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Figure 1. We present Co-SLAM, a neural RGB-D SLAM method that performs online tracking and mapping in real time. We propose a
new hybrid representation based on a joint coordinate and sparse-parametric encoding with global bundle adjustment. Our method shows
fast, high-fidelity scene reconstruction with efficient memory use and plausible hole-filling.

Abstract

We present Co-SLAM, a neural RGB-D SLAM system
based on a hybrid representation, that performs robust cam-
era tracking and high-fidelity surface reconstruction in real
time. Co-SLAM represents the scene as a multi-resolution
hash-grid to exploit its high convergence speed and abil-
ity to represent high-frequency local features. In addi-
tion, Co-SLAM incorporates one-blob encoding, to encour-
age surface coherence and completion in unobserved ar-
eas. This joint parametric-coordinate encoding enables
real-time and robust performance by bringing the best of
both worlds: fast convergence and surface hole filling.
Moreover, our ray sampling strategy allows Co-SLAM to
perform global bundle adjustment over all keyframes in-
stead of requiring keyframe selection to maintain a small
number of active keyframes as competing neural SLAM ap-
proaches do. Experimental results show that Co-SLAM runs
at 10−17Hz and achieves state-of-the-art scene reconstruc-
tion results, and competitive tracking performance in vari-
ous datasets and benchmarks (ScanNet, TUM, Replica, Syn-
thetic RGBD). Project page: https://hengyiwang.
github.io/projects/CoSLAM

⋆ Indicates equal contribution.

1. Introduction

Real-time joint camera tracking and dense surface re-
construction from RGB-D sensors has been a core problem
in computer vision and robotics for decades. Traditional
SLAM solutions exist that can robustly track the position of
the camera while fusing depth and/or color measurements
into a single high-fidelity map. However, they rely on hand-
crafted loss terms and do not exploit data-driven priors.

Recent attention has turned to learning-based models
that can exploit the ability of neural network architectures
to learn smoothness and coherence priors directly from data.
Coordinate-based networks have probably become the most
popular representation, since they can be trained to predict
the geometric and appearance properties of any point in the
scene in a self-supervised way, directly from images. The
most notable example, Neural Radiance Fields (NeRF) [14],
encodes scene density and color in the weights of a neural
network. In combination with volume rendering, NeRF is
trained to re-synthesize the input images and has a remark-
able ability to generalize to nearby unseen views.

Coordinate-based networks embed input point coordi-
nates into a high dimensional space, using sinusoidal or
other frequency embeddings, allowing them to capture
high-frequency details that are essential for high-fidelity
geometry reconstruction [1]. Combined with the smooth-
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Figure 2. Illustration of the effect of different encodings on completion. COORDINATE based encodings achieve hole filling but require
long training times. PARAMETRIC encodings allow fast training, but fail to complete unobserved regions. JOINT coordinate and para-
metric encoding (Ours) allows smooth scene completion and fast training. NICE-SLAM [42] uses a dense parametric encoding.

ness and coherence priors inherently encoded in the MLP
weights, they constitute a good choice for sequential track-
ing and mapping [26]. However, the weakness of MLP-
based approaches is the long training times required (some-
times hours) to learn a single scene. For that reason, re-
cent real-time capable SLAM systems built on coordinate
networks with frequency embeddings such as iMAP [26]
need to resort to strategies to sparsify ray sampling and re-
duce tracking iterations to maintain interactive operation.
This comes at the cost of loss of detail in the reconstruc-
tions which are oversmoothed (Fig. 5) and potential errors
in camera tracking.

