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Abstract

In this study, we dive deep into the inconsistency of
pseudo targets in semi-supervised object detection (SSOD).
Our core observation is that the oscillating pseudo-targets
undermine the training of an accurate detector. It injects
noise into the student’s training, leading to severe overfit-
ting problems. Therefore, we propose a systematic solu-
tion, termed Consistent-Teacher , to reduce the in-
consistency. First, adaptive anchor assignment (ASA) sub-
stitutes the static IoU-based strategy, which enables the
student network to be resistant to noisy pseudo-bounding
boxes. Then we calibrate the subtask predictions by de-
signing a 3D feature alignment module (FAM-3D). It allows
each classification feature to adaptively query the optimal
feature vector for the regression task at arbitrary scales
and locations. Lastly, a Gaussian Mixture Model (GMM)
dynamically revises the score threshold of pseudo-bboxes,
which stabilizes the number of ground truths at an early
stage and remedies the unreliable supervision signal dur-
ing training. Consistent-Teacher provides strong re-
sults on a large range of SSOD evaluations. It achieves
40.0 mAP with ResNet-50 backbone given only 10% of an-
notated MS-COCO data, which surpasses previous base-
lines using pseudo labels by around 3 mAP. When trained on
fully annotated MS-COCO with additional unlabeled data,
the performance further increases to 47.7 mAP. Our code
is available at https://github.com/Adamdad/
ConsistentTeacher.

1. Introduction
The goal of semi-supervised object detection (SSOD) [3,

5, 12, 12, 13, 17, 24, 25, 30, 36, 43, 44] is to facilitate the
training of object detectors with the help of a large amount

*Equally contributed.
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†Work done during internship at Shanghai AI Laboratory.

of unlabeled data. The common practice is first to train a
teacher model on the labeled data and then generate pseudo
labels and boxes on unlabeled sets, which act as the ground
truth (GT) for the student model. Student detectors, on
the other hand, are anticipated to make consistent predic-
tions regardless of network stochasticity [35] or data aug-
mentation [12, 30]. In addition, to improve pseudo-label
quality, the teacher model is updated as a moving aver-
age [24, 36, 44] of the student parameters.

In this study, we point out that the performance of semi-
supervised detectors is still largely hindered by the incon-
sistency in pseudo-targets. Inconsistency means that the
pseudo boxes may be highly inaccurate and vary greatly at
different stages of training. As a consequence, inconsistent
oscillating bounding boxes (bbox) bias SSOD predictions
with accumulated error. Different from semi-supervised
classification, SSOD has one extra step of assigning a set
of pseudo-bboxes to each RoI/anchor as dense supervision.
Common two-stage [24, 30, 36] and single-stage [4, 42]
SSOD networks adopt static criteria for anchor assignment,
e.g. IoU score or centerness. It is observed that the static
assignment is sensitive to noise in the bounding boxes pre-
dicted by the teacher, as a small perturbation in the pseudo-
bboxes might greatly affect the assignment results. It thus
leads to severe overfitting on unlabeled images.

To verify this phenomenon, we train a single-stage de-
tector with standard IoU-based assignment on MS-COCO
10% data. As shown in Fig. (1), a small change in the
teacher’s output results in strong noise in the boundaries
of pseudo-bboxes, causing erroneous targets to be associ-
ated with nearby objects under static IoU-based assignment.
This is because some inactivated anchors are falsely as-
signed positive in the student network. Consequently, the
network overfits as it produces inconsistent labels for neigh-
boring objects. The overfitting is also observed in the clas-
sification loss curve on unlabeled images1.

1All GT bboxes on unlabeled data are only used to calculate the loss
value but not for updating the parameters.
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❌Mean-Teacher: Inconsistent Assignment and Drifting Pseudo Labels

✅ Ours: Consistent and Accurate Targets 
T=100K T=104K T=180K

T=100K T=104K T=180K

Figure 1. Illustration of inconsistency problem in SSOD on COCO 10 % evaluation. (Left) We compare the training losses between the
Mean-Teacher and our Consistent-Teacher . In Mean-Teacher, inconsistent pseudo targets lead to overfitting on the classification
branch, while regression losses become difficult to converge. In contrast, our approach sets consistent optimization objectives for the stu-
dents, effectively balancing the two tasks and preventing overfitting. (Right) Snapshots for the dynamics of pseudo labels and assignment.
The Green and Red bboxes refer to the ground-truth and pseudo bbox, respectively, for the polar bear. Red dots are the assigned anchor
boxes for the pseudo label. The heatmap indicates the dense confidence score predicted by the teacher (brighter the larger). A nearby board
is finally misclassified as a polar bear in the baseline while our adaptive assignment prevents overfitting.

