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Abstract

The ability of scale-equivariance processing blocks
plays a central role in arbitrary-scale image super-
resolution tasks. Inspired by this crucial observation, this
work proposes two novel scale-equivariant modules within
a transformer-style framework to enhance arbitrary-scale
image super-resolution (ASISR) performance, especially in
high upsampling rate image extrapolation. In the feature
extraction phase, we design a plug-in module called Adap-
tive Feature Extractor, which injects explicit scale informa-
tion in frequency-expanded encoding, thus achieving scale-
adaption in representation learning. In the upsampling
phase, a learnable Neural Kriging upsampling operator
is introduced, which simultaneously encodes both relative
distance (i.e., scale-aware) information as well as feature
similarity (i.e., with priori learned from training data) in
a bilateral manner, providing scale-encoded spatial feature
fusion. The above operators are easily plugged into mul-
tiple stages of a SR network, and a recent emerging pre-
training strategy is also adopted to impulse the model’s
performance further. Extensive experimental results have
demonstrated the outstanding scale-equivariance capabil-
ity offered by the proposed operators and our learning
framework, with much better results than previous SOTA
methods at arbitrary scales for SR. Our code is available
at https://github.com/neuralchen/EQSR.

1. Introduction

Arbitrary-scale image super-resolution (ASISR), which
aims at upsampling the low-resolution (LR) images to high-
resolution (HR) counterparts by any proper real-valued
magnifications with one single model, has become one of
the most interesting topics in low-level computer vision
research for its flexibility and practicality. Unfortunately,
compared with fixed-scale SISR models [2,3,11,19,20,22],
existing methods on ASISR [4,9,18,33] usually offer much
lower SR performances (e.g., PSNR), hindering their prac-
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Figure 1. Scale-equivariance of our network. We compare the
PSNR degradation rate of our method and ArbSR [33]. Taking
the SOTA fixed-scale method HAT [3] as reference, our model
presents a more stable degradation as the scale increases, reflecting
the equivariance of our method. Please enlarge the pdf for details.

tical applications. The major causes of the defects of pre-
vious ASISR methods are due to lack of scale-equivariance
in dealing with scale-varying image features, as explained
in detail as follows.

On the one hand, the model’s backbone should possess
the capability of adaptively processing features according to
the sampling scale in order to achieve scale-equivariance in
the feature extraction phase. To be concrete, since ASISR
models rely on only one single backbone to handle different
scales, designing a scale-equivariant feature learning mod-
ule that extracts, transforms, and pool image information
from adaptively adjusted sampling positions (i.e., accord-
ing to the scaled distance) to obtain scale-equivariant fea-
ture maps from the same source image with different scales
is essential. As shown in Figure 2, we analyze a series of
fixed-scale HAT [3] models and find that the extracted fea-
tures show apparent divergences from the middle of the net-
work to handle different scale factors, demonstrating that
features for different scales should be extracted adaptively.

On the other hand, we also expect the model to possess
suitable scale-equivariant properties in the image/feature
upsampling stage. Namely, the upsampling module should
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be designed to perform adaptive interpolation operations ac-
cording to arbitrary scaling factors. It is worth noting that
the ability to handle out-of-distribution scales (i.e., scales
that the model has never seen in training) is crucial for
ASISR models since the training process is impossible to
cover all possible upsampling scales. However, existing
methods commonly use 3 × 3 convolution layers for up-
sampling, which has been proved to lack scale equivari-
ance by many studies [35–37], leading to insensitivity to
the changes of the scale factor. Some implicit-field-based
methods, such as LIIF [4], adopt a channel-separated MLP
to enhance the scale equivariance; however, additional oper-
ations, including feature unfolding and local ensemble, are
needed, resulting in a cumbersome upsampler. Alias-Free
StyleGAN [12] points out that 1 × 1 convolution could be
regarded as an instance of a continuously E(2)-equivariant
model [34] in image generation, but 1 × 1 receptive field
cannot aggregate the crucial local information for SR.

