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Abstract

Semi-supervised semantic segmentation (SSS) has re-
cently gained increasing research interest as it can re-
duce the requirement for large-scale fully-annotated train-
ing data. The current methods often suffer from the confir-
mation bias from the pseudo-labelling process, which can
be alleviated by the co-training framework. The current
co-training-based SSS methods rely on hand-crafted per-
turbations to prevent the different sub-nets from collaps-
ing into each other, but these artificial perturbations can-
not lead to the optimal solution. In this work, we propose a
new conflict-based cross-view consistency (CCVC) method
based on a two-branch co-training framework which aims
at enforcing the two sub-nets to learn informative features
from irrelevant views. In particular, we first propose a new
cross-view consistency (CVC) strategy that encourages the
two sub-nets to learn distinct features from the same input
by introducing a feature discrepancy loss, while these dis-
tinct features are expected to generate consistent prediction
scores of the input. The CVC strategy helps to prevent the
two sub-nets from stepping into the collapse. In addition,
we further propose a conflict-based pseudo-labelling (CPL)
method to guarantee the model will learn more useful infor-
mation from conflicting predictions, which will lead to a sta-
ble training process. We validate our new CCVC approach
on the SSS benchmark datasets where our method achieves
new state-of-the-art performance. Our code is available at
https://github.com/xiaoyao3302/CCVC.

1. Introduction

Among different vision tasks, semantic segmentation is
a fundamental vision task that enables the network to under-
stand the world [3,11,12,32,33]. In recent years, deep neu-
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Figure 1. We compare the cosine similarity values between the
features extracted by the two sub-nets of the traditional cross-
consistency regularization (CCR) method and our CVC method.
We also compare the prediction accuracies of the two methods,
measured by mIoU. We show that our CVC method can prevent
the two sub-nets from collapsing into each other and inferring the
input from irrelevant views, while CCR cannot guarantee the in-
ferred views are different. We show our new method can increase
the perception of the model, which produces more reliable pre-
dictions. The experiments are implemented on the original Pascal
VOC dataset, under the 1/4 split partition with ResNet-101 as the
backbone of the encoder.

ral networks (DNNs) have shown great potential in seman-
tic segmentation [18,31,57]. However, the success of DNNs
is mainly due to the huge amount of annotated datasets. For
the task of semantic segmentation, pixel-level annotations
are often required, which means the annotators need to man-
ually label up to hundreds of thousands of pixels per image.
Therefore, it takes great effort to collect precisely labelled
data for training DNNs [1, 27, 30].

Various semi-supervised learning (SSL) methods are
proposed to tackle the problem, which aim at learning a
network by using only a small set of pixel-wise precisely
annotated data and a large set of unlabelled data for seman-
tic segmentation [2, 34, 37, 53, 54, 58]. It is obvious that
the information from the labelled data is very limited as the
number of labelled data is far less than the number of un-
labelled data. Therefore, it becomes a key issue to fully
exploit the unlabelled data to assist the labelled data for the
model training.

One intuitive way to tackle this issue is pseudo-
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labelling [28,37,48]. However, SSL methods along this line
may suffer from the so-called confirmation bias [48], which
often leads to performance degradation due to the unsta-
ble training process. Recently, consistency regularization-
based SSL methods show promising performance [35, 38,
41, 46]. However, most of them rely on producing the pre-
dictions of the weakly perturbed inputs to generate pseudo-
labels, which are then used as the supervision to generate
the predictions of the strongly perturbed inputs. Therefore,
they still suffer from the confirmation bias issue.

On the other hand, co-training is a powerful framework
for SSL as it enables different sub-nets to infer the same
instance from different views and transfer the knowledge
learnt from one view to another through pseudo-labelling.
Particularly, co-training relies on multi-view reference to
increase the perception of the model, thus enhancing the
reliability of the generated pseudo-labels [40]. Various
semi-supervised semantic segmentation (SSS) approaches
are based on co-training [10, 39]. The key point is how to
prevent different sub-nets from collapsing into each other
such that we can make correct predictions based on the in-
put from different views. However, the hand-crafted pertur-
bations used in most SSS methods cannot guarantee hetero-
geneous features to be learned to effectively prevent sub-
nets from stepping into a collapse.