Through dedicated investigation, We find that one im-
portant factor that leads to the drifting pseudo-label is the
mismatch between classification and regression tasks. Typ-
ically, only the classification score is used to filter pseudo-
bboxes in SSOD. However, confidence does not always in-
dicate the quality of the bbox [36]. Two anchors with sim-
ilar scores, as a result, can have significantly different pre-
dicted pseudo-bboxes, leading to more false predictions and
label drifting. Such phenomenon is illustrated in Fig. (1)
with the varying pseudo-bboxes of the MeanTeacher around
T = 104K. Therefore, the mismatch between the quality
of a bbox and its confidence score would result in noisy
pseudo-bboxes, which in turn exacerbates the label drifting.

The widely-employed hard threshold scheme also causes
threshold inconsistencies in pseudo labels. Traditional
SSOD methods [24,30,36] utilize a static threshold on con-
fidence score for student training. However, the thresh-
old serves as a hyper-parameter, which not only needs to
be carefully tuned but should also be dynamically adjusted
in accordance with the model’s capability at different time
steps. In the Mean-Teacher [32] paradigm, the number of
pseudo-bboxes may increase from too few to too many un-
der a hard threshold scheme, which incurs inefficient and
biased supervision for the student.

Therefore, we propose Consistent-Teacher in this
study to address the inconsistency issues. First, we find that
a simple replacement of the static IoU-based anchor assign-
ment by cost-aware adaptive sample assignment (ASA) [10,

11] greatly alleviates the effect of inconsistency in dense
pseudo-targets. During each training step, we calculate the
matching cost between each pseudo-bbox with the student
network’s predictions. Only feature points with the lowest
costs are assigned as positive. It reduces the mismatch be-
tween the teacher’s high-response features and the student’s
assigned positive pseudo targets, which inhibits overfitting.

Then, we calibrate the classification and regression tasks
so that the teacher’s classification confidence provides a
better proxy of the bbox quality. It produces consistent
pseudo-bboxes for anchors of similar confidence scores,
and thus the oscillation in pseudo-bbox boundaries is re-
duced. Inspired by TOOD [9], we propose a 3-D feature
alignment module (FAM-3D) that allows classification fea-
tures to sense and adopt the best feature in its neighbor-
hood for regression. Different from the single scale search-
ing, FAM-3D reorders the features pyramid for regression
across scales as well. In this way, a unified confidence score
accurately measures the quality of classification and regres-
sion with the improved alignment module and ultimately
brings consistent pseudo-targets for the student in SSOD.

As for the threshold inconsistency in pseudo-bboxes,
we apply Gaussian Mixture Model (GMM) to generate an
adaptive threshold for each category during training. We
consider the confidence scores of each class as the weighted
sum of positive and negative distributions and predict the
parameters of each Gaussian with maximum likelihood es-
timation. It is expected that the model will be able to adap-
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tively infer the optimal threshold at different training steps
so as to stabilize the number of positive samples.

The proposed Consistent-Teacher greatly sur-
passes current SSOD methods. Our approach reaches 40.0
mAP with 10% of labeled data on MS-COCO, which is 3̃
mAP ahead of the state-of-the-art [43]. When using the
100% labels together with extra unlabeled MS-COCO data,
the performance is further boosted to 47.7 mAP. The effec-
tiveness of Consistent-Teacher is also testified on
other ratios of labeled data and on other datasets as well.
Concretely, the paper contributes in the following aspects.

• We provide the first in-depth investigation of the incon-
sistent target problem in SSOD, which incurs severe
overfitting issues.

• We introduce an adaptive sample assignment to sta-
bilize the matching between noisy pseudo-bboxes and
anchors, leading to robust training for the student.

• We develop a 3-D feature alignment module (FAM-
3D) to calibrate the classification confidence and
regression quality, which improves the quality of
pseudo-bboxes.