Motivated by the above analysis, this work proposes
two novel scale-equivariant modules within a transformer-
style framework for enhancing arbitrary-scale image super-
resolution performance. In the feature extraction phase,
we design a novel module called Adaptive Feature Ex-
tractor (AFE), which explicitly injects scale information
in the form of frequency-expanded encoding to modulate
the weights of subsequent convolution. Combined with
the traditional self-attention mechanism, this operator can
be plugged into multiple stages of the feature extraction
sub-network and achieves a large receptive field as well as
good scale-adaption properties in representation learning.
When upsampling, instead of monotonically using pixel-
independent convolutions (e.g., Alias-Free StyleGAN [12],
LIIF [4]), we propose a brand-new paradigm, i.e., Neural
Kriging upsampler, which endows vanilla K ×K convolu-
tions with highly competitive equivariance while maintain-
ing excellent spatial aggregation. Specifically, the Neural
Kriging upsampler simultaneously encodes geometric in-
formation (i.e., relative position) and feature similarity (i.e.,
prior knowledge learned from training data) in a bilateral
manner, providing scale-encoded spatial feature fusion.

Combining the above modules, we construct a model
with a certain equivariance named EQSR, which can adap-
tively handle different sampling rates. We conduct exten-
sive qualitative and quantitative experiments to verify the
superiority of our method on ASISR benchmarks. Com-
pared with state-of-the-art methods, average PSNRs of
our model have shown significant advantages in both in-
distribution and out-of-distribution cases. Under the ×2 and
×3 configurations, we surpass the previous SOTA LTE [18]
by 0.33dB (34.83dB v.s. 34.50dB) and 0.35dB (29.76dB
v.s. 29.41dB) on the Urban100 dataset. Under the ×6 con-
figuration, we also achieve a large gap of 0.21dB, proving
the effectiveness of our scale-equivariant operator.
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Figure 2. Feature similarity of Different models. We compare the
recent SOTA fixed-scale model HAT [3] and arbitrary-scale model
ArbSR [33]. (a) shows the CKA similarity of ×2/3/4 features at
each layer; (b) compares the performance of these methods on the
Urban100 dataset.

2. Related Work

Fixed-scale SR. Since SRCNN [6] proposed the first
CNN-based single image super-resolution model, CNN-
based deep learning SR methods have outperformed those
exemplars or dictionary-based traditional SR methods [30,
32, 38, 39, 42] a large margin. VDSR [13] proposed using
deep networks and residual learning for SR model training.
EDSR [21] removed batch normalization (BN) layers and
used a residual scaling technique to train large SR models.
RDN [46] proposed dense feature fusion for image super-
resolution. RCAN [45] proposed adding a channel attention
mechanism to improve image SR performance. DRCN [14]
introduced the first recursive supervision to SR.

Arbitrary-Scale SR. Most of the existing SR techniques
train respective models for each specific scale factor (e.g.,
×2,×3,×4), which limits the deployment on the user side
considering the memory and computing resources. In view
of this, single model SR for arbitrary-scale factors is conve-
nient and efficient in practical scenarios. EDSR [21] inte-
grates models trained for multiple integer scale factors as a
single model MDSR. MetaSR [9] proposed the first single
model arbitrary-scale SR method by taking the scale fac-
tor as input to predict the weights of the upscale filters.
Recently, ArbSR [33] proposed a general plug-in module
using conditional convolutions to generate dynamic scale-
aware filters. SRWarp [29] proposed a differentiable adap-
tive warping layer to transform an LR image into any shape
deformations in HR representation. However, these meth-
ods do not perform well in out-of-distribution cases. LIIF
[4] train encoder with implicit neural representation to learn
continuous image representation, which can be presented
in arbitrary resolution. LTE [18] proposed a dominant-
frequency estimator based on LIIF and improve the perfor-
mance. However, these method extract the same features
for all scales, hindering the scale-equivariance of models.
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Figure 3. Architectures of proposed modules and networks. The main body of our network contains a series of AFE Groups and a Neural
Kriging upsampler. The core of AFE Group is our Adaptive Feature Extractor which extracts the features dynamically according to the
scale factor. The Neural Kriging upsampler consists of a scale-insensitive branch for learning prior knowledge and a scale-sensitive branch
for perceiving spatial distance information.

