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Abstract

Despite incredible advances, deep learning has been

shown to be susceptible to adversarial attacks. Numerous

approaches have been proposed to train robust networks

both empirically and certifiably. However, most of them de-

fend against only a single type of attack, while recent work

takes steps forward in defending against multiple attacks. In

this paper, to understand multi-target robustness, we view

this problem as a bargaining game in which different players

(adversaries) negotiate to reach an agreement on a joint

direction of parameter updating. We identify a phenomenon

named player domination in the bargaining game, namely

that the existing max-based approaches, such as MAX and

MSD, do not converge. Based on our theoretical analysis, we

design a novel framework that adjusts the budgets of differ-

ent adversaries to avoid any player dominance. Experiments

on standard benchmarks show that employing the proposed

framework to the existing approaches significantly advances

multi-target robustness.

1. Introduction

Machine learning (ML) models [15, 47, 48] have been
shown to be susceptible to adversarial examples [39], where
human-imperceptible perturbations added to a clean example
might arbitrarily change the output of machine learning mod-
els. Adversarial examples are generated by maximizing the
loss within a small perturbation region around a clean exam-
ple, e.g., `1, `1 and `2 balls. On the other hand, numerous
heuristic defenses have been proposed to be robust against

*Corresponding author.

Figure 1. Robust accuracy against PGD attacks and AutoAttack
(“AA” in this figure) on CIFAR-10. “All” means that the model suc-
cessfully defends against the `1, `2, and `1 (PGD or AutoAttack)
attacks simultaneously. Compared with the previously best-known
methods, our proposed framework achieves improved performance.
“w. `1” and “w. `2” refer to the model training with our proposed
AdaptiveBudget algorithm with `1 or `2 norms, respectively.

adversarial examples, e.g., distillation [31], logit-pairing [19]
and adversarial training [25].

However, most of the existing defenses are only robust
against one type of attacks [11, 25, 33, 49], while they fail
to defend against other adversaries. For example, existing
work [18, 26] showed that robustness in the `p threat model
does not necessarily generalize to other `q threat models
when p 6= q. However, for the sake of the safety of ML
systems, it has been argued that one should target robustness
against multiple adversaries simultaneously [7].
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Recently, various methods [26,35,41] have been proposed
to address this problem. Multi-target adversarial training,
which targets defending against multiple adversarial per-
turbations, has attracted significant attention: a variational
autoencoder-based model [35] learns a classifier robust to
multiple perturbations; after that, MAX and AVG strategies,
which aggregate different adversaries for adversarial training
against multiple threat models, have been shown to enjoy
improved performance [41]. To further advance the robust-
ness against multiple adversaries, MSD [26] is proposed
and outperformed MAX and AVG by taking the worst case
over all steepest descent directions. These methods follow
a general scheme similar to the (single-target) adversarial
training. They first sample adversarial examples by different
adversaries and then update the model with the aggregation
of the gradients from these adversarial examples.

This general scheme for multi-target adversarial training
can be seen as an implementation of a cooperative bargaining
game [40]. In this game, different parties have to decide how
to maximize the surplus they jointly get. In the multi-target
adversarial training, we view each party as an adversary,
and they negotiate to reach an agreed gradient direction that
maximizes the overall robustness.

Inspired by the bargaining game modelling for multi-
target adversarial training, we first analyze the convergence
property of existing methods, i.e., MAX [41], MSD [26],
and AVG [41], and identify a phenomenon namely player
domination. Specifically, it refers to the case where one
player dominates the bargaining game at any time t, and
the gradient at any time t is the same as this player’s gradi-
ent. Furthermore, we notice that under the SVM and linear
model setups, player domination always occurs when using
MAX and MSD, which leads to non-convergence. Based on
such theoretical results, we propose a novel mechanism that
adaptively adjusts the budgets of adversaries to avoid the
player domination. We show that with our proposed mecha-
nism, the overall robust accuracy of MAX, AVG and MSD
improves on three representative datasets. We also illustrate
the performance improvement on CIFAR-10 in Figure 1.

In this paper, we present the first theoretical analysis of
the convergence of multi-target robustness on three algo-
rithms under two models. Building on our theoretical results,
we introduce a new method called AdaptiveBudget, de-
signed to prevent the player domination phenomenon that
can cause MSD and MAX to fail to converge. Our exten-
sive experimental results demonstrate the superiority of our
approach over previous methods.

2. Related work

Adversarial Training. Goodfellow et al. [14] show
that even a small perturbation in the direction of the gra-
dient can fool deep learning models for image classification
tasks. This is later extended to a multi-step attack [22]

called the Basic Iterative Method, now typically referred to
as the PGD attack, which significantly improves the success
rate of creating adversarial examples. Since then, various
variations of the PGD attack [4, 8, 24] have been proposed
to overcome heuristic defenses and create stronger adver-
saries. To defend against these attacks, numerous defense
methods [19, 25, 30, 31, 37, 44, 50–56] have been developed.
Among these methods, the most successful defense method
is adversarial training [25], which formulates the defense
problem as a minimax optimization problem and has be-
come one of the few adversarial defenses that is still robust
against stronger attacks [1, 5, 27]. As a result, empirical ro-
bustness [13, 28, 29, 46, 57] has been significantly advanced
over the past few decades.