Optimizable feature grids, also known as parametric
embeddings, have recently become a powerful alternative
scene representation to monolithic MLPs, given their ability
to represent high-fidelity local features and their extremely
fast convergence (orders of magnitude faster) [7, 10, 15, 32,
40]. Recent efforts focus on sparse alternatives to these
parametric embeddings such as octrees [28], tri-plane [2],
hash-grid [15] or sparse voxel grid [12, 13] to improve the
memory efficiency of dense grids. While these represen-
tations can be fast to train and are therefore well suited to
real-time operation, they fundamentally lack the smooth-
ness, and coherence priors inherent to MLPs and strug-
gle with hole-filling in areas without observation. NICE-
SLAM [42] is a recent example of a multi-resolution fea-
ture grid-based SLAM method. Although it does not suffer
from over-smoothness and captures local detail (as shown
in Fig. 2) it cannot perform hole-filling which might in turn
lead to drift in camera pose estimation.

Our first contribution is to design a joint coordinate and
sparse grid encoding for input points that brings together
the benefits of both worlds to the real-time SLAM frame-

work. On the one hand, the smoothness and coherence pri-
ors provided by coordinate encodings (we use one-blob [16]
encoding), and on the other hand the optimization speed
and local details of sparse feature encodings (we use hash
grid [15]), resulting in more robust camera tracking and
high-fidelity maps with better completion and hole filling.

Our second contribution relates to the bundle adjustment
(BA) step in the joint optimization of the map and cam-
era poses. So far, all neural SLAM systems [26, 42] per-
form BA using rays sampled from a very small subset of
selected keyframes. Restricting the optimization to a very
small number of viewpoints results in decreased robustness
in camera tracking and increased computation due to the
need for a keyframe-selection strategy. Instead, Co-SLAM
performs global BA, sampling rays from all past keyframes,
which results in an important boost in robustness and per-
formance in pose estimation. In addition, we show that
our BA optimization requires a fraction of the iterations of
NICE-SLAM [42] to achieve similar errors. In practice, Co-
SLAM achieves SOTA performance in camera tracking and
3D reconstruction while maintaining real time performance.

Co-SLAM runs at 15-17Hz on Replica and Syn-
thetic RGB-D datasets [1], and 12-13Hz on ScanNet [5]
and TUM [25] scenes — faster than NICE-SLAM (0.1-
1Hz) [42] and iMAP [26]. We perform extensive
evaluations on various datasets (Replica [24], Synthetic
RGBD [1], ScanNet [6], TUM [25]) where we outperform
NICE-SLAM [42] and iMAP [26] in reconstruction and
achieve better or at least on-par tracking accuracy.

2. Related Work
Dense Visual SLAM. Taking advantage of commodity
depth sensors, KinectFusion [18] performs frame-to-model
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camera tracking via projective iterative-closest-point (ICP),
and incrementally updates the scene geometry via TSDF-
Fusion. Subsequent works focused on addressing the scala-
bility issue by adopting more efficient data structures, such
as surface elements (surfels) [35, 36], VoxelHashing [3, 9,
19] or Octrees [31,41]. While most works focus more heav-
ily on scene reconstruction and only track per-frame poses,
BAD-SLAM [21] proposes full direct bundle adjustment
(BA) to jointly optimize keyframe (KF) poses and the dense
3D structure. Several recent works [11, 29, 30, 38] lever-
age deep learning to improve the accuracy and robustness
of traditional SLAM, and even achieve dense reconstruc-
tion with monocular SLAM. While these approaches intro-
duced some learned components, the scene representation
and overall pipeline still follow traditional SLAM methods.

Neural Implicit Representations. Recently neural implicit
representations [14] that encode 3D geometry and the ap-
pearance of a scene within the weights of a neural network
have gained popularity due to their expressiveness and com-
pactness. Among these works, NeRF [14] and its variants
adopt coordinate encoding [16, 20] with MLPs and show
impressive scene reconstruction using differentiable render-
ing. Given that coordinate encoding-based methods require
lengthy training, many follow-up works [7, 10, 27] propose
parametric encodings that increase parameter size but speed
up the training. To improve the memory efficiency of para-
metric encoding-based methods, sparse parametric encod-
ings, such as Octree [28], Tri-plane [2], or sparse voxel
grid [12, 13, 15], have been proposed. While these methods
focus on novel view synthesis, others instead focus on sur-
face reconstruction from RGB images, with implicit surface
representations and differentiable renderers [8, 33, 39, 40].
Other methods [1,26,32,37,42] use depth measurements as
additional supervision for surface reconstruction.