Facing the above-mentioned issue, in this work, we
come up with a new conflict-based cross-view consistency
(CCVC) strategy for SSS, which makes sure the two sub-
nets in our model can learn for different features separately
so that reliable predictions could be learned from two irrel-
evant views for co-training, thus further enabling each sub-
net to make reliable and meaningful predictions. In particu-
lar, we first raise a cross-view consistency (CVC) approach
with a discrepancy loss to minimize the similarity between
the feature extracted by the two sub-nets to encourage them
to extract different features, which prevents the two sub-nets
from collapsing into each other. Then we employ the cross
pseudo-labelling to transfer the knowledge learnt from one
sub-net to another to improve the perception of the network
to correctly reason the same input from different views, thus
producing more reliable predictions.

However, the discrepancy loss may introduce too strong
a perturbation to the model that the feature extracted by
the sub-nets may contain less meaningful information for
the prediction, leading to inconsistent and unreliable predic-
tions from the two sub-nets. This will incur the confirma-
tion bias problem and thus harm the co-training of the sub-
nets. To tackle this problem, we further propose a conflict-
based pseudo-labelling (CPL) method, where we encourage
the pseudo-labels generated by the conflicting predictions
of each sub-net to have stronger supervision for the pre-
diction of each other, to enforce the two sub-nets to make
consistent predictions. Thereby, the useful features for the

prediction could be preserved as well as the reliability of
the predictions. In this way, hopefully, the influence of the
confirmation bias can be reduced and the training process
can be more stable.

As shown in Fig. 1, we can see the similarity scores be-
tween the features extracted from the two sub-nets of the
cross-consistency regularization (CCR) model remain at a
high level, indicating the reasoning views of CCR are kind
of relevant. In contrast, our CVC method ensures the rea-
soning views are sufficiently different and thus produces
more reliable predictions.

It should be mentioned that our CCVC method is com-
patible with various existing data augmentation methods
and it also benefits from an augmented training set with in-
creased data diversity.

The contributions of our work are summarized as below:

• We introduce a cross-view consistency (CVC) strategy
based on a co-training framework to make reliable pre-
dictions, where we propose a feature discrepancy loss
to enable the two-branch network to learn how to rea-
son the input differently but make consistent predic-
tions.

• We further propose a new conflict-based pseudo-
labelling (CPL) method based on our cross-view con-
sistency strategy to enable the two sub-nets to learn
more useful semantic information from conflicting
predictions to produce reliable and consistent predic-
tions, which leads to a more stable training process.

• Our method achieves the state-of-the-art performance
on the commonly used benchmark datasets, PASCAL
VOC 2012 [16] and Cityscapes [13].

2. Related work
2.1. Semantic segmentation

Semantic segmentation is a dense prediction vision
task that aims at distinguishing the categories each pixel
belonging to. FCN [36] is a pioneer work that pro-
posed an encoder-decoder architecture with a fully convo-
lutional network to perform pixel-wise semantic segmenta-
tion, which inspired tremendous works using a similar ar-
chitecture to provide dense predictions, like the traditional
convolutional neural network-based method including the
DeepLab series [5–8], the HRNet [43], the PSPNet [52]
and SegNeXt [21], etc. More recently, with the great suc-
cess of the Transformer [4, 15, 42], various attempts have
been proposed to utilize the great potential of the atten-
tion mechanism to capture the long-range contextual in-
formation for semantic segmentation like SegFormer [45],
HRFormer [49], SETR [57] and SegViT [50], etc. How-
ever, the extraordinary performance of these methods re-
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Figure 2. The network architecture of our cross-view consistency (CVC) method. We use a feature discrepancy loss to enforce the network
to generate the same input from different views. On one hand, we use the supervised loss Ll

sup,i and the consistency loss Lu
con,i to perform

cross-supervision. On the other hand, we use the discrepancy loss Lα
dis to minimize the similarity between the features extracted by the

feature extractors which thus enforcing the two sub-nets to learn different information. The subscript i denotes the i-th sub-net and the
superscript α denotes the labelled data or the unlabelled data. The mark // represents the stop gradient operation. It should be mentioned
that our CVC method is complementary to the traditional data augmentation methods.

lies heavily on full annotation supervision, and it is usually
time-consuming to obtain the annotations.