• We adopt GMM to flexibly determine the threshold
for each class during training. The adaptive threshold
evolves through time and reduces the threshold incon-
sistencies for SSOD.

• Consistent-Teacher achieves compelling im-
provement on a wide range of evaluations and serves
as a new solid baseline for SSOD.

2. Related Work
Semi-supervised object detection (SSOD). It is a common
practice for SSOD to generate pseudo bounding boxes us-
ing a teacher model and expect the student detectors to make
consistent predictions on augmented input samples [12, 18,
24, 30, 31, 34, 36, 38, 44]. Two-stage detectors [12, 24, 36]
have been dominant in traditional SSOD methods while
single-stage detectors have also shown the advantages for
their simplicity and higher performance [4, 42, 43]. In this
study, we adopt a single-stage SSOD framework [4,43] and
focus on the inconsistency problem. To resolve the incon-
sistency issues, we design the adaptive anchor assignment,
feature alignment, and GMM-based threshold to improve
the label quality.
Label assignment in object detection. Defining positive
and negative sample [40] plays a substantial role in object
detection. Typical Anchor-based or anchor-free detectors
either adopt hard IoU thresholding [1,6,19,20,23,27,28,37]
or the centerness prior [16, 26, 33] as the assigning crite-
rion. In contrast, modern detectors have been shifting to
adaptive assignment strategies. [10,14,15,41,45] For exam-
ple, PAA [15] adaptively differentiates the positive anchors

and negative ones by fitting the anchor scores distribution.
OTA [10] treats the label assignment as an optimal transport
problem so that the assignment cost is minimized.

Although the existing assignment methods are effective,
they are limited to fully-supervised settings. In our work,
we observe that using static assignment in SSOD induces
server inconsistency issues and accumulates errors. We
show that a simple cost-ware assignment stabilizes the label
noise and significantly improves the performance of SSOD.

3. Consistent-Teacher

In this section, we elaborate on how our
Consistent-Teacher works to address the SSOD
inconsistencies. It is composed of three key modules,
namely Adaptive Sample Assignment, 3D Feature Align-
ment Module, and Gaussian Mixture-based thresholding.
The full pipeline is in Figure 2.

3.1. Baseline Semi-Supervised Detector
We adopt a general SSOD paradigm as our baseline,

namely a Mean-Teacher [24, 32, 36] pipeline with a Reti-
naNet [20] detector. The teacher model is an exponential
moving average [32] of a student detector. Unlabeled im-
ages first go through weak augmentations and are fed into
the teacher detector to generate pseudo-bboxes. Pseudo-
bboxes are then used as supervision for the student network,
whose unlabeled images are strongly jittered. In the mean-
time, the student detector takes the labeled images as input
to learn discriminative representation for both classification
and regression. Given a labeled set DL = {xl

i,y
l
i}N with

N samples and an unlabeled set DU = {xu
j }M with M

samples, we maintain a teacher detector ft(·; Θt) and a stu-
dent detector fs(·; Θs) that minimize the loss
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(1)

where T and T ′ stands for weak and strong image trans-
formations, y = {yl = (cl,bboxl)}Ll=1 is the ground
truth (GT) including L bboxes with classification label cl.
ŷ = ft(T (x); Θt) is the pseudo-bboxes generated by the
teacher model. Teacher parameter is updated as Θt ←
(1 − γ)Θt + γΘs. λu is a weighting parameter. To en-
sure a fair comparison, Focal Loss [20] and GIoU loss [29]
are set for Lcls and Lreg for all models in this study.

3.2. Consistent Adaptive Sample Assignment

Each anchor in RetinaNet is assigned as positive only if
its IoU with ground truth (GT) bbox is larger than a thresh-
old. Such static label assignment breaks one important
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Figure 2. The pipeline of Consistent-Teacher . We design three modules to address the inconsistency in SSOD, where GMM
dynamically determines the threshold; 3D feature alignment calibrates regression quality; Adaptive assignment assigns anchor based on
matching cost.

property in semi-supervised learning. Take classification as
an example, the instance-level pseudo-label satisfies