Neural Implicit SLAM. iMAP [26] adopts an MLP repre-
sentation to perform joint tracking and mapping in quasi-
real time. Smooth, plausible filling of unobserved re-
gions is achieved thanks to the coherence priors inherent
to the MLP. iMAP introduces elaborate keyframe selec-
tion and information-guided pixel sampling for speed, re-
sulting in 10 Hz tracking and 2 Hz mapping. To reduce
the computational overhead and improve scalability, NICE-
SLAM [42] adopts a multi-level feature grid for scene rep-
resentation. However, as feature grids only perform local
updates, they fail to achieve plausible hole-filling. With
Co-SLAM we aim to address both issues. To achieve real-
time performance and memory-efficiency, while maintain-
ing high-fidelity surface reconstruction and plausible hole
filling, we propose to combine the use of coordinate and
sparse parametric encodings for scene representation, and
perform dense global bundle adjustment using rays sampled
from all keyframes.

3. Method
Fig. 3 shows an overview of Co-SLAM. Given an input

RGB-D stream {It}Nt=1 {Dt}Nt=1 with known camera intrin-
sics K ∈ R3×3, we perform dense mapping and tracking by
jointly optimizing camera poses {ξt}Nt=1 and a neural scene
representation fθ. Specifically, our implicit representation
maps world coordinates x into color c and truncated signed
distance (TSDF) s values:

fθ(x) 7→ (c, s). (1)

Similar to most SLAM systems, the process is split into
tracking and mapping. Initialization is performed by run-
ning a few training iterations on the first frame. For each
subsequent frame, the camera pose is optimized first, initial-
ized with a simple constant-speed motion model. A small
fraction of pixels/rays are then sampled and copied to the
global pixel-set. At each mapping iteration, global bundle
adjustment is performed over a set of pixels randomly sam-
pled from the global pixel-set, to jointly optimize the scene
representation θ and all camera poses {ξt}.

3.1. Joint Coordinate and Parametric Encoding

Thanks to the coherence and smoothness priors inherent
to MLPs, coordinate-based representations achieve high-
fidelity scene reconstruction. However, these methods often
suffer from slow convergence and catastrophic forgetting,
when optimized in a sequential setting. Instead, paramet-
ric encoding based methods improve the computational ef-
ficiency, but they fall short of hole filling and smoothness.
Since both properties of speed and coherence are crucial
for a real-world SLAM system, we propose a joint coor-
dinate and parametric encoding that combines the best of
both worlds: we adopt coordinate encoding for scene repre-
sentation while using sparse parametric encoding to speed
up training. Specifically, we use One-blob [16] encoding
γ(x) instead of embedding spatial coordinates into multiple
frequency bands. As scene representation we adopt a multi-
resolution hash-based feature grid [15] Vα = {V l

α}Ll=1. The
spatial resolution of each level is set between the coars-
est Rmin and the finest resolution Rmax in a progressive
manner. Feature vectors Vα(x) at each sampled point x are
queried via trilinear interpolation. The geometry decoder
outputs the predicted SDF value s and a feature vector h:

fτ (γ(x),Vα(x)) 7→ (h, s). (2)

Finally, the color MLP predicts the RGB value:

fϕ(γ(x),h) 7→ c. (3)

Here θ = {α, ϕ, τ} are learnable parameters. Injecting
the One-blob encoding in the hash-based multi-resolution
feature grid representation, results in fast convergence, effi-
cient memory use, and hole filling needed for online SLAM.
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Figure 3. Overview of Co-SLAM. 1) Scene representation: using our new joint coordinate+parametric encoding, input coordinates are
mapped to RGB and SDF values via two shallow MLPs. 2) Tracking: optimize per-frame camera poses ξt by minimizing losses. 3)
Mapping: global bundle adjustment to jointly optimize the scene representation and camera poses taking rays sampled from all keyframes.