3. Methodology
3.1. Problem Formulation

Let ILR ∈ RH×W×3 denotes a LR image. Arbitrary
SR models aim to re-scale it to ISR ∈ RrH×rW×3 with
one single model, where r denotes any proper real-number
scale factor. Given a query coordinate x0, the problem of a
typical ASISR method could be formulated as follow:

zo = ISR(xo) = Φ(ILR, xo; r), (1)

where Φ denotes the SR model, and zo denotes the corre-
sponding pixel value prediction.

On the one hand, since image features extracted for
the subsequent upsampling stage should match for differ-
ent scales, a scale-equivariant feature extraction backbone
is required to extract features adaptively according to the
scales. On the other hand, most existing upsampling al-
gorithms cannot perceive the information of scale transfor-
mation, urging us to find a novel sampling theory to en-
hance the scale-equivariance of the model. To explicitly
address the above challenges, we propose a novel frame-
work named Scale-Equivariant Super-Resolution (EQSR).
In this section, we first give an overview of our proposed
framework. Then, we describe the working mechanism (in
achieving scale-equivariance) and implementation details of
our proposed Adaptive Feature Extractor (AFE) and Neural
Kriging Upsampler, respectively. Coupling with the pro-
posed above components, EQSR achieves superior perfor-
mances, especially at out-of-distribution scales.

3.2. Overall Architecture
As shown in Figure 3, our network consists of three

parts: the head, the AFE groups, and the Neural Krig-
ing Upsampler. The head is one layer of convolution that
extracts shallow features and enriches low-level patterns.
The main body of the backbone contains a series of AFE
groups to achieve a scale-adaptive feature extraction and
gain a large receptive field. The AFE group is composed
of an AFE block (i.e., transformer-style block [7]), several
window-based self-attention [20] (i.e., WSA for short), a
global self-attention [40] (i.e., GSA for short) and a 3 × 3
convolution. AFE block is designed to endow the back-
bone network with scale adaptability, which will be dis-
cussed in Sec. 3.3. In our framework, we employ the naive
non-overlap windows-based self-attention with 16×16 win-
dow. Global-based self-attention is employed to establish
the non-local context interaction, which is highly impor-
tant in boosting restoration performance. In this paper, we
use Overlap Cross-Window Attention Block [3] to act as
GSA. The last convolution is responsible for enriching low-
level patterns. The last part is our proposed Neural Kriging
Upsampler, which is able to resample features at arbitrary
scales/coordinates in a scale-equivariant manner.

3.3. Scale-Equivariance in Backbone
Existing fixed-scale SR models rarely possess scale-

adaptation ability in their backbone networks. To demon-
strate this, we compare the feature similarities between the
corresponding layer-wise features extracted based on dif-
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ferent target scales but from the same trained SR feature ex-
tractor with ArbSR [33], as visualized in Figure 2. We also
choose the recent SOTA method HAT [3] for reference, i.e.,
training different models for different target scales. Note
that to facilitate reasonable feature similarity measurement,
we use Centered Kernel Alignment (CKA) [16, 26] as the
metric with higher values indicating greater similarity.