Multi-target Adversarial Training. Robustness against
multiple types of attacks simultaneously is closely related
to our work. Schott et al. [35] use multiple variational au-
toencoders to construct an architecture called “analysis by
synthesis” for the MNIST dataset. Their experimental results
show that even for MNIST, it is difficult to train a model
that is robust to three different adversaries. Following that,
Tramer and Boneh [41] investigate the theoretical and em-
pirical trade-offs of adversarial robustness when defending
against aggregations of multiple adversaries. Their results
show that a model that is robust to the `1 adversary might
not be able to defend against other attacks, such as `1 and `2
attacks, on MNIST. To alleviate this problem, they design an
augmentation-based method to achieve `2 robustness. Later,
Croce and Hein [7] propose a provable adversarial defense
against all `p norms for p � 1 using regularization meth-
ods. From a greedy search perspective, Maini et al. [26]
suggest that taking the worst-case over all steepest descent
directions helps achieve better performance than MAX and
AVG empirically. Recently, while not studied as a defense
method, Kang et al. [18] investigate the transferability of ad-
versarial robustness between models trained against different
perturbation models.

3. Preliminaries

3.1. Problem formulation

The goal of multi-target adversarial training is to learn
a function fw : X ! {�1,+1} that is robust to adversar-
ial examples generated by multiple adversaries1, where fw
is parameterized by w. The multi-target robust loss of fw
is defined as E(x,y)[max�2B `(fw(x + �), y)], where B =
B1(✏1)

S
B2(✏2)

S
B1(✏1), Bp(✏) = {� : k�kp  ✏}, and

� is the perturbation. In deep learning scenarios, adversarial
training (AT) [25] is frequently used to train a robust clas-
sifier. Previous multi-target adversarial training work, e.g.,
MSD [26], MAX [41], and AVG [41], employ the following

1In our paper, we analyze the case where three adversaries are involved,
i.e., `1, `2 and `1.
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Algorithm 1 MAX, AVG and MSD algorithms

1: MAX(input data x, steps k, stepsize ⌘, perturbation
budgets (✏1, ✏1, ✏2), loss function `,model fw):

2: �p  PGD(x, k, ⌘, ✏p, `, fw), 8p 2 {1, 2,1};
3: Return argmax�2{�1,�2,�1} `(fw(x+ �p), y).

4:
5: AVG(input data x, steps k, stepsize ⌘, perturbation bud-

gets (✏1, ✏1, ✏2), loss function `,model fw):
6: Return {PGD(x, k, ⌘, ✏p, `, fw)}p2{1,2,1}.
7:
8: MSD(input data x, steps k, stepsize ⌘, perturbation

budgets (✏1, ✏1, ✏2), loss function `,model fw):
9: �0 = 0;

10: for i 2 [k] do

11: �ip  PGDStep(x, �i, ⌘, ✏p, `, fw), 8p 2
{1, 2,1};

12: �i+1  argmax�p2{�i
1,�

i
2,�

i
1} `(fw(x +

�ip), y);
13: end for

14: Return �k.

minimax objective to update the model

min
w

E(x,y) max
�2B

`(fw(x+ �), y) . (1)

This minimax problem is usually decomposed into a
two-stage problem with a maximization problem of find-
ing the optimal � and a minimization problem of finding
the optimal w given optimal �, and then iteratively op-
timizing � and w for several rounds. Under the non-
convex scenario, to find the approximate optimal pertur-
bation � and the approximate optimal parameter w, gradient
descent algorithm [10, 20] and projected gradient descent
(PGD) attack are used. Specifically, PGD runs several prede-
fined steps as PGDstep(x, �i, ⌘, `, ✏p, fw) = ProjBp(✏p)(�+

⌘ sign(`
0
(fw(x + �i), y))) to approximately find a worst-

case adversarial example, where `
0
(fw(x + �i), y) is the

gradient of `(fw(x+ �i), y) and sign(·) is the sign function.
Tramer and Boneh [41] first proposed to solve the inner

maximization problem of the problem (Equation (1)), by the
MAX (the worst-case perturbation, Algorithm 1) and AVG
(the augmentation of all perturbations, Algorithm 1). Now,
the overall minimax objective becomes as below2

MAX: min
w

E(x,y)`(fw(x+ MAX(x)), y),

AVG: min
w

E(x,y)

X

�2AVG(x)

`(fw(x+ �), y) .

2Here we omit most of the parameter of MSD, AVG, and MAX for the
convenience of reading without compromising the important information.

Later, Maini et al. [26] designed a “greedy” algorithm
named MSD, which solves the inner maximization problem
by simultaneously maximizing the worst-case loss overall
perturbation models at each projected steepest descent step
as shown in Algorithm 1. And then the minimax objective
becomes as

MSD: min
w

E(x,y)`(fw(x+ MSD(x)), y) .