3.2. Depth and Color Rendering

Following [26, 42], we render depth and color by in-
tegrating the predicted values along the sampled rays.
Specifically, given the camera origin o and ray direction
r, we uniformly sample M points xi = o + dir, i ∈
{1, . . . ,M} with depth values {t1, . . . , tM} and predicted
colors {c1, . . . , cM} and render color and depth as

ĉ =
1∑M

i=1 wi

M∑
i=1

wici, d̂ =
1∑M

i=1 wi

M∑
i=1

widi, (4)

where {wi} are the computed weights along the ray. A con-
version function is needed to convert predicted SDF si to
weight wi. Instead of adopting the rendering equations pro-
posed in Neus [33, 39], we follow the simple bell-shaped
model of [1] and compute weights wi directly by multiply-
ing the two Sigmoid functions σ(·)

wi = σ
(si
tr

)
σ
(
−si
tr

)
, (5)

where tr is the truncation distance.
Depth-guided Sampling. For sampling along each ray, we
observe that importance sampling does not show significant
improvement while slowing down our tracking and map-
ping. Instead, we use depth-guided sampling: In addition
to Mc points uniformly sampled between near and far
bound, for rays with a valid depth measurement, we further
uniformly sample Mf near-surface points within the range
[d− ds, d+ ds], where ds is a small offset.

3.3. Tracking and Bundle Adjustment

Objective Functions. Our tracking and bundle adjustment
are performed via minimizing our objective functions with

respect to learnable parameters θ and camera parameters ξt.
The color and depth rendering losses are ℓ2 errors between
the rendered results and observations:

Lrgb =
1

N

N∑
n=1

(ĉn−cn)
2,Ld =

1

|Rd|
∑
r∈Rd

(d̂r−D[u, v])2.

(6)
where Rd is the set of rays that have a valid depth mea-
surement, and u, v is the corresponding pixel on the image
plane. To achieve accurate, smooth reconstructions with de-
tailed geometry, we also apply approximate SDF and fea-
ture smoothness losses. Specifically, for samples within the
truncation region, i.e. points where |D[u, v] − d| ≤ tr,
we use the distance between the sampled point and its ob-
served depth value as an approximation of the ground-truth
SDF value for supervision:

Lsdf =
1

|Rd|
∑
r∈Rd

1

|Str
r |

∑
p∈Str

r

(
sp − (D[u, v]− d)

)2
. (7)

For points that are far from the surface ((D[u, v]−d|) > tr),
we apply a free-space loss which forces the SDF prediction
to be the truncated distance tr:

Lfs =
1

|Rd|
∑
r∈Rd

1

|Sfs
r |

∑
p∈Sfs

r

(sp − tr)2. (8)

To prevent the noisy reconstructions caused by hash col-
lisions in unobserved free-space regions we perform addi-
tional regularization on the interpolated features Vα(x):

Lsmooth =
1

|G|
∑
x∈G

∆2
x +∆2

y +∆2
z, (9)
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where ∆x,y,z = Vα(x+ϵx,y,z)−Vα(x) denotes the feature-
metric difference between adjacent sampled vertices on the
hash-grid along the three dimensions. Since performing
regularization on the entire feature grid is computationally
infeasible for real-time mapping, we only perform it in a
small random region in each iteration.
Camera Tracking. We track the camera-to-world transfor-
mation matrix Twc = exp (ξ∧t ) ∈ SE(3) at each frame t.
When a new frame comes in, we first initialize the pose of
the current frame i using constant speed assumption:

Tt = Tt−1T
−1
t−2Tt−1 (10)