2.2. Semi-supervised semantic segmentation

Semi-supervised learning (SSL) approaches were pro-
posed to reduce the reliance of the model on large-scale
annotated data. These methods aim at training a model
using a small set of labelled data and a large set of unla-
belled data. The key point of SSL methods is how to take
full use of the large amount of unlabelled data [55, 56].
Current semi-supervised semantic segmentation methods
can be roughly divided into two main categories, i.e., self-
training-based methods [10, 24, 28, 37, 44] and consistency
regularization-based methods [29, 35, 38, 41, 59]. Most of
the self-training-based methods select a set of predictions
to generate pseudo-labels to fine-tune the model while most
of the consistency regularization-based methods aim at us-
ing the network predictions of the weakly augmented in-
puts as the supervision for those predictions of the strongly
augmented inputs. However, both of these two kinds of
methods will suffer from a problem that the false positive
predictions will introduce incorrect pseudo-labels and thus
mislead the training, which is known as the confirmation
bias.

2.3. Co-training

Co-training is a typical semi-supervised learning ap-
proach, which aims at learning two sub-nets to reason the

same instance from different views and then exchange the
learnt information with each other [40, 47]. The two sub-
nets can provide different and complementary information
for each other, thus leading to a stable and accurate predic-
tion and reducing the influence of the confirmation bias.

Various semi-supervised segmentation approaches have
been proposed based on the co-training framework [10,39],
but the two sub-nets are easy to be collapsed. To prevent
the issue, CCT [39] introduces feature-level perturbations to
make sure the input of the several decoders is not the same
to prevent the decoders from collapsing into each other.
CPS [10] learns two sub-nets which are differently initial-
ized, which ensures the two sub-nets behave differently.

However, it is difficult to guarantee the reasoning views
of the different networks are different by using artificial per-
turbations. Compared with the above-mentioned methods,
we propose to enable the networks to learn to be different
but can still generate consistent predictions via our conflict-
based cross-view consistency (CCVC) strategy, which uti-
lizes a discrepancy loss to minimize the similarity of the
features extracted by the two sub-nets to prevent the col-
lapse and guarantee the reasoning views of the sub-nets are
irrelevant.

3. Method

In this section, we will give a detailed explanation of
our newly proposed conflict-based cross-view consistency
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(CCVC) strategy. In Sec. 3.1 we will give a briefly defi-
nition of the semi-supervised semantic segmentation (SSS)
task. Then, we will introduce our cross-view consistency
(CVC) method in Sec. 3.2 and our conflict-based pseudo-
labelling (CPL) method in Sec. 3.3.

3.1. Problem statement

In SSS tasks, we are given a set of fully pixel-wise anno-
tated images Dl = {(xi, yi)}Mi=1 and a set of unlabelled
images Du = {xi}Ni=1. M and N indicate the number
of labelled images and unlabelled images. In most cases,
we have N ≫ M . The xi ⊂ RH×W×C indicates the in-
put image with a size of H × W and C channels, while
yi ⊂ {0, 1}H×W×Y is the one-hot ground truth label for
each pixel, where Y indicates the number of visual classes
in total. We aim at training a model Ψ using the given input
data Dl and Du to generate semantic predictions.

3.2. Cross-view consistency

In this section, we illustrate our newly proposed cross-
view consistency (CVC) method. We utilize a co-training-
based two-branch network where the two sub-nets, i.e., Ψ1

and Ψ2, have a similar architecture but the parameters of
the two sub-nets are not shared. The network architecture
is shown in Fig. 2. Here, we divide each sub-net into a
feature extractor Ψf,i and a classifier Ψcls,i, where i equals
1 or 2, indicating the first sub-net and the second sub-net,
respectively. Formally, we denote the feature extracted by
the feature extractor Ψf,i after L2 normalization as fα

i and
the prediction produced by the classifier Ψcls,i as ỹαi , where
α ∈ {u, l} represents for the labelled data stream or the
unlabelled data stream, respectively. Recall that we aim at
enabling the two sub-nets to reason the input from different
views, so the feature extracted should be different. There-
fore, we minimize the cosine similarity between the features
fα
i extracted by each feature extractor using a discrepancy

loss Lα
dis, which can be formulated as:

Lα
dis = 1 +

fα
1 · fα

2

∥fα
1 ∥ × ∥fα

2 ∥
(1)

Note that coefficient 1 is to ensure that the value of the dis-
crepancy loss is always non-negative. We encourage the
two sub-nets to output features with no co-relationship, thus
enforcing the two sub-nets to learn to reason the input from
two irrelevant views.