ĉ = argmin
c
L(ft(xu), c), (2)

meaning that the pseudo-label ĉ should align with its own
prediction. However, this rule is broken when adopting
static anchor assignment to SSOD. That is, the assigned
labels for anchors sometimes contradict their own predic-
tions, which is the root of the pseudo-label drifting phe-
nomenon in Fig. 1. Therefore, we propose to assign pseudo-
bboxes to anchors that minimize their loss

min
a1,··· ,aN

N∑
n

[
Lcls

(
fs(x

u)n, ŷ
u
an
)
)
+ Lreg

(
fs(x

u)n, ŷ
u
an

)]
(3)

where n is the anchor index, and an ∈ {1, 2, · · · , L + 1}
stands for the assigned pseudo-bbox index from the L pre-
dicted bboxes, and the index L + 1 represents the back-
ground label.

A simple solution to Eq. 3 is to assign anchors of lowest
losses as positive for a pseudo-bbox. In practice, a matching
cost between each anchor2 and pseudo-bbox is calculated,
and the anchors with the lowest costs are considered posi-
tive. Given an anchor n, the cost between each pseudo-bbox
yl and the prediction pn from the anchor is calculated as

Cnl = Lcls(pn, yl) + λregLreg(pn, yl) + λdistCdist, (4)

where λreg and λdist are weighting parameters. Cdist cal-
culates the distance between the center of anchor n and
pseudo-bbox yl, serving as a center prior with a small
weighting value (λdist ∼ 0.001) to stabilize the training.
With the matching cost for each pseudo-bbox, anchors with
top K lowest costs are assigned as positive. Since the as-
signment is made in accordance with the model’s detection

2Our anchor definition generalizes to anchor points in anchor-free and
anchor boxes in anchor-based detectors.

quality, noise in pseudo-bboxes would then have a negligi-
ble impact on the feature points assignment.

We are aware that a similar anchor assignment is adopted
in supervised object detection [2,10,11], and thus we adopt
a unified assignment for both labeled and unlabeled images.
Despite their similar form, our ASA module addresses the
unique pseudo-label shifting issue instead of catering for
object variations in supervised settings [10].

3.3. BBox Consistency via 3-D Feature Alignment

In common SSOD frameworks, pseudo-bboxes are gen-
erated purely according to classification scores. A high-
confidence prediction, however, does not always guaran-
tee accurate bbox localization [36]. It again contributes
to the noise in the pseudo-bbox. Therefore, inspired by
TOOD [9], we introduce a 3-D Feature Alignment Module
(FAM-3D) to calibrate the bbox localization with classifi-
cation confidence. It allows each classification feature to
adaptively locate the optimal feature for the regression task.

Assuming the feature pyramid is P with P (i, j, l) indi-
cating the spatial location (i, j) at the lth pyramid level, we
would like to construct a re-sampling function P′ ← s(P)
to rearrange the feature map to conduct the regression task,
so that P′ better aligns with the classification features. Dif-
ferent from the single-scale feature re-sampling in [9], we
extend the process to multi-scale feature space, consider-
ing the fact that the optimal features for classification and
regression could be at different scales [22].

Our feature alignment is realized via a sub-branch in the
detection head that predicts the 3-D offset with the feature
pyramid for regression. As illustrated in Fig. 2, we add one
extra CONV3×3(RELU(CONV1×1)) layer at different FPN
levels and estimate an offset vector d = (d0, d1, d2) ∈ R3

for each prediction. P is then re-ordered using the predicted
offsets in two steps

P ′(i, j, l)← P (i+ d0, j + d1, l) (5)
P ′(i, j, l)← P ′(i′, j′, l + d2), (6)
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where Eq. 5 is to conduct feature offset in a 2-D space and
Eq. 6 is the offset across different scales. In Eq. 6, i′ and
j′ are the rescaled coordinates of i and j at different FPN
levels. Eq. 5 is realized by a bilinear interpolation, and Eq. 6
is conducted by a resizing of P ′(:, :, l+ ⌊d2⌋+1) followed
by a weighted average with P ′(:, :, l + ⌊d2⌋) for a decimal
number d2, where ⌊·⌋ is the floor function. Notably, the
extra CONV layers increase the computational cost slightly
(∼ 1%), but significantly improve the performance.