Then, we select Nt pixels within the current frame and iter-
atively optimize the pose by minimizing our objective func-
tion with respect to the camera parameters ξt.
Bundle Adjustment. In neural SLAM, bundle adjustment
usually consists of keyframe selection and joint optimiza-
tion of camera poses and scene representation. Classic
dense visual SLAM methods require saving keyframe (KF)
images as the loss is formulated densely over all pixels. In
contrast, the advantage of neural SLAM, as first shown by
iMAP [26], is that BA can work with a sparse set of sampled
rays. This is because the scene is represented as an implicit
field using a neural network. However, iMAP and NICE-
SLAM do not take full advantage of this - they still store
full keyframe images following the classic SLAM paradigm
and rely on keyframe selection (e.g. information gain, vi-
sual overlapping) to perform joint optimization on a small
fraction of keyframes (usually less than 10).

In Co-SLAM, we go further and drop the need for stor-
ing full keyframe images or keyframe selection. Instead, we
only store a subset of pixels (around 5%) to represent each
keyframe. This allows us to insert new keyframes more
frequently and maintain a much larger keyframe database.
For joint optimization, we randomly sample a total num-
ber of Ng rays from our global keyframe list to optimize
our scene representation as well as camera poses. The joint
optimization is performed in an alternating fashion. Specif-
ically, we firstly optimize the scene representation θ for km
steps and update camera poses using the accumulated gra-
dient on camera parameters {ξt}. Since each camera pose
uses only 6 parameters, this approach can improve the ro-
bustness of camera pose optimization with negligible extra
computational cost on gradient accumulation.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate Co-SLAM on a variety of scenes
from four different datasets. Following iMAP and NICE-
SLAM, we quantitatively evaluate the reconstruction qual-
ity on 8 synthetic scenes from Replica [24]. We also eval-
uate on 7 synthetic scenes from NeuralRGBD [1], which

simulates noisy depth maps. For pose estimation, we eval-
uate the results on 6 scenes from ScanNet [5] with their
ground truth pose obtained with BundleFusion [6], and 3
scenes from TUM RGB-D dataset [25] with their ground
truth pose provided by a motion capture system.
Metrics. We evaluate the reconstruction quality using
Depth L1 (cm), Accuracy (cm), Completion (cm), and Com-
pletion ratio (%) with a threshold of 5cm. Following NICE-
SLAM [42], we remove the unobserved regions that are out-
side of any camera frustum. In addition, we also perform an
extra mesh culling that removes the noisy points within the
camera frustum but outside the target scene. We observe
that all methods experience a performance gain with our
mesh culling strategy. Please refer to our supplementary
material for more details. For evaluation of camera track-
ing, we adopt ATE RMSE [25] (cm).
Baselines. We consider iMAP [26] and NICE-SLAM [42]
as our main baselines for reconstruction quality and cam-
era tracking. For a fair comparison, we evaluate iMAP
and NICE-SLAM with the same mesh culling strategy
as Co-SLAM. Note that iMAP⋆ denotes the iMAP re-
implementation released by the NICE-SLAM [42] authors,
which is much slower than the original implementation.
To investigate the trade-off between accuracy and frame
rate on real-world datasets, we report results of two ver-
sions of our method: Ours refers to our proposed approach
(which achieves real-time operation) while Ours† indicates
our method ran with twice as many tracking iterations.
Implementation Details. We run Co-SLAM on a desk-
top PC with a 3.60GHz Intel Core i7-12700K CPU and
NVIDIA RTX 3090ti GPU. For experiments with default
settings (Ours), which runs at 17 FPS on the Replica
dataset, we use Nt = 1024 pixels with 10 iterations for
tracking and 5% of pixels from every 5th frame for global
bundle adjustment. We sample Mr = 32 regular points
and Md = 11 depth points along each camera ray, with
tr = 10cm. Please refer to supplementary materials for
more specific settings on all datasets.