3.2. Cooperative bargaining game

Cooperative bargaining game [40] is a process in which
several parties jointly decide how to share a surplus that they
can jointly gain. In the cooperative bargaining game, we have
K players with their own utility function ui : A

S
{d}! R,

where A is the set of possible agreements and d is the dis-
agreement point. The feasible set of utility is defined as
S = {(u1(�) . . . , uK(�)) : � 2 A}. The goals of players
are to maximize their own utility functions. S is assumed to
be convex and compact throughout this paper while there ex-
ists a point � 2 A satisfying ui(�) > ui(d), 8i 2 [K] that
strictly dominates the disagreement point d, i.e., ui(�) >
ui(d), 8i 2 [K], where [K] = {1, 2, . . . ,K}.

The multi-target adversarial training can be viewed as a
cooperative game in which each target (perturbation) rep-
resents a player, whose utility is derived from the overall
robust accuracy (defending `1, `2, and `1 attacks simulta-
neously), and all the players negotiate to reach an agreed
direction. We formalize the multi-target adversarial training
problem as a bargaining game as follows. This bargaining
game has K players and for each player, they generate a
data-dependent perturbation �k(x), 8k 2 [K] to complete
the adversarial training. The possible agreements A are
{
P

k2[K] �k = 1,�k � 0, 8k 2 [K]} and the disagreement
points will be the set {�k = 1,�j = 0, 9k 2 [K], 8j 2
[K]\{k}}, where [K]\{k} is the set containing integers
from 1 to K without k. We note that the agreement set
A is compact and convex. � is used to aggregate the gra-
dients and decide the final update direction. Specifically,
for each updates (one data point, a mini-batch or an epoch)
using gradient-based algorithms, the model is updated by
w = w � ⌘

P
k2[K] �k`

0
(fw(x + �k), y), where ⌘ is the

learning rate.

4. Convergence analysis

We begin this section by presenting our theoretical re-
sults based on the two commonly adopted machine learning
models. Additionally, we have developed a general frame-
work for multi-target adversarial training to avoid the player
domination phenomenon that can cause the non-convergence
of MAX and MSD in the next section. Our framework is
inspired by our theoretical findings. All missing proofs are
presented in Appendix B.
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4.1. Convergence analysis on SVM model

Considering the binary classification setup [43], a data
point (x, y) is sampled from a distribution D defined by

y
u.a.r⇠ {+1,�1}, x1 =

(
+y, w.p. p;
�y, w.p. 1� p,

x2, . . . ,xd+1
i.i.d.⇠ N (µy, 1),

where x = [x1, . . . , xd+1] 2 Rd+1, y is a Rademacher
random variable, and N (µ,�2) is a normal distribution with
mean µ and variance �2. In our setting, p 2 [0.5, 1]. x1 is a
robust feature, while x2, . . . ,xd+1 are non-robust features
that are weakly correlated with the label. Similarly, we set
µ to be large enough such that a simple classifier can get a
high standard accuracy (> 99%), i.e., µ � 1/

p
d.

We train a linear model with soft SVM loss `soft(y0, y) =
max(0, 1� yy0) on the data shown above

min
w

E(x,y)⇠D
X

p2{1,2,1}

�p`soft
�
w>(x+ �p), y

�
,

s.t. kwk2 = 1 ,

(2)

where � = [�1,�2,�1] satisfying
P

i2{1,2,1} �i = 1.
Let wt and �t be the weight vector and the perturbation

at step t, respectively. The training procedures of the SVM
model with AVG, MAX and MSD are illustrated as follows

0. Initialize the weights with natural training, i.e., mini-
mizing the soft-SVM loss without perturbation as

w0 = argmin
w

E(x,y)⇠D `soft
�
w>x, y

�
,

s.t. kwk2 = 1 .
(3)

1. Get the optimal perturbations. With the linearity prop-
erty of SVM, the closed form of optimal perturbations
could be calculated by �t1 = �y✏1 sign(wt), �t1 =
�y✏1w

t

kwtk1
, �t2 = �y✏2w

t

kwtk2
at time t.

2. Update the weights wt with MAX, MSD, or AVG by

wt =argminw E(x,y)

X

p2{1,2,1}

�t
p`soft

�
w>(x+ �tp), y

�
,

s.t. kwtk2 = 1 ,

where �t = [1/3, 1/3, 1/3] if the algorithm is AVG;
�t 2 {[1, 0, 0], [0, 1, 0], [0, 0, 1]} if the algorithm is
MAX or MSD.

3. Loop Steps 1 and 2 for predefined number of epochs or
until convergence.

We first present the following negative result,

(a) d = 2 (b) d = 4 (c) d = 8

Figure 2. Illustration of feasible domains of `1- (red region), `1-
(green dotted region), and `2- (blue dashed region) players in R2,
when the budgets satisfy the minimum requirements of Theorem 1,
i.e., ✏1 = 2

d ✏1 =
q

2
d ✏2. We notice that when d = 2, the feasible

regions of 1- and 2-players are contained in the region of `1-player,
while with the increase of dimension of data, the inverse case occurs
and the feasible region of `1-player is strictly dominated by that
of `1-player. Best view in color.