However, most SSS methods adopt a ResNet [23]
pre-trained on ImageNet [14] as the backbone of the
DeepLabv3+ and only fine-tune the backbone with a small
learning rate, making it difficult to implement our feature
discrepancy maximization operation. To tackle the issue,
we follow a similar operation as BYOL [19] and Sim-
Siam [9] to heterogeneity our network by mapping the fea-
tures extracted by Ψf,2 to another feature space using a sim-

ple convolutional layer, i.e., Ψmap, with a non-linear layer.
We denote the features extracted by Ψf,2 after mapping as
f̄α
2 and we re-write the discrepancy loss as:

Lα
dis = 1 +

fα
1 · f̄α

2

∥fα
1 ∥ × ∥f̄α

2 ∥
(2)

Note that we apply the discrepancy supervision on both the
labelled data and the unlabelled data, so we calculate the
total discrepancy loss as Ldis = 0.5× (Ll

dis + Lu
dis).

Note that we need to make sure the sub-nets make mean-
ingful predictions. Therefore, for the labelled data, we use
the ground truth label as supervision to train the two sub-
nets to generate semantic meaningful predictions, and we
formulate the supervised loss as follows:

Ll
sup,i =

1

M

M∑
m=1

1

W ×H

W×H∑
n=0

ℓce(ỹ
l
mn,i, y

l
mn) (3)

Recall that the subscript i denotes the i-th sub-net and we
use n to denote the n-th pixel in the m-th image, thereby
ỹlmn and ylmn represents for the prediction or the ground
truth label of the n-th pixel in the m-th labelled image, re-
spectively. Note that we need to perform ground truth su-
pervision on both of the two sub-nets, so we can calculate
the supervised loss as Ll

sup = 0.5× (Ll
sup,1 + Ll

sup,2).
For the unlabelled data, we adopt the pseudo-labelling

approach to enable each sub-net to learn semantic infor-
mation from the other one. Given a prediction ỹumn,i, the
pseudo label generated by it can be written as ŷumn,i =
argmaxc(ỹ

u
mnc,i), where ỹumnc,i is the c-th dimension of

the prediction score of ỹumn,i and c = {1, . . . , Y } represents
the index of the categories. We apply the cross-entropy loss
to fine-tune the model, and the consistency loss for each
branch can be formulated as below:

Lu
con,i =

1

N

N∑
m=1

1

W ×H

W×H∑
n=0

ℓce(ỹ
u
mn,i, ŷ

u
mn,(3−i))

(4)
Recall that i equals 1 or 2, indicating the first or the second
sub-net. The cross-consistency loss can be calculated as
Lu
con = 0.5× (Lu

con,1 + Lu
con,2).

To sum up, when learning the model, we jointly consider
the supervised loss Ll

sup, the consistency loss Lu
con and the

discrepancy loss Ldis, the total loss can be written as fol-
lows:

L = λ1Ll
sup + λ2Lu

con + λ3Ldis (5)

where λ1, λ2 and λ3 are the trade-off parameters.

3.3. Conflict-based pseudo-labelling

With our cross-view consistency (CVC) method, the two
sub-nets will learn from different views for semantic infor-
mation. Nevertheless, the training might be unstable as the
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feature discrepancy loss would introduce a too strong per-
turbation on the model. Thereby, it is hard to guarantee that
the two sub-nets can learn useful semantic information from
each other, which may further influence the reliability of the
predictions.

To tackle the issue, we propose a conflict-based pseudo-
labelling (CPL) method to enable the two sub-nets to learn
more semantic information from the conflicting predictions
to make consistent predictions, thereby guaranteeing that
the two sub-nets can generate the same reliable predictions,
and further stabilize the training. Here we use a binary value
δcmn,i to define whether the prediction is conflicting or not,
where δcmn,i equals 1 when ŷumn,1 ̸= ŷumn,2 and 0 otherwise.
We aim at encouraging the model to learn more semantic
information from these conflicting predictions. Therefore,
when using these predictions to generate pseudo-labels for
fine-tuning the model, we assign a higher weight ωc to the
cross-entropy loss supervised by these pseudo-labels.

