.37/0.79 -

R34 � 53.5(+2.3) 0.37/0.76 -

R34 � � 55.3(+4.1) 0.36/0.79 -

R34 � � 56.7(+5.5) 0.31/0.69 -

R34 � � � 58.4(+7.2) 0.31/0.66 185

R18 � � � 57.8(+6.6) 0.32/0.70 272

3.3.2 Offset

Since the confidence branch does not accurately represent

the location of lanes, the offset branch is responsible for

predicting the precise offset from the cell center to the lane

in the y direction of the road ground coordinates Croad =
(x, y, z). As shown in Figure 4, the model predicts the off-

set Δyi of each cell. The offset is normalized by the Sig-

moid and subtracted by 0.5 so that the range of the offset is

Table 5. Impact of cell size and offset.

Cell size
and offset F-Score X error

near
X error
far GFLOPs

0.05m 43.2 0.3415 0.770 735.31

0.2m 55.7 0.321 0.701 89.42

0.5m 57.9 0.429 0.734 53.05

0.5m + offset 58.4 0.309 0.659 53.25

1m 56.8 0.607 0.856 47.97

1m + offset 57.7 0.317 0.671 48.08

(−0.5, 0.5). The offset loss can be expressed by the MSE

loss. Note that we only calculate offset for grid cells with a

positive ground truth of confidence.

L3d
offset =

s1×s2∑

i

1obj(σ(Δyi)−Δŷi)
2

(4)

where 1obj denotes whether the lane passes through this

cell. Δyi denotes offset from prediction, and Δŷi denotes

offset from ground truth.
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Table 6. The comparison of the different scales in front-view

feature layers during spatial transformation. S32 represents 32x

downsampling of the input image. S32 + S64 represents the con-

catenation of 64x downsampling and 32x downsampling of the

input image.

Combination
of scales F-Score X error

near
X error
far

S8 53.2 0.341 0.682

S16 57.1 0.340 0.696

S32 57.6 0.323 0.682

S64 56.7 0.322 0.697

S128 54.5 0.325 0.676

S32+S64 58.4 0.309 0.659

S32+S64+S128 58.3 0.315 0.656

3.3.3 Embedding

To distinguish the lane identity of each pixel in the confi-

dence branch, we predict the embedding of each grid cell

with reference to [5, 20]. In the training stage, the distance

among cell embeddings belonging to the same lane is min-

imized, whereas the distance among cell embeddings be-

longing to different lanes is maximized. In the inference

of the network, we use a fast unsupervised clustering post-

processing method to predict the variable number of lanes.

Unlike front-view lanes that usually converge at vanishing

points, 3D lanes are more suitable for the embedding clus-

tering loss function.

L3d
embed = L3d

var + L3d
dist (5)

where L3d
var denotes the loss of minimizing the mean of cell

embeddings belonging to the same lane. L3d
dist denotes the

loss of maximizing the variance of cell embeddings belong-

ing to the different lanes.

3.3.4 Lane Height

Confidence, offset, and embedding can only predict the x
and y of key points in the road ground coordinates Croad =
(x, y, z), and thus we present a height branch that is respon-

sible for predicting the z of the key points. In the training

phase of the network, we use the average height in a grid

cell as ground truth. At the same time, only the grid cells

with positive ground truth are counted in the loss.

L3d
height =

s1×s2∑

i

1obj(hi − ĥi)
2

(6)

where hi denotes the height of the grid cell predicted by the

model, and ĥi denotes the height of the grid cell from the

ground truth.

3.3.5 Total loss

The total loss includes 3D lane losses and front-view lane

losses. The front-view lane loss includes lane segmentation

loss and lane embedding loss, referred to LaneNet [20].

Ltotal = λ3d
confL

3d
conf + λ3d

embedL
3d
embed

+λ3d
offsetL

3d
offset + λ3d

heightL
3d
height

+λ2d
segL

2d
seg + λ2d

embedL
2d
embed

(7)

where L2d
seg denotes lane segmentation loss, and L2d

embed de-

notes lane embedding loss in the front-view.

3.3.6 Inference

Given the outputs from KPR, we propose a fast unsuper-

vised clustering method to obtain the instance-level lanes,

which we refer to mean-shift from LaneNet [20]. We put

the details of the algorithm in Appendix.

4. Experiments
In order to verify the performance of our work, our

model is tested on the OpenLane real-world dataset [3] and

the Apollo simulation dataset [9]. Compared with previ-

ous methods, including PersFormer [3], Reconstruct from

Top [14], Gen-LaneNet [9], 3D-LaneNet [8], CLGO [19],

etc., it is proven that our work can reach the state-of-the-art

level in terms of F-Score and achieve competitive results in

terms of X/Z error. The resolution of our input image is

576× 1024.