Theorem 1. Let µ � 4/
p
d, ✏1 � 2µ, p 

0.977. If one uses MAX and MSD to train the soft

SVM model given ✏1 � 2
d✏1 and ✏1 �

q
2
d✏2, the

loss incurred by the `1-player (`1-adversary) is larger

than that by the `1-player (`1-adversary) and the `2-

player (`2-adversary) at any time t for any data sam-

pled from the distribution D, i.e., `soft

�
w>(x+ �t1), y

�
�

maxp2{1,2} `soft

�
w>(x+ �tp), y

�
, 8t, 8(x, y) ⇠ D. Fur-

thermore, �1 = �2 = 0 and �1 = 1 with MAX and MSD,

which means the training dynamics of SVM model with MAX

and MSD are controlled by the `1-player.

Remark 1. This theorem shows that even when the feasible

domain of `1-adversary is much smaller than that of `1- and

`2- adversaries (when the dimension d of data is bigger than

2), the training dynamics of SVM will still be controlled by

the `1-player. By the definition of bargaining game in multi-

target adversarial training, at any time t, the models update

with the disagreement points. As shown in Figure 2, with

the increase of dimension of the data, the feasible domain of

`1-adversary is strictly contained in the `1-players’ region.

We define the phenomenon where one player ”dominates”
the multi-target adversarial training procedure (the training
procedure only depends on one player) as follows

Definition 2 (Player dominates the cooperative game). If

9i 2 [k] such that �t
i = 1 and �t

j = 0, 8j 2 [K]/{i}, 8t,
then we call that i-player dominates the bargaining game as

models achieve the same disagreement point at any time t.

Further, we observe that this phenomenon might lead to
the non-convergence of SVM with MAX and MSD as the
sign of weights of the model flips over time when `1-player
dominates the bargaining game, and given ✏1 > µ.

Theorem 3. Consider Problem (Equation (2)) trained with

MAX and MSD. If `1-player dominates the bargaining

game (player domination) and ✏1 > µ, the weights for
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the non-robust features flip over time, i.e., sign(wt
i) =

� sign(wt�1
i ), 8i � 2, 8t. Thus, the training procedure

with MAX and MSD does not converge.

Although we only analyze the case when the `1-player
dominates the bargaining game, we notice that in situations
where other players dominate this bargaining game (also
known as multi-target adversarial training), with certain con-
ditions such as ✏1 > 2µ, the training procedure may not
converge empirically. Motivated by the negative results of
the SVM model, we next test a conjecture that player domi-
nation may also lead to non-convergence in linear models.

4.2. Player domination leads to non-convergence

To test our conjecture, we introduce a linear model as
follows. The linear model fw is parameterized by w and op-
timized by gradient-based algorithms such as AdaGrad [10]
or Adam [20]. The parameter at time (epoch) t is denoted
by wt. The loss function of each player is denoted by `k,
where k 2 [K], which is L-smooth and µ-strongly convex,
and the corresponding gradient at time t is denoted as gtk,
where k 2 [K] for all t. We assume that for a sequence
{wt}t2[1,1] generated by any gradient-based optimization
algorithm, the set of gradient vectors {gtk}k2[K] at any time
t and at any partial limit is linearly independent unless a
locally optimal solution is achieved. All loss functions are
differentiable, and all sub-level sets are bounded. The learn-
ing rate is denoted by ⌘ such that ⌘ < 2

L . We also assume
that the domain of weights is open and convex.

To generalize our theoretical results, we show that under
this linear model, MAX and MSD still do not converge if
one player dominates the game.

Theorem 4. Consider using MAX and MSD to train the lin-

ear model described above. If one player dominates the bar-

gaining game throughout the game (see Definition 2), then

the loss of all players and the overall loss would increase as

time t grows. This means that the training procedure for the

linear model described above does not converge.

While we have shown that MAX and MSD do not con-
verge under the two models that we study, we notice that
AVG provably converges as the loss is decreasing w.r.t the
number of epochs. See the following theorem.

Theorem 5. Using AVG to train the linear model, the overall

loss decreases as time t grows.

This theorem shows that under the same setting, while the
loss of each player and the overall loss will increase as time
grows with MAX and MSD, the overall loss will decrease
with AVG. The key factor that results in the non-convergence
phenomenon with MAX and MSD is the player domination
phenomenon, where players reach the same disagreement
point all the time, leading to an increase in loss. Since

Algorithm 2 Framework of Multi-target Adversarial Train-
ing with AdaptiveBudget

Require: Training epochs E, dataset (X ,Y), adversarial
budgets (✏1, ✏1, ✏2), model f(·), loss function `.