4.2. Evaluation of Tracking and Reconstruction

Replica dataset [24]. We evaluate on the same simulated
RGB-D sequences as iMAP [26]. As shown in Tab. 1, our
method achieves higher reconstruction accuracy and faster
speed. Fig. 5 shows the qualitative results, from which we
can observe that iMAP achieves plausible completion in un-
observed areas but results are over-smoothed, while NICE-
SLAM maintains more reconstruction details, but results
contain some artifacts (e.g. the floors beside the bed, the
back of the chairs). Co-SLAM successfully retains the ad-
vantages of both methods achieving consistent completion
as well as high-fidelity reconstruction results.
Synthetic dataset [1]. We perform further experiments on
the synthetic dataset from NeuralRGBD [1]. Unlike the
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Dataset Method Depth L1 (cm)↓ Acc. (cm)↓ Comp. (cm)↓ Comp. Ratio↑ Tracking (ms) ↓ Mapping (ms) ↓ FPS ↑ #param. ↓

Replica [24]

TSDF-Fusion [4] 6.36 1.62 3.94 83.93 N/A N/A N/A 16.8 M
iMAP [23] 4.64 3.62 4.93 80.51 101 (200, 6) 448 (1000, 10) 9.9 0.26 M
NICE-SLAM [42] 1.90 2.37 2.64 91.13 78 (200, 10) 5470 (1000, 60) 0.91 17.4 M
Ours 1.51 2.10 2.08 93.44 58 (1024, 10) 98 (2048, 10) 17.4 0.26 M

TSDF-Fusion [4] 10.87 1.62 5.16 81.52 N/A N/A N/A 16.8 M
Synthetic iMAP⋆ [23] 43.91 18.30 26.41 20.73 1550 (5000, 50) 14730 (5000, 300) 0.34 0.22 M
RGBD [1] NICE-SLAM [42] 6.32 5.96 5.30 77.46 123 (1024, 10) 3792 (1000, 60) 1.31 3.11 M

Ours 3.02 2.95 2.96 86.88 64 (1024, 10) 104 (2048, 10) 15.6 0.26 M

Table 1. Reconstruction quality and run-time memory comparison on Replica [24] and Synthetic-RGBD [1] with respective settings. TSDF-
Fusion is reconstructed with poses estimated by Co-SLAM. Run-time is reported in time(#pixel, #iter) for a comprehensive
comparison. The model size is averaged across all scenes.

Method Track. (ms) ↓ Map. (ms) ↓ FPS ↑ #param. ↓

Sc
an

N
et iMAP⋆ 30.4×50 44.9×300 0.37 0.2 M

NICE-SLAM 12.3×50 125.3×60 0.68 10.3 M
Ours† 7.8×20 20.2×10 6.4 0.8 M
Ours 7.8×10 20.2×10 12.8 0.8 M

T
U

M

iMAP⋆ 29.6×200 44.3×300 0.07 0.2 M
NICE-SLAM 47.1×200 189.2×60 0.08 101.6 M
Ours† 7.5×20 19.0×20 6.7 1.6 M
Ours 7.5×10 19.0×20 13.3 1.6 M

Table 2. Run-time and memory comparison on ScanNet [5] and
TUM-RGBD [25] with respective settings. Run-time is reported in
ms/iter × #iter for a detailed comparison. NICE-SLAM
and iMAP⋆ run mapping at every frame on TUM-RGBD. Map-
ping happens every 5 frames in all other cases. The model size is
averaged across all scenes.
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Figure 4. Reconstruction results on Synthetic RGB-D dataset [1].
Our method can recover thin structures and achieve plausible
scene completion given noisy depth measurement.