4.1. Evaluation Metrics and Implementation De-
tails

On both 3D datasets, we adopt evaluation metrics com-

ing from Gen-LaneNet [9], which include F-Score in vari-

ous scenes and X/Z error in different areas.

4.2. Results on OpenLane

OpenLane contains 150,000 training frames and 40,000

test frames. In order to verify the performance of the model

for every scene, the Up&Down case, Curve case, Extreme

Weather case, Intersection case, Merge&Split case, and

Night case are separated from the validation set. Table 1

shows the F-Score of the model in every scene. Our model

trains 10 epochs in the training set and achieves the state-

of-the-art performance for each scene. Table 2 shows the

specific performance in terms of F-score and X/Z error for

different methods. Our results are 10.6% higher than the

state-of-the-art work [3] in terms of F-Score. The detailed

visualization can be found in Appendix. Moreover, since

the 3D ground truth of OpenLane is synthesized by LiDAR,

our work does not show much advantage in X error. How-

ever, our work shows a great advantage with respect to X

error for the Apollo dataset [9].
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Figure 5. Qualitative results of PersFormer [3] and BEV-LaneDet on the Openlane dataset. The first column: the input images; The

second column: the results of PersFormer in BEV; The third column: the results of our method in BEV; The fourth column: the results of

PersFormer in 3D space; The fifth column: the results of our method in 3D space. The visualization results show that our method is more

flexible and accurate.

4.3. Results on Apollo 3D synthetic

The Apollo dataset [9] includes 10,500 discrete frames

of monocular RGB images and their corresponding 3D

lanes ground truth, which is split into three scenes: bal-

anced, rarely observed, and visual variation scenes. Each

scene contains independent training sets and test sets. It is

noted that Apollo does not provide specific extrinsic param-

eters of the camera. We calculate the extrinsic parameters

of the camera through the height and pitch of the camera

provided by the dataset. In Table 3, we provide a compari-

son between the previous works and our work. Our model

has trained 80 epochs on these datasets. The F-Score and X

error of our work both reach the state-of-the-art with respect

to Apollo. However, since our work is more focused on the

BEV plane, our work does not perform well in terms of Z

error. We will improve this shortcoming in the future.

4.4. Ablation Study

The experiments in this section will be carried out on

the OpenLane, and the evaluation metrics are still based

on Gen-LaneNet [9]. Our baseline uses ResNet34 as the

backbone, no Virtual Camera(VC), VRM [21] as the spatial

transformation module, Key-Points Representation (KPR)

with offset and a grid size of 0.2 for 3D lanes, and no 2D

auxiliary supervision. We prove the effectiveness of our

methods by adding three modules: VC, Spatial Transfor-
mation Pyramid (STP), and 2D auxiliary supervision. as

shown in Table 4. Also, the table demonstrates the effect of

changing the cell size from 0.2 to 0.5 in KPR, which we will

discuss in detail in the following experiments. Meanwhile,

we demonstrate the speed of different backbone running on

the Tesla-V100.

At the same time, in order to verify the effect of the off-

set and grid cell sizes on KPR, we add Table 5. In the

experiments without offset, the F-Score keeps growing as

the cell size grows. However, as the cell size increases, the

X error also increases. When offset is added, the X error

returns to the normal level for the large cell. Meanwhile,

the larger the cell size is, the smaller FLOPs is. The ex-

perimental results demonstrate that the model achieves the

best metrics when gird cell size is 0.5× 0.5m2 with offset.

Moreover, we explore the influence of the position of the

front-view feature layer on the View Relation Module [21]

in Table 6. Experiments show that the Spatial Transforma-
tion Pyramid achieves the best results when fusing the 64x

down-sampling features and 32x down-sampling features of

the original image.

5. Conclusions

In this paper, we propose BEV-LaneDet, a simple
but effective 3D lane detection method. We present a
Virtual Camera to guarantee the consistency of the spatial
relationship of front-facing cameras in different vehicles,
and we have proven its effectiveness through experiments.
Moreover, we demonstrate experimentally that the Spatial
Transformation Pyramid, which is a robust and chip-
friendly module for spatial transformation, is effective.
As shown in experiments, Key-Points Representation is
a simple but effective module, which is more suitable to
represent the diversity of lane structures. At last, we believe
that our method can facilitate additional on-road 3D tasks.
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