1: for e 2 [E] do

2: for x, y 2 (X ,Y) do

3: �p(x) PGD(x, k, ⌘, ✏p, `, f), gp  `
0
(f(x+

�p(x)), y), 8p 2 {1, 2,1};
4: Get adaptive budgets ✏̂1, ✏̂2, ✏̂1  

AdaptiveBudget ([g1, g2, g1], [✏1, ✏2, ✏1]);
5: Adversarial training using MAX, MSD or AVG

with budgets (✏̂1, ✏̂2, ✏̂1);
6: end for

7: end for

8: Return the classifier f .
9:

10: AdaptiveBudget([g1, g2, g1], [✏1, ✏2, ✏1]):
11: pmax  argmaxp2{1,1,2} kgpk;
12: pmin  argminp2{1,1,2} kgpk;
13: pmid  {1, 2,1}/{pmax, pmin};
14: ✏pmax  ✏pmax ·

kgpmaxk
kgpmidk

, ✏pmin  ✏pmin ·
kgpmink
kgpmidk

;
15: Return ✏1, ✏2, ✏1.

AVG does not achieve any disagreement point, the player
domination phenomenon does not occur, and convergence is
possible. Therefore, the key to avoiding the non-convergence
of MAX and MSD may be to avoid player domination, which
inspires us to design the new algorithm introduced in the
next section.
5. Avoiding player domination via Adaptive-

Budget

In this section, we present the proposed algorithm Adap-

tiveBudget summarized in Algorithm 2.
Our theoretical results (Theorem 3 and Theorem 4) show

that MAX and MSD cannot converge when player domina-
tion occurs (Definition 2). Indeed, to achieve convergence of
the model, researchers can directly use AVG [41] instead of
MAX [41] and MSD [26]. However, previous works [26,41]
have shown that under the non-convex scenario, where a
deep neural network with non-linear activation is trained on
MNIST [23] and CIFAR-10 [21], MSD and MAX outper-
form AVG3. We have also come to a similar conclusion as
shown in Table 1 and Table 2. Therefore, inspired by the
previous theoretical analysis, to avoid player domination, we
increase the budget of the player with the largest gradient
and force the model to better handle this adversary. Intu-

3This does not conflict with our theoretical analysis as the training dy-
namics of non-convex and convex scenarios (e.g., SVM and linear models)
are different. Additionally, since MAX [41] and MSD [26] are greedy
algorithms that take steepest gradients at each time t, such greedy updates
benefit under non-convex scenarios.
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itively, if the model can handle one adversary (player) well,
the gradient of that adversary (player) will be small. So, to
advance multi-target robustness, we present a novel general-
purpose algorithm for multi-target adversarial robustness
called AdaptiveBudget, which adaptively changes the bud-
get of different adversaries to avoid the player domination
phenomenon (achieving the same disagreement point).

The core idea of this algorithm is to avoid player dom-
ination by adaptively assigning proper attack budgets to
different adversaries (players). Such an assignment is in-
tended to ensure that no single player’s loss is significantly
larger than others, and thus alleviate player domination. In
each epoch, the player who controls the updates will be dif-
ferent. Concretely, for each batch of data, we first obtain
adversarial perturbations �1, �1, and �2 for the `1-, `1-,
and `2- adversaries (Step 4). Then, based on the norms (`1
or `2 norms) of the gradients by forwarding their adversar-
ial examples through our model, the algorithm adaptively
adjusts the budgets ✏ for different adversaries to avoid the
player domination phenomenon (Step 5). Specifically, our
proposed method does not change the budget of the adver-
sary whose norm of gradient is the middle one, increases
the budget of the adversary whose norm of gradient is the
maximum, and decreases the budget of the adversary whose
norm of gradient is the minimum. The intuition behind our
method is to focus on the hardest task in the current round so
that this task might be easier to model in the next round and
might not be able to dominate the updates. After obtaining
the adjusted adversarial budgets, the model utilizes MSD,
MAX, or AVG to approximately solve the inner maximiza-
tion problem and then updates its parameter with a gradient
descent algorithm.

The proposed framework is general and can be applied
to all existing multi-target adversarial training algorithms.
The AdaptiveBudget module is employed to break the curse
of player domination, which might occur when applying
MAX and MSD to train a robust model. In the next section,
we provide extensive experimental evidence to support the
consistent effectiveness of the AdaptiveBudget method.

6. Experiments

6.1. Experimental setup and implementation details

Datasets. We conducted extensive experiments on one
synthetic dataset (Sec. 4.1) to complement our theoretical
results, and on MNIST [23], CIFAR-10 [21], and CIFAR-
100 [21] to show the superiority of our proposed methods
over the existing methods of multi-target adversarial training.
Due to the limitation of space, the experiments on synthetic
data is in Appendix.

Methods. Models that defend against multiple adver-
saries are trained using MAX [41], AVG [41], and MSD [26].
For each algorithm, we use the default hyperparameters intro-

duced in their original papers. All methods are implemented
in PyTorch [32] on a single NVIDIA A100 GPU. Raw im-
ages are resized to 28⇥ 28 pixels for MNIST and 32⇥ 32
pixels for CIFAR-10 and CIFAR-100 as inputs. We apply
the AdaptiveBudget to MAX, MSD, and AVG with `1 and
`2 norms to assign proper budgets adaptively to avoid player
domination.