However, the training may also be influenced by con-
firmation bias [48] during the training process as some of
the pseudo-labels might be wrong. Therefore, following
the previous methods [46, 51] that set a confidence thresh-
old γ to determine whether the prediction is confident or
not, we further divide the conflicting predictions into two
categories, i.e., the conflicting and confident (CC) pre-
dictions and the conflicting but unconfident (CU) predic-
tions, and we only assign ωc to those pseudo-labels gen-
erated by CC predictions. Here we use a binary value
δccmn,i to define the CC predictions, where δccmn,i equals to
1 when ŷumn,1 ̸= ŷumn,2 and maxc(ỹ

u
mnc,i) > γ, otherwise

δccmn,i equals to 0. Similarly, we can use δemn,i to denote
the union of CU predictions and no-conflicting predictions
where δemn,i = 1− δccmn,i. It should be noticed that we still
use the pseudo-labels generated with the CU predictions to
fine-tune the model with a normal weight instead of directly
discarding them, the main reason is that we argue that these
CU predictions can also contain potential information about
the inter-class relationship [44]. Therefore, we can re-write
Eq. 4 as Lu

con,i = ωcLu,cc
con,i + Lu,e

con,i where

Lu,cc
con,i =

1

N

N∑
m=1

1

W ×H

W×H∑
n=0

ℓce(ỹ
u
mn,i, ŷ

u
mn,(3−i))·δ

cc
mn,i

(6)
and

Lu,e
con,i =

1

N

N∑
m=1

1

W ×H

W×H∑
n=0

ℓce(ỹ
u
mn,i, ŷ

u
mn,(3−i))·δ

e
mn,i

(7)
Finally, we can re-calculate the total loss L as calculated in
Eq. 5 to train the model.

Our CCVC method can efficiently encourage the two
sub-nets to reason the same input from different views and
the knowledge transfer between the two sub-nets can in-

crease the perception of each sub-net, thus improving the
reliability of the predictions.

It should be mentioned that in the inference stage, only
one branch of the network is required to produce the pre-
diction, and it also should be mentioned that our method is
irrelevant to traditional data augmentation methods, which
means we can directly adopt any data augmentation meth-
ods on the input data to increase the input diversity, the
only thing to make sure is that the input of the two sub-nets
should be the same.

4. Experiments
4.1. Datasets

Pascal VOC 2012 dataset [16] is a standard semi-
supervised semantic segmentation (SSS) benchmark
dataset, which consists of over 13,000 images from 21
classes. It contains 1,464 fully annotated images for
training, 1,449 images for validation and 1,456 images for
testing. Previous works use SBD [22] to render the labelled
images and extend the number of labelled data to 10,582.
The rendered labelled images are of low quality and some
of them are accompanied by noise. Therefore, most of the
previous works validate their SSS methods with sampled
labelled images from the high-quality training images and
rendered training images, respectively.

Cityscapes dataset [13] is another benchmark dataset
for SSS, which focuses on urban scenarios and it consists
of 2,975 annotated training images, 500 validation images
and 1,525 testing images from 19 classes.

4.2. Implementation details

Following most of the previous works, we use
DeepLabv3+ [8] as our segmentation model, which utilizes
ResNet [23] pre-trained on ImageNet [14] as the backbone.
Our mapping layer Ψmap consists of a one-layer convolu-
tional layer whose output dimension equals the input di-
mension, a BatchNorm layer [25], a ReLU function and
a channel dropout operation with a dropout probability of
0.5. We use an SGD optimizer for our experiments with the
initial learning rate set as 0.001 and 0.005 for Pascal VOC
2012 dataset and the Cityscapes dataset, respectively. We
trained our model for 80 epochs and 250 epochs on the two
datasets with a poly-learning rate scheduler, respectively
(we only trained our model for 40 epochs on the original
Pascal VOC 2012 dataset). The number of labelled data
and unlabelled data are equal within a mini-batch and we
set the batch size as 24 and 8 on the two datasets, respec-
tively. We also adopt the weak data augmentation from
PS-MT except for the crop size which we set as 512 and
712 for the two datasets, respectively. The weight ωc of
the consistency loss supervised by the pseudo-labels gener-
ated from the confident conflicting (CC) predictions is set
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Table 1. Comparison with the state-of-the-art methods on the PASCAL VOC 2012 dataset under different partition protocols. Labelled
images are from the original high-quality training set. The backbone is ResNet-101. The crop size of the input is set to 512. † indicates our
model is only trained for 40 epochs while the other models are trained for 80 epochs.