Replica dataset, it contains many thin structures and sim-
ulates the noise present in real depth sensor measurements.
Quantitatively, our method significantly outperforms base-
line methods (see Tab. 1) while still operating in real time

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

iMAP⋆ [26] 55.95 32.06 17.50 70.51 32.10 11.91 36.67
NICE-SLAM [42] 8.64 12.25 8.09 10.28 12.93 5.59 9.63
Ours† 7.13 11.14 9.36 5.90 11.81 7.14 8.75
Ours 7.18 12.29 9.57 6.62 13.43 7.13 9.37

Table 3. ATE RMSE (cm) results of an average of 5 runs on Scan-
Net. Co-SLAM achieves better or on-par performance compared
to NICE-SLAM [42] with significantly faster optimization speed.

fr1/desk (cm) fr2/xyz (cm) fr3/office (cm)

iMAP [26] 4.9 2.0 5.8
iMAP⋆ [26] 7.2 2.1 9.0
NICE-SLAM [42] 2.7 1.8 3.0
Ours† 2.4 1.7 2.4
Ours 2.7 1.9 2.6

BAD-SLAM [22] 1.7 1.1 1.7
Kintinuous [34] 3.7 2.9 3.0
ORB-SLAM2 [17] 1.6 0.4 1.0

Table 4. ATE RSME (cm) results on TUM RGB-D dataset.
Our method achieves the best tracking performance among neu-
ral SLAM methods and maintains high-fidelity reconstruction.

(15 FPS). Fig. 4 shows some example qualitative results.
Overall, Co-SLAM can capture fine details (e.g. wine bot-
tles, chair legs, etc.) and produces complete and smooth
reconstructions. NICE-SLAM yields less detailed and nois-
ier reconstructions and cannot perform hole filling, while
iMAP∗ lost track on some occasions.
ScanNet dataset [5]. We evaluate the camera tracking
accuracy of Co-SLAM on 6 real-world sequences from
ScanNet. The absolute trajectory error (ATE) is obtained
by comparing predicted and ground-truth (generated by
BundleFusion [6]) trajectories. Tab. 3 shows that quanti-
tatively, our method achieves better tracking results in com-
parison to NICE-SLAM [42] with fewer tracking and map-
ping iterations while running at 6−12 Hz (see Tab. 2). Fig. 6
also shows Co-SLAM achieves better reconstruction quality
with smoother results and finer details (e.g. bike).
TUM dataset [25]. We further evaluate the tracking ac-
curacy on the TUM dataset [25]. As shown in Tab. 4,
our method achieves competitive tracking performance at
13 FPS. By increasing the number of tracking iterations
(Ours†), our method achieves the best tracking performance
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Figure 5. Reconstruction results on Replica [24] dataset. In comparison to our baselines, our methods achieve accurate and high-quality
scene reconstruction and completion on various scenes.
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Figure 6. Reconstruction results on ScanNet [5]. In comparison to the previous methods, our reconstructions are smoother and contain
more details thanks to our proposed joint encoding and global bundle adjustment strategy.

among neural SLAM methods, though at the expense of the
FPS dropping to 6.7 (see Tab. 2). Although Co-SLAM still
cannot outperform classic SLAM methods, it reduces the
tracking performance gap between neural and classic meth-
ods, while improving the fidelity and completeness of the
reconstructions.

4.3. Performance Analysis

Run time and memory analysis. In our default setting
(Ours), Co-SLAM can operate above 15Hz on a desktop PC
with a 3.60GHz Intel Core i7-12700K CPU and NVIDIA
RTX 3090ti GPU. For more challenging scenarios such as
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Figure 7. Completion ratio vs. model size for Co-SLAM w/ and
w/o coordinate encoding. Each model corresponds to a different
hash-table size. iMAP [26] and NICE-SLAM [42] shown for ref-
erence.

w/o hash enc. w/o one-blob enc. Full model

Acc. (cm.) ↓ 3.69 2.13 2.10
Comp. (cm.) ↓ 3.43 2.13 2.08
Comp. Ratio ↑ 82.49 93.17 93.44