Models. Following MSD [26] and Madry et al. [25], for
MNIST, we use a four-layer convolutional network which
consists of two convolutional layers of 32 and 64 5⇥5 filters
and 2 units of padding, followed by a fully connected layer
with 1024 hidden units, where both convolutional layers are
followed by 2⇥ 2 Max Pooling layers and ReLU activations.
Similarly, following MSD [26], for CIFAR-10 and CIFAR-
100, we use the pre-activation version of the ResNet18 [16]
architecture that consists of nine residual units with two
convolutional layers.

Attacks used for training. For MNIST, we follow the
setting of three adversaries from MSD [26], as shown below.
The `1-adversary uses a step size of ↵ = 0.01 within a
radius of ✏1 = 0.3 for 50 iterations. The `2-adversary uses
a step size of ↵ = 0.1 within a radius of ✏2 = 2.0 for 100
iterations, and the `1-adversary uses a step size of ↵ = 0.8
within a radius of ✏1 = 10 for 50 iterations. By default,
the attack is run with two restarts: one starting with � = 0,
and another by randomly initializing � in the perturbation
ball. Similarly, for CIFAR-10 and CIFAR-100, we follow
MSD [26]. The `1-adversary uses a step size of ↵ = 0.003
within a radius of ✏1 = 0.03 for 40 iterations. The `2-
adversary uses a step size of ↵ = 0.05 within a radius of
✏2 = 0.5 for 50 iterations, and the `1-adversary uses a step
size of ↵ = 1.0 within a radius of ✏1 = 12 for 50 iterations.

Attacks used for evaluation. To fully understand the per-
formance of the defense, we employ the PGD adversary and
Autoattack [8]4 to test the effectiveness of our method. We
make 10 random restarts for all results on MNIST, CIFAR-
10, and CIFAR-100. The budgets for the three adversaries,
i.e., ✏1, ✏2, and ✏1, are the same as the setting during train-
ing for both datasets. However, we increase the number
of iterations to (100, 200, 100) for (`1, `2, `1) on MNIST,
and to (100, 500, 100) for (`1, `2, `1) on CIFAR-10 and
CIFAR-100.

Hyperparameter setting and tuning. We did not tune
any hyperparameters as our goal is to demonstrate the player
domination phenomenon and propose a solution with our
AdaptiveBudget method. We adopted all hyperparameters
directly from MSD [26]. Specifically, on MNIST, we used
Adam [20] without weight decay and a variation of the learn-
ing rate schedule from Smith [38]. The schedule is piecewise
linear, starting from 0 and increasing to 10�3 over the first

4We only consider white-box attacks based on gradients and do not
use attacks based on gradient estimation, as the gradients for the standard
architectures used here are readily available.
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Table 1. Summary of robust accuracy for MNIST (higher is better). “w. AdaptiveBudget” refers to employing AdaptiveBudget which
aims to avoid any player dominating the game. “*” means that the results are reproduced from the implementation of MSD [26] with the
hyperparameters introduced in MSD [26]. “`1 (ours)” and “`2 (ours)” refers to employing our proposed AdaptiveBudget method w.r.t `1 and
`2 norms. Note that multi-target robustness focuses on the overall robust accuracy (“All Robust Acc” in the table).

Models
`1 `2 `1

MAX MSD AVG
w. AdaptiveBudget `1 (ours) `2 (ours) `1 (ours) `2 (ours) `1 (ours) `2 (ours)

Clean Accuracy (%) 97.2* 99.1* 99.2* 98.6* 98.9" 98.9" 98.2* 98.3" 98.9" 99.1* 99.1 99.1

`1 PGD Robust Acc (%) 47.3* 67.8* 54.6* 67.1* 71.4" 69.7" 67.3* 66.8# 65.9# 70.6* 68.2# 68.9#
`2 PGD Robust Acc (%) 24.1* 66.8* 61.8* 67.2* 69.4" 69.5" 68.0* 67.9# 65.3# 69.4* 68.3# 68.3#
`1 PGD Robust Acc (%) 0* 0.1* 88.9* 21.2* 67.2" 67.6" 62.4* 69.7" 69.7" 59.5* 67.7" 65.6"
All PGD Robust Acc (%) 0* 0.1* 52.1* 21.2* 61.3" 61.4" 59.7* 62.1" 61.0" 55.4* 59.2" 58.2"

6 epochs, then decreasing to 0 over the last 9 epochs. On
CIFAR-10 and CIFAR-100, we used SGD [34] with momen-
tum 0.9 and weight decay 5⇥ 10�4 for all models. We also
used a variation of the learning rate schedule from Smith [38]
to achieve superconvergence in 50 epochs. The schedule is
piecewise linear, starting from 0 and increasing to 0.1 over
the first 20 epochs, then decreasing to 0.005 over the next 20
epochs, and finally decreasing to 0 over the last 10 epochs.