Methods 1/16(92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
Supervised Baseline 45.1 55.3 64.8 69.7 73.5
CutMix-Seg [17] 52.2 63.5 69.5 73.7 76.5
PseudoSeg [60] 57.6 65.5 69.1 72.4 73.2
PC2Seg [58] 57.0 66.3 69.8 73.1 74.2
CPS [10] 64.1 67.4 71.7 75.9 -
ReCo [34] 64.8 72.0 73.1 74.7 -
ST++ [48] 65.2 71.0 74.6 77.3 79.1
U2PL [44] 68.0 69.2 73.7 76.2 79.5
PS-MT [35] 65.8 69.6 76.6 78.4 80.0
Ours† 70.2 74.4 77.4 79.1 80.5

Table 2. Comparison with the state-of-the-art methods on the PASCAL VOC 2012 dataset under different partition protocols. Labelled
images are sampled from the blended training set. The crop size of the input is set to 512. ‡ indicates our reproduced results.

Methods ResNet-50 ResNet-101
1/16(662) 1/8 (1323) 1/4 (2646) 1/16(662) 1/8 (1323) 1/4 (2646)

Supervised Baseline 62.4 68.2 72.3 67.5 71.1 74.2
CutMix-Seg [17] 68.9 70.7 72.5 72.6 72.7 74.3
CPS [10] 72.0 73.7 74.9 74.5 76.4 77.7
CAC [29] 70.1 72.4 74.0 72.4 74.6 76.3
ELN [28] - 73.2 74.6 - 75.1 76.6
ST++ [48] 72.6 74.4 75.4 74.5 76.3 76.6
U2PL‡ [44] 72.0 75.1 76.2 74.4 77.6 78.7
PS-MT [35] 72.8 75.7 76.4 75.5 78.2 78.7
Ours 74.5 76.1 76.4 77.2 78.4 79.0

as 2.0 for all of the experiments in this work, and we will
give more discussion about the sensitivity of ωc in the ab-
lation study. In this work, we use the mean Intersection-
over-Union (mIoU) as our evaluation metric. We set the
hyper-parameters λ1, λ2 and λ3 as 5.0, 1.0, 2.0 on the orig-
inal Pascal VOC 2012 dataset, 2.0, 2.0, 1.0 on the blended
Pascal VOC 2012 dataset and 1.0, 1.0, 1.0 on the Cityscapes
dataset. We set ωc as 2.0 on all of the datasets and we set
the pseudo-label threshold γ as 0.9 on the Pascal VOC 2012
datasets and 0.0 on the Cityscapes dataset.

4.3. Experimental results

We compare our CCVC method with recent semi-
supervised semantic segmentation methods, including
PseudoSeg [60], PC2Seg [58], CPS [10], ReCo [34],
ST++ [48], U2PL [44] and PS-MT [35], etc. We also report
the results of the re-implemented CutMix [17]. In addition,
we also include the results of supervised methods that train
the model with only labelled data for comparison (denoted
as “Supervised Baseline”). For all of the experiments, we
follow CPS [10] and randomly split the datasets.

We first compare our methods with the others on the
original Pascal VOC 2012 dataset and the results are re-
ported in Table 1. Here we adopt the ResNet-101 as the

backbone of the encoder. We observe that our CCVC
method achieves state-of-the-art (SOTA) results under all 5
partition protocols even though our model is only trained for
40 epochs while other models are trained for 80 epochs. It
should be noticed that our method shows great power when
the number of labelled data is small, e.g., our method out-
performs the current SOTA method by 2.2% and 2.4% when
only 92 or 183 labelled data are available, respectively.

We further validate the effectiveness of our CCVC
method on the rendered Pascal VOC 2012 dataset and the
results are reported in Table 2. Here we report the results of
using both the ResNet-50 and ResNet-101 as the backbone
of the encoder respectively. We can see our CCVC method
can also achieve SOTA results under all partition protocols
when using different backbones, especially under the 1/16
partition protocol, our method surpasses the current SOTA
method by 1.7% and 1.7% when using the ResNet-50 and
ResNet-101 as the backbone, respectively, verifying the ef-
fectiveness of our method.

Finally, we test the performance of our CVC method on
the challenging Cityscapes dataset. Due to the hardware
memory limitation, we only report the results when using
ResNet-50 as the backbone of the encoder. We can observe
that even though the crop size of the input images is set
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Table 3. Comparison with the state-of-the-art methods on the
Cityscapes dataset under different partition protocols. The back-
bone is ResNet-50 and the crop size of the input is set to 712. ∗

indicates U2PL reproduced results.