3.4. Thresholding with Gaussian Mixture Model

Previous works [24,30] require a static hyperparameter τ
for pseudo-bboxes filtering. It fails to take into account that
the model’s prediction confidence varies across categories
and iterations, which makes inconsistent targets and has a
profound effect on performance [4]. Furthermore, tuning
the threshold on different datasets is tedious.

Our goal is to find a way to automatically distinguish the
positive from negative pseudo-bboxes. Specifically, we hy-
pothesize that the score prediction sc for category c is sam-
pled from a Gaussian mixture (GMM) distribution P(sc)
on all unlabeled data with two modalities, positive and neg-
ative. (see the score distribution in the subfigure of Fig. 2)

P(sc) = wc
nN (sc|µc

n, (σ
c
n)

2) + wc
pN (sc|µc

p, (σ
c
p)

2), (7)

where N (µ, σ2) denotes a Gaussian distribution,
wc

n, µ
c
n, (σ

c
n)

2 and wc
p, µ

c
p, (σ

c
p)

2 represent the weight,
mean and variance of negative and positive modalities, re-
spectively. The Expectation-Maximization (EM) algorithm
is then used to infer the posterior P(pos|sc, µc

p, (σ
c
p)

2)
which is the probability that detection should be set as
the pseudo-target for the student, and the adaptive score
threshold is determined as

τ c = argmax
sc

P(pos|sc, µc
p, (σ

c
p)

2) (8)

In practice, we maintain a prediction queue of size N (N ∼
100) for each class to fit GMM. Considering that the score
distribution from a single-stage detector is strongly imbal-
anced as the majority of prediction is negative, only the top
K =

∑
k(sk) number of predictions are stored in a queue.

The EM algorithm only accounts for ∼ 10% training time
increase. The threshold can then be adaptively determined
w.r.t. the model’s performance at different training stages.

4. Experiments
In this section, we first evaluate our solution on a series

of SSOD benchmarks and then validate the effectiveness of
each component through extensive ablation studies.
Datasets and Evaluation Setup. we conduct comprehen-
sive experiment on the MS-COCO 2017 [21] benchmark
and PASCAL VOC datasets [8].
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Figure 3. Consistent-Teacher improves the training consis-
tency in SSOD. (Left axis) mAP on the unlabeled set at different
times. (Right axis) The inconsistency of pseudo labels.

We include three evaluation protocols: (1) COCO-
PARTIAL: We randomly sample 1%/2%/5%/10% of the
images in train2017 as labeled data and treat the rest
as unlabeled data. We report the AP50:95

3 results on
the val2017 as the evaluation metrics. (2) COCO-
ADDITION: We use the full train2017 as labeled set and
include the official unlabeled set unlabel2017 as unla-
beled set. The trained models are evaluated on val2017.
(3) VOC-PARTIAL: We utilize the VOC2007 trainval set as
the labeled data and make use of the VOC2012 trainval as
our unlabeled data. The final model is verified on VOC2007
test set using both AP50 and AP50:95 following [30]. Addi-
tionally, we evaluate the model improvements on the stan-
dard fully-supervised COCO-1x training [20] to compare
the relative benefits of our proposed method on both semi-
and fully-supervised regimes.
Implementation Details. To ensure a fair comparison, all
detectors are trained on 8 GPUs with 5 images per GPU (1
labeled and 4 unlabeled images) similar to [36]. The de-
tectors are optimized using SGD with a constant learn-
ing rate of 0.01, a momentum of 0.9, and a weight de-
cay of 0.0001. The unlabeled data weight is λU = 2.
No learning rate decay is applied. In COCO-PARTIAL
and VOC-PARTIAL evaluation, we train the detectors for
180K iterations, whereas we increase the training time on
COCO-ADDITION to 720K for better convergence. The
teacher model is updated through EMA with a momentum
of 0.9995. We follow the same data prepossessing and aug-
mentation pipeline in [36]. We adopt RetinaNet [20] with
ResNet-50 [19] backbone as our baseline. ImageNet [7]-
pretrained model is used as initialization.