Evaluation metric. While our main target is to improve
the overall robust accuracy on `1-, `2, and `1- attacks,
we report the single attack accuracy as well. The overall
robust accuracy is calculated as

P
(x,y)(I(f(x+�1(x)) ==

y) ⇤ I(f(x+ �2(x)) == y) ⇤ I(f(x+ �1(x)) == y))/n,
where I(cond) = 1 when cond is true and I(cond) = 0
when cond is false, n is the total number of testing data, and
f(·) is the trained model.

6.2. Results on MNIST

Here we present results on the MNIST dataset, summa-
rized in Table 1. Although it has been considered as an
“easy” benchmark compared to CIFAR-10 or larger datasets,
such as ImageNet [9], we noticed that all the single target
adversarial training methods, namely `1, `2, and `1, fail to
defend against only three attacks, while the best method is
`1 training, which defends against almost all three attacks
and outperforms the MAX method.

From Table 1, we can see that our proposed Adaptive-
Budget improves the overall robust accuracy against `1, `2,
and `1 PGD attacks, as well as the `1 robust accuracy
for all three methods, i.e., MAX, MSD, and AVG, using
both `1 and `2 norms. Specifically, on MAX, the `1 and
`2 robust accuracy is improved by 4.3% and 2.2% (with
`1 norm AdaptiveBudget), 2.6% and 2.3% (with `2 norm
AdaptiveBudget), respectively. Additionally, we observe that
our proposed method is able to avoid the player domination
phenomenon even in non-convex scenarios, as all the robust
accuracies of MAX are improved.

The all PGD robust accuracy of vanilla MAX also shows
that the player domination phenomenon hinders MAX from
achieving satisfactory robust accuracy for non-convex sce-

narios. Maini et al. [26] and Tramer and Boneh [41] mention
that there is a trade-off between robust accuracy against `1
attacks and robust accuracy against `1 and `2 attacks. Similar
observations can be obtained from our experimental results.
For MSD and AVG, the robust accuracy defending `1 and `2
PGD attacks drops slightly.

Norm choice in AdaptiveBudget. We use `1 and `2
norms for AdaptiveBudget, and the corresponding results
are shown in Table 1. There is no significant difference
between the experiments with `1 and `2 norms when using
our proposed method. The differences in overall robust
accuracy are only 0.1%, 1.1%, and 1.0% on MAX, MSD,
and AVG, respectively. The differences in separated robust
accuracy are also small, which proves the generalization
ability of our proposed method empirically.

6.3. Results on CIFAR-10 and CIFAR-100

The results are shown in Tables 2 and 3, and the curve
of robust accuracy on CIFAR-10 is shown in Figure 6 in the
Appendix. Due to the limitation of space, we present the
most important results in the main paper while leaving the
left results in the Appendix.

Main results. The results on CIFAR-10 presented in Ta-
ble 2 show the generalization ability of our proposed method,
which improves the overall robust accuracy of PGD and Au-
toAttack of three methods, i.e., MSD, MAX, and AVG. We
notice that the overall robust accuracy for PGD and AutoAt-
tack is mainly restricted by how well the model defends
against the `1 attack. This might be caused by the fact
that the radius of the `1 attack is too small compared to
the radius of the `1 and `2 attacks, so with the updates by
gradient-based algorithms, the gradient of the `1 adversary
is covered by the others, causing the model to ignore the
`1 adversary. Furthermore, we notice that employing Adap-
tiveBudget with either the `1 or `2 norms helps models pay
attention to the tasks that are not well-learned as the `1 ro-
bust accuracy is relatively improved the most. For example,
the `1 PGD robust accuracy of MAX with AdaptiveBudget
w.r.t. the `1 norm experiences a relative 15.01% improve-
ment, while there is only a 14.03% relative improvement
on the `2 PGD robust accuracy. In addition, the trade-off
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Table 2. Summary of robust accuracy for CIFAR-10 (higher is better). “w. AdaptiveBudget” refers to employing AdaptiveBudget which aims
to avoid any player dominating the game. “AA” refers to AutoAttack. “*” means that the results are reproduced from the implementation of
MSD [26] with the hyperparameters introduced in MSD [26]. “`1 (ours)” and “`2 (ours)” refers to employing our proposed AdaptiveBudget
method w.r.t `1 and `2 norms. Note that multi-target robustness focuses on the overall robust accuracy (“All Robust Acc” in the table).