Methods 1/16 (186) 1/8 (372) 1/4 (744)
Supervised Baseline 63.3 65.8 68.4
CCT [39] 66.4 72.5 75.7
GCT [26] 65.8 71.3 75.3
CPS∗ [10] 69.8 74.3 74.6
ELN [28] - 70.3 73.5
ST++ [48] - 72.7 73.8
U2PL [44] 69.0 73.0 76.3
USRN [20] 71.2 75.0 -
PS-MT [35] - 75.8 76.9
Ours 74.9 76.4 77.3

as 712 and the training epoch is set as 250 in our work,
our method still achieves the new SOTA performance, es-
pecially when there are only 186 labelled data available,
our method surpasses the current SOTA method ST++ by
3.7%. In addition, our method surpasses U2PL, which sets
the crop size as 769, and PS-MT, which trains the model for
450 epochs, verifying the effectiveness of our method.

It can be inferred from the tables that our method can
achieve great performance especially when the number of
labelled data is small, indicating that our method can take
better use of the unlabelled data.

4.4. Ablation study

In this section, we analyze the effectiveness of the de-
tailed module designs of our CCVC approach. Here we
conduct all of the ablation experiments with a ResNet-101
as the backbone of the DeepLabv3+ on the original Pascal
VOC 2012 dataset under the partition of 1/4.

Effectiveness of Components. Recall that our CCVC
method includes a CVC module, a CPL module and data
augmentation (Aug.). Note that there are three losses, i.e.,
the supervised loss Lsup, the consistency loss Lcon and the
discrepancy loss Ldis, used in our CVC method together
with one extra mapping module Ψmap. We now investigate
the individual contributions of these losses and modules in
CCVC. The analysis results are reported in Table 4.

We can observe that if we only apply the consistency
loss, the cross-consistency regularization (CCR) method
will bring a performance improvement of over 4%, but the
reasoning views of the two sub-nets are kind of correlated,
leaving a huge space for improvement. When applying our
discrepancy loss, we can see that there is a 1.7% improve-
ment of mIoU, indicating that our feature discrepancy max-
imization operation can ensure the two sub-nets reason the
input from two orthogonal views, thus improving the per-
ception of the model. In addition, when applying the map-
ping module, the reasoning views of the two sub-nets can be

Table 4. Ablation study on the effectiveness of different compo-
nents in our CCVC method, including the supervised loss Lsup,
the consistency loss Lcon, the discrepancy loss Ldis, the map-
ping operation Ψmap, the conflict-based pseudo-labelling (CPL)
and the data augmentation (Aug.) strategy. Note that we only train
the model for 40 epochs.

Lsup Lcon Ldis Ψmap CPL Aug. mIoU
✓ 64.8
✓ ✓ 69.6
✓ ✓ ✓ 71.3
✓ ✓ ✓ 71.0
✓ ✓ ✓ ✓ 72.4
✓ ✓ ✓ ✓ ✓ 74.0
✓ ✓ ✓ ✓ ✓ ✓ 77.4

further separated, enhancing the network to produce more
reliable predictions. Therefore, the improvement will be
further enhanced by 1.1%. It also should be noticed that
when introducing the mapping module to the original co-
training framework, the hand-crafted network perturbation
can also reduce the collapse to a degree, leading to a perfor-
mance improvement of 1.4%. In addition, when applying
the CPL module to our CVC method, there is a giant im-
provement of the performance by 1.6%, verifying our hy-
pothesis that the features learnt by the two sub-nets might
be pushed far away to contain useful semantic information.
Our CPL method can enable the sub-nets to learn more in-
formation from conflicting predictions, thus guaranteeing
the predictions are reliable. When we use some simple
strong data augmentations as listed in ST++ [48] to increase
the diversity of the input data, our method can be further
enhanced with an improvement of mIoU by 3.4%, which
surpasses the SOTA methods by a large margin, verifying
the effectiveness of our method.

We further verify that our CVC method can reduce the
influence of confirmation bias. We compared our CVC
method with the supervised baseline and cross-consistency
regularization (CCR) method. Here we count the proportion
of reliable predictions of each method as well as the corre-

Figure 3. The training process of the supervised baseline, the
cross-consistency regularization (CCR) method and our CVC
method. It can be seen that our methods will not output many
highly confident predictions, but the accuracy of the predictions
is very high, indicating that our method can efficiently reduce the
influence of the confirmation bias.
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Table 5. Ablation study on the effectiveness of our conflict-based
pseudo-labelling (CPL) method. We vary the weight, i.e., ωc,
of the confident conflicting (CC) predictions to verify the model
will learn more semantic information from conflicting predictions.
Note that we only train the model for 40 epochs.