We compare our Consistent-Teacher with nu-
merous prevailing SSOD approaches including CSD [12],
STAC [30], Instant Teaching [44], Humble Teacher [31],
Unbiased Teacher v1 and v2 [24, 25], Soft Teacher [36],
ACRST [39], DSL [4], S4OD [42], Dense Teacher [43] and

3AP50:95 is interchangable with mAP in this study.
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Consistent Teacher

Mean Teacher

Figure 4. Heatmap of predicted bboxes con-
fidence and its IoU score with GTs.
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PseCo [17]. In addition, we implement a baseline method
where students are trained using labeled and pseudo-labeled
data, and the teacher is updated through a moving average
of the student. We name it the Mean-Teacher baseline [32].
The default confidence threshold is set as 0.4.

4.1. Troubleshooting the Inconsistencies in SSOD

At first, we provide a thorough analysis to justify incon-
sistencies in SSOD, and how our solution addresses them.

Inconsistency Leading to Noisy Labels. We plot the
mAP of the pseudo-bboxes against the GT targets on unla-
beled data in Figure 3(Left axis). It stands for the quality of
the labels. In addition, the inconsistency is measured, which
is an accumulation of the mismatch between the pseudo-
bboxes of two consecutive teacher checkpoints (Right axis).
Please refer to the supplementary for the full formulation.

According to Figure 3(Right axis), while the Mean-
Teacher suffers large unfavorable inconsistencies during
training, Consistent-Teacher significantly reduces
the target discrepancy at different time steps. Consequently,
our model enjoys continuous improvement over time, and
therefore provides high-quality labels for its student, as
shown in Figure 3(Left axis).

Inconsistency Caused by Classification-Regression
Misalignment. It is a well-known problem in object de-
tection that, the classification score may not fully reflect
the regression quality [36, 40]. It deters the essence of
SSOD since we rely heavily on the prediction score to fil-
ter labels. Figure 4 visualizes the confidence-IoU heatmap
of all predicted bounding boxes on the COCO val2017.
For each predicted bbox, we plot the confidence of the
maximum category and its maximum IoU with the GT
boxes in the corresponding class. As highlighted in the red
squares, Mean-Teacher predicts low-confidence but high-
IoU bboxes. On the other hand, our model generates pre-
dictions that are concentrated in high-confidence and high-
IoU regions. Consistent-Teacher gives rise to more
calibrated predictions.

A demo video is attached in the Supplementary Mate-

rial to illustrate that cls-reg misalignment leads to shift-
ing and noisy targets. Our FAM-3D largely prevents low-
quality, but high-score noise predictions thus reducing in-
consistency.

Inconsistency Caused by Hard Score Threshold. Fig-
ure 5 plots the number of pseudo GTs per image on the
unlabeled data using different thresholding schedules. No-
tably, it reveals a critical problem that, with static confi-
dence thresholds τ = 0.4, 0.5, 0.6, the number of pseudo
labels keeps going up as the detector becomes more confi-
dent. GMM-based approach, on the other hand, adaptively
adjusts the best threshold according to the model capac-
ity, with a nearly constant number of GTs, which reduces
temporal inconsistency. In Figure 6, we plot the estimated
threshold curve obtained by GMM on COCO 1%/5%/10%.
The value steadily increases as training proceeds. Further-
more, with fewer labeled samples, GMM sets a higher con-
fidence threshold in accordance with more overfitting is-
sues. Typical static threshold setting is incapable to address
the inconsistency in learning targets, while GMM provides
a gratifying solution.

4.2. Semi-supervised Object Detection

In this section, we compare our method with previ-
ous state-of-the-art work under COCO-PARTIAL, VOC-
PARTIAL, and COCO-ADDITION evaluation protocol.
COCO-PARTIAL Results. Table 1 systematically com-
pares the mAP of all aforementioned semi-supervised de-
tectors trained with COCO 1%/2%/5%/10% labels. We
first note that the simple Mean Teacher baseline with Reti-
naNet detector constitutes a strong method for SSOD.
It achieves an mAP of 35.5 on COCO 10% experi-
ments without sophisticated data re-weighting strategy or
pseudo-labeling selection methods. More surprisingly,
Consistent-Teacher achieves a remarkable progress
over current methods on 2%/5%/10% experiments. It scores
36.1 and 40.0 mAP on COCO 5%/10% data, largely sur-
passing the best-performed model Dense Teacher by ∼ 3.1
and ∼ 3 mAP.
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Table 1. COCO-PARTIAL comparison with other semi-supervised detector on val2017. The results for two-stage (upper half) and
single-stage (lower half) detectors are listed separately. We also report the Faster-RCNN and RetinaNet performance trained on labeled
data only. All models adopt ResNet50 with FPN as the backbone. We highlight the previous best record with underline.