Table 5. Ablation study on different encodings. Default hash-
table size is 13. Our full model with joint encoding achieves better
completion and more accurate reconstructions. See also Fig. 2.

the ScanNet and TUM datasets, Co-SLAM still achieves
5− 13Hz runtime. Fig. 7 shows reconstruction quality with
respect to memory use. Thanks to the sparse parametric en-
coding, our method requires significantly less memory than
NICE-SLAM [42] while operating in real time and achiev-
ing accurate reconstruction results. Surprisingly, we found
that further compressing the memory footprint (increasing
the chances of hash collisions), Co-SLAM still outperforms
iMAP [26], suggesting that our joint encoding improves the
representation power of single encoding. Note that this fig-
ure is for illustration purposes, so we use the same spatial
resolution throughout our hash encoding. Ideally, one can
reduce the spatial resolution further to minimize hash colli-
sions and achieve a better reconstruction quality.
Scene completion. Fig. 2 shows an illustration of hole fill-
ing using different encoding strategies on a small scene. Co-
ordinate encoding-based methods achieve plausible com-
pletion at the cost of lengthy training times, while para-
metric encoding-based methods fail at hole filling due to
their local nature. By applying our new joint encoding, we
observe that smooth hole filling can be achieved and fine
structures are preserved by Co-SLAM.

4.4. Ablations

Effect of joint coordinate and parametric encoding.
Tab. 5 illustrates a quantitative evaluation using different
encodings. Our full model leads to higher accuracy and bet-
ter completion than using single encodings (only one-blob
or only hash-encoding). In addition, Fig. 7 illustrates that
when compressing the size of the hash lookup table, our

Name KF selection #KF Pose
optim. ATE (cm) Std. (cm)

Local Global 0 10 All

w/o BA ✓ 16.81 1.69
LBA ✓ ✓ ✓ 9.69 1.38
GBA-10 ✓ ✓ ✓ 9.54 0.67
GBA ✓ ✓ ✓ 8.75 0.33

Table 6. Ablation of BA strategies on Co-SLAM: (LBA) BA with
rays from 10 local keyframes; (GBA-10) BA with rays from 10
keyframes randomly selected from all keyframes; (GBA) BA with
rays from all keyframes (our full method). All methods sample the
same number of total rays per iteration (2048).

full model with joint coordinate and parametric encoding
is more robust in comparison to using a hash-based feature
grid without the coordinate encoding.
Effect of global bundle adjustment. Tab. 6 shows the
average ATE of our SLAM method on the 6 ScanNet
scenes using different BA strategies: (w/o BA) pure track-
ing; (LBA) BA with rays from 10 local keyframes, a sim-
ilar strategy to NICE-SLAM; (GBA-10) BA using rays
from only 10 keyframes randomly selected from all past
keyframes; (GBA) denotes the global BA strategy of Co-
SLAM. We observe that using rays from a small (10) num-
ber of keyframes (LBA and GBA-10) leads to higher ATE
errors. However, when keyframes are chosen from the en-
tire sequence (GBA-10), instead of locally (LBA) the stan-
dard deviation is greatly reduced. Sampling rays from all
keyframes (GBA) is the best overall strategy, even when all
methods sample the same number of total rays (2048).

5. Conclusion

We presented Co-SLAM, a dense real-time neural RGB-
D SLAM system. We show that using a joint coordinate and
parametric encoding with tiny MLPs as scene representa-
tion and training it with global bundle adjustment, achieves
high-fidelity mapping and accurate tracking with plausible
hole filling and efficient memory use.
Limitations. Co-SLAM relies on inputs from an RGB-D
sensor and is therefore sensitive to illumination changes
and inaccurate depth measurements. Instead of sampling
keyframe pixels randomly, an information-guided pixel
sampling strategy could be helpful to further reduce the
number of pixels and improve the tracking speed. Incor-
porating loop closure could lead to further improvements.
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