ωc 1.0 1.2 1.5 1.8 2.0 2.5
mIoU 72.4 72.9 73.5 73.7 74.0 73.8

sponding mIoU during the training process. The threshold
of the reliable prediction is set as 0.9. The results are listed
in Fig. 3. We can observe that the CCR method can gener-
ate more confident predictions than our CVC method, while
the performance of our CVC method is better than the CCR
method, indicating that the CCR method will generate more
confident but incorrect predictions than our CVC method.
The main reason is that the two sub-nets of the CCR method
are differently initialized and the two sub-nets may step into
the collapse. Therefore, the sub-nets might be affected by
the confirmation bias issue when using pseudo-labelling to
transfer knowledge with each other. In contrast, our CVC
method can efficiently avoid the situation, leading to better
performance.

Parameter Analysis. We further verify the importance
of our CPL method where we vary the weight of the con-
sistency loss ωc supervised by the pseudo-labels generated
by conflicting and confident (CC) predictions. We can ob-
serve that a higher weight ωc, i.e., 2.0, can lead to a bet-
ter cognitive ability of the model than the baseline, verify-
ing our hypothesis that learning from the conflicting predic-
tions can guarantee that the sub-nets can make consistent
predictions, and thus stabilizing the training. However, if
the weight is too high, the model will learn too much from
self-supervision, which might be influenced by the confir-
mation bias issue. Thus the training might be misled and
the performance might be degraded.

4.5. Qualitative results

We show the qualitative results when using different
components of our method, as shown in Fig. 4. All the
results are implemented on the original Pascal VOC 2012
dataset under the partition of 1/4, with ResNet-101 as the
backbone of DeepLabv3+. We can see the supervised base-
line (b) is prone to generate noisy predictions, the cross-
consistency regularization method (c) might fail to rec-
ognize some illegible parts while our CVC method (d)
and CCVC method (e) can easily recognise those hard-to-
distinguish pixels, like the rear wheel of a track bike and
even some small objects.

We further visualize the evolution process during train-
ing using our CCVC approach to validate the effective-
ness of our proposed conflict-based pseudo-labelling (CPL)
method in Fig. 5. All the results are implemented on the

(e)(a) (f)(c) (d)(b)

Figure 4. Qualitative results of our method from the original Pas-
cal VOC 2012 dataset under the partition of 1/4. (a) input im-
ages, (b) the results of the supervised baseline, (c) the results of
the cross-consistency regularization (CCR) method, (d) the results
of our CVC method, (e) the results of our CCVC method, (f) the
ground truth labels.

(a) (b) (c) (d) (e)

Figure 5. Qualitative results of our method on the original Pas-
cal VOC 2012 dataset under the partition of 1/4, in which we use
ResNet-101 as the backbone of our DeepLabv3+. (a) the input im-
age and the ground-truth label, (b) the prediction results of the two
sub-nets when the model is trained for 5 epochs, (c) the prediction
results of the two sub-nets when the model is trained for 10 epochs,
(d) the prediction results of the two sub-nets when the model is
trained for 20 epochs, (e) the prediction results of the two sub-nets
when the model is trained for 40 epochs. We can observe that our
conflict-based pseudo-labelling (CPL) method can prevent the two
sub-nets from making inconsistent predictions, which guarantees
the reliability of the prediction results.

original Pascal VOC 2012 dataset under the partition of 1/4,
with ResNet-101 as the backbone of DeepLabv3+. We can
observe that the conflict predictions within the yellow box
gradually become consistent during the training progress,
indicating the effectiveness of our CPL method.

5. Conclusion

In this work, we have presented a semi-supervised se-
mantic segmentation method based on a co-training frame-
work, where we introduce a cross-view consistency strategy
to force the two sub-nets to learn to reason the same input
from irrelevant views and then exchange information with
each other to generate consistent predictions. Therefore,
our method can efficiently reduce the collapse and enlarge
the perception of the network to produce more reliable pre-
dictions and further reduce the confirmation bias problem.
Extensive experiments on the benchmark datasets have val-
idated the effectiveness of our newly proposed approach.
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