Method 1% COCO 2% COCO 5% COCO 10% COCO
Labeled Only 9.05 12.70 18.47 23.86
CSD 10.51 13.93 18.63 22.46
STAC 13.97 18.25 24.38 28.64
Instant Teaching 18.05 22.45 26.75 30.40
Humble teacher 16.96 21.72 27.70 31.61
Unbiased Teacher 20.75 24.30 28.27 31.50
Soft Teacher 20.46 - 30.74 34.04
ACRST 26.07 28.69 31.35 34.92
PseCo 22.43 27.77 32.50 36.06
Labeled Only 10.22 13.80 19.40 24.10
Unbiased Teacher v2 22.71 26.03 30.08 32.61
DSL 22.03 25.19 30.87 36.22
Dense Teacher 22.38 27.20 33.01 37.13
S4OD 20.10 - 30.00 32.90
Mean-Teacher 20.40 26.00 30.40 35.50
Consistent-Teacher 25.30 30.40 36.10 40.00

Table 2. COCO-ADDITION experimental results on val2017
with unlabel2017 as unlabeled set. Note that 1× represents
90K training iterations, and N× represents N×90K iterations.

Method AP50:95

CSD(3×) 40.20 -1.38−−→38.82
STAC(6×) 39.48 -0.27−−→39.21
Unbiased Teacher(3×) 40.20 +1.10−−−→41.30
ACRST(3×) 40.20 +2.59−−−→42.79
Soft Teacher(16×) 40.90 +3.70−−−→44.50
DSL(2×) 40.20 +3.60−−−→43.80
PseCo(8×) 41.00 +5.10−−−→46.10
Dense Teacher(8×) 41.24 +4.88−−−→46.12

Consistent-Teacher (8×) 40.50 +7.20−−−→47.70

VOC-PARTIAL Results. In addition to the COCO evalua-
tions, we compare our proposed model against other SSOD
approaches on VOC0712 datasets in Table 3. Again, we no-
tice that our Consistent-Teacher makes outstanding
improvements over its counterparts. Our method shows an
improvement of 2.2 absolute mAP compared with the latest
state-of-the-art [4, 25].

COCO-addition Results. Now we would like to
push our model to its limits by taking the full
COCO train train2017 as labeled data and additional
unlabel2017 as unlabeled data. As shown in Table 2,
in the case of COCO-ADDITION, our model achieves 47.7
mAP, surpassing all previous state-of-the-art works.

Table 3. VOC-PARTIAL experimental results comparison with
other semi-supervised detector on VOC07 labeled and VOC12 un-
labeled set.

Method AP50 AP50:95

Labeled Only 72.63 42.13
CSD 74.70 -
STAC 77.45 44.64
ACRST 78.16 50.12
Instant Teaching 79.20 50.00
Humble Teacher 80.94 53.04
Unbiased Teacher 77.37 48.69
Unbiased Teacher v2 81.29 56.87
Mean-Teacher 77.02 53.61
Consistent-Teacher 81.00 59.00

Table 4. Comparisons between IoU-based and our adaptive anchor
assignment on COCO.

Assignment AP 1×
50:95 AP 10%

50:95

IoU-based 38.4 35.50
our ASA 40.1(+1.7) 38.50(+3.0)

4.3. Ablation Study

In this section, we validate the effectiveness of our 3 ma-
jor designs on the MS-COCO dataset.
Adaptive Sample Assignment. We first examine the ef-
fect of ASA strategy. To enable a fair comparison between
all assigners, we utilize the Mean Teacher with a fixed con-
fidence threshold of 0.4 and unlabeled weight of 2 as our
baseline and replace its IoU-based assignment with our pro-
posed ASA. Since the adaptive assignment is also applica-
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Figure 7. Ablative study of GMM-based pseudo-label filtering.
Each value represents the mAP score on COCO 10% data.
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Figure 8. Ablation of GMM at different data ratio on COCO. Mod-
els are compared to baselines with a hard threshold 0.4.