Models
`1 `2 `1

MAX MSD AVG
w. AdaptiveBudget `1 (ours) `2 (ours) `1 (ours) `2 (ours) `1 (ours) `2 (ours)

Clean Accuracy 92.4* 87.5* 84.2* 79.6* 76.9 78.7 79.2* 77.6 79.0 83.8* 81.6 81.5

`1 PGD Robust Acc (%) 90.8* 31.7* 17.3* 44.0* 50.7" 51.7" 50.8* 51.2" 52.6" 55.7* 57.3" 56.3"
`2 PGD Robust Acc (%) 0.1* 64.0* 60.6* 55.6* 63.4" 65.1" 64.3* 63.6# 65.5" 67.0* 66.6# 67.0

`1 PGD Robust Acc (%) 0* 27.8* 51.2* 41.3* 47.5" 47.6" 45.7* 48.4" 47.2" 39.4* 45.5" 44.2"
All PGD Robust Acc (%) 0* 23.8* 17.3* 40.4* 46.0" 46.8" 44.1* 47.2" 46.4" 39.2* 45.2" 43.6"

`1 AA Robust Acc (%) 0* 23.8* 6.2* 41.4* 45.7" 45.5" 45.5* 46.4" 46.7" 49.7* 52.7" 50.8"
`2 AA Robust Acc (%) 0* 63.0* 57.4* 53.7* 60.4" 63.2" 61.9* 62.3" 62.1" 65.4* 64.6# 65.5"
`1 AA Robust Acc (%) 0* 26.1* 48.0* 38.4* 44.7" 44.1" 43.1* 45.2" 44.4" 37.0* 43.1" 42.1"
All AA Robust Acc (%) 0* 19.5* 6.2* 37.6* 42.9" 42.3" 41.6* 43.4" 43.0" 36.6* 42.5" 41.2"

Table 3. Summary of robust accuracy for CIFAR-100 (higher is better). “w. AdaptiveBudget” refers to employing AdaptiveBudget
which aims to avoid any player dominating the game. “AA” refers to AutoAttack. “*” means that the results are reproduced from the
implementation of MSD [26] with the hyperparameters introduced in MSD [26]. “`1 (ours)” and “`2 (ours)” refers to employing our
proposed AdaptiveBudget method w.r.t `1 and `2 norms.

Models MAX MSD AVG
w. AdaptiveBudget `1 (ours) `2 (ours) `1 (ours) `2 (ours) `1 (ours) `2 (ours)

Clean Accuracy 55.49* 56.48 55.53 56.09* 55.52 54.94 59.94* 57.78 58.16

`1 PGD Robust Acc (%) 25.45* 29.27" 29.78" 35.50* 30.31# 28.87# 30.35* 33.16" 32.62"
`2 PGD Robust Acc (%) 39.55* 40.00" 39.85" 40.14* 40.28" 39.28# 40.26* 41.03" 40.27"
`1 PGD Robust Acc (%) 25.03* 25.34" 25.87" 24.83* 26.19" 25.59" 18.92* 21.81" 21.57"
All PGD Robust Acc (%) 21.11* 24.14" 24.76" 25.10* 25.03# 24.43# 18.61* 21.55" 21.16"

`1 AA Robust Acc (%) 13.00* 23.00" 20.90" 25.10* 24.00# 24.20# 25.20* 28.60" 28.00"
`2 AA Robust Acc (%) 36.30* 35.60# 36.40" 37.60* 35.80# 36.40# 37.00* 37.90" 37.10"
`1 AA Robust Acc (%) 22.00* 21.50# 22.30" 21.80* 22.80" 22.70" 16.30* 19.00" 19.70"
All AA Robust Acc (%) 12.20* 20.60" 18.60" 21.00* 21.30" 21.50" 16.10* 18.90" 19.50"

between the three attacks on CIFAR-10 is different from that
on MNIST. On MNIST, the `2 robust accuracy is related
to that of the `1 adversary, while on CIFAR-10, it seems
that `2 robust accuracy is more likely to be related to `1
robust accuracy. Similar observations can be obtained on
CIFAR-100 in Table 3.

7. Conclusion

In this paper, to achieve the ultimate goal of robustness,
i.e., defending any terms of attacks, we first formalized this
problem within the context of a bargaining game and investi-
gated the convergence properties of MAX, MSD, and AVG
under two machine learning cases. We discovered that MAX
and MSD do not converge theoretically due to a phenomenon
called player domination, while AVG does not suffer from
this. To prevent player domination during the training of ro-

bust models, we designed a novel framework for multi-target
adversary training, which includes the proposed Adaptive-
Budget method. Specifically, AdaptiveBudget adaptively
changed the budget of different attacks to avoid player dom-
ination based on the norm of gradients of each adversary.
Finally, we conducted experiments on three benchmarks,
i.e., MNIST, CIFAR-10, and CIFAR-100. Experimental
results showed that AdaptiveBudget improved the overall
robust accuracy on three benchmarks, which complemented
our theoretical results and also supported our finding that
player domination might interfere with the training of robust
models.

Acknowledgement

This work is supported by NSERC Discovery Grant
RGPIN-2022-03215, DGECR-2022-00357.

20571



References

[1] Anish Athalye, Nicholas Carlini, and David Wagner.
Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In
International Conference on Machine Learning, pages
274–283, 2018. 2

[2] Mislav Balunovic and Martin Vechev. Adversarial
training and provable defenses: Bridging the gap. In
International Conference on Learning Representations,
2020. 12

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In In-

ternational Conference on Learning Representations,
2018. 12

[4] Wieland Brendel, Jonas Rauber, Matthias Kümmerer,
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