Table 5. Ablation Study on detection head structure. We com-
pare the performance, model size, and FLOPs on different head
structures on COCO 10% and standard 1× evaluation. FLOPs are
measured on the input image size of 1280× 800.

Method FLOPs (G)AP 1×
50:95AP 10%

50:95
Ours w/o FAM 205.21 40.1 38.5
Ours w FAM-2D205.70 40.4(+0.3) 39.1(+0.6)

Ours w FAM-3D208.49 40.7(+0.6) 39.5(+1.0)

ble to the supervised scenario, we further experiment on the
supervised MS-COCO with the standard 1× (12 epochs)
training setting. It is notable that, as shown in Table 4,
a robust sample assignment plays a pivotal role in SSOD.
By specializing the assignment policy on semi-supervised
tasks, our ASA achieves 38.50 mAP on COCO 10%, with
an improvement of 3 mAP compared with the heuristic
matching cost using IoU. Another finding is that the per-
formance benefit from ASA is almost doubled on SSOD
(3.0 mAP) than on the fully supervised setting (1.7 mAP).
It suggests our proposed ASA is particularly beneficial in
the evaluation of the SSOD tasks, as also seen in Fig. 1 of
its ability to suppress the confirmation bias in SSOD.
3D Feature Alignment Module. To testify to the effective-
ness of FAM, we first replace the FAM-3D as a 2-D coun-
terpart, which is adopted in [9]. Table 5 provides the ab-
lative study of our method with different FAM structures.
We observe that the FAM-3D surpasses the setting without
feature alignment by 1.0 mAP and FAM-2D by 0.4 mAP
on COCO 10% evaluation, with negligible parameters and
FLOPs. It is shown that, by automatically estimating the
best 3D feature location for classification and regression,
the semi-supervised detector is better calibrated to identify
high-quality pseudo-labels. It is also noted that our FAM-
3D brings much more gains under a semi-supervised setting
than that in fully-supervised learning, validating its extra
benefit in reducing the noises in SSOD.
GMM-based thresholding. We testify to the detector’s
performance with or without the GMM-based pseudo-
labeling. We replace it with a hard confidence threshold
τ ∈ (0.2, 0.3, 0.4, 0.5, 0.6, 0.9). Figure 7 illustrates the
test mAP on val2017. Notice that the detector is highly

sensitive to the confidence threshold, with the optimal con-
stant threshold at 0.4. By fitting the distribution of confi-
dence, GMM dynamically adjusts the threshold for select-
ing pseudo-labels. This not only frees us from the tedious
threshold tuning process but also allows for a gained ac-
curacy and stabler supervision signal than a fixed thresh-
old, achieving the final performance of 40.00 mAP with
0.5 mAP improvement on 10% labeled data. GMM is also
higher than the model using a hard threshold (0.4) at differ-
ent ratios of labeled data as well, as illustrated in Figure 8.

5. Limitations and Future Work
Despite the effectiveness of Consistent-Teacher ,

it is currently mainly developed on traditional single-stage
detectors. Its application to two-stage detectors and recent
DETR-based [2] detectors is to be verified. Moreover, semi-
supervised learning with pseudo-labels can accumulate er-
rors due to inaccurate priors and human heuristics during
the self-recurrent process. Our adaptive sample assign-
ment strategy has replaced some human heuristics, such as
anchor-based assignments, resulting in additional benefits
for SSOD. It is believed that exploring more end-to-end ap-
proaches to semi-supervised learning could also bring sim-
ilar advantages, which is an avenue for future research.

6. Conclusion
This paper offers a systematic investigation of the in-

consistency issues that arise in SSOD, and proposes a
straightforward yet effective semi-supervised object detec-
tor called Consistent-Teacher as a solution. The pro-
posed method employs adaptive anchor assignment, which
identifies the positive anchor with the lowest matching
costs, and FAM, which aligns classification and regres-
sion tasks by regressing the 3-D feature pyramid offsets.
To address the threshold inconsistency problem in pseudo-
bboxes, GMM is utilized to dynamically adjust the thresh-
old for self-training. By integrating these three modules,
our Consistent-Teacher achieves a significant per-
formance improvement over state-of-the-art methods on
various SSOD benchmarks, demonstrating robust anchor
assignment and consistent pseudo-bboxes.
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