From Figure 2, we make two important observations.
First, ArbSR presents consistently high similarity values
between different scaled feature extractors over all exam-
ined layers, indicating that the previous method is ineffec-
tive in extracting scale-related information in its backbone.
In contrast, features obtained from our method show ap-
parent divergences when handling different scale factors,
demonstrating that our proposed feature extraction back-
bone is adaptive to changes in scale. For HAT, since its
models are separately trained (i.e., optimized for different
scales individually), it presents similar visualization as ours,
which further verifies that our scale-adaptive feature extrac-
tion scheme could well handle arbitrary scales in SR. Sec-
ond, we find that the differences are not evident in the early
feature extraction stages of the network but are amplified
from the middle stages, which indicates that later extraction
layers are more flexible for scale encoding in SR. This in-
spires us to inject scale encoding onto multiple proper layers
to ensure scale information can be propagated to the consec-
utive feature up-sampling module.

Scale-Equivariant Extractor. As shown in Figure 3, to
address the above issue, we design a pluggable transformer-
style information injector named Adaptive Feature Extrac-
tor (AFE), which is able to dynamically adjust the extracted
features according to the upsampling rate via injecting scale
information into the feature extraction process explicitly.
The AFE module works in the following way. First, a set
of learned convolutional kernel basis is defined, serving as
the basic feature extraction pool that matches/supports dif-
ferent scaling factors. In other words, since enumerating
the entire real-valued scale space is impossible, sampling a
finite set of operators in this space is necessary. Then, the
input scale factor is expanded to a higher dimension by sine-
cosine encoding [25], which is further mapped to a latent
space (has the same dimensions as convolutional kernels)
to carry scale information by a linear layer. Third, this scale
vector is modulated with the kernel basis convolution layer,
forming an scale interpolated adaptive convolutional kernel
for feature encoding. The above process can be formulated
as follows:

Xout = F

sin(2iπr/10)cos(2iπr/10)
r

⊗W ∗Xin + B, (2)

where F is the map function, i = (0, 1, 2, . . . , n), W ∈
RCout×Cin×k×k denotes the kernels of convolution, ⊗ de-

notes modulation, ∗ denotes convolution, and Xin and Xout

denote the input and output feature maps, respectively. B ∈
RCout is the bias. As shown in Figure 2, our model shows
similar characteristics to the reference high-performance
model, demonstrating that AFE helps the backbone extract
features adaptively.

3.4. Scale-Equivariance in Upsampler

Commonly used feature upsampling operators such as
inverse distance interpolation could be regarded as different
interpolation kernels; however, since they are usually not
isometric, their interpolation behaviors are not sensitive to
scale changes. On the contrary, although the 1 × 1 con-
volution operator offers ideal scale-equivariant property, it
can not aggregate local contextual information. Indeed, it
is required to develop a scale-equivariant upsampler that lo-
cal context learning ability. Inspired by the excellent scale-
equivariant nature of Kriging interpolation [27], which is
widely used in geophysics and is capable of integrating
both spatial and feature correlation between two visual sites,
we design a learnable scale-adaptive upsampler for ASISR
named Neural Kriging Upsampler.

Kriging Interpolation Revisit. Without loss of gen-
erality, interpolation of an unknown value z0 at point po-
sition/coordinate x0 can be formulated as a linear combi-
nation of the values sampled from reference points: ẑ0 =∑N

i λizi, where λ denotes the interpolation weights to be
estimated. Note that the position x0 of the interpolated
point on the target image is unknown, which varies accord-
ing to scale changes. Kriging interpolation, based on Gaus-
sian process [5], is able to estimate the optimal (in minimal
squared error sense) interpolation weight vector λ based on
feature covariances, derived as follows:

⟨z(x0), z(xj)⟩ =
N∑
i=1

λ ⟨z(xi), z(xj)⟩ , ∀j = 0, 1, . . . , n, (3)


c(0, 1)
c(0, 2)

...
c(0, N)


︸ ︷︷ ︸

Kscale

=


c(1, 1) c(1, 2) · · · c(1, N)

...
. . .

...

c(N, 1) · · ·
. . . c(N,N)


︸ ︷︷ ︸

Kdata


λ1

λ2

...
λN

 ,

(4)
where c(i, j) = ⟨z(xi), z(xj)⟩ denotes the covariance func-
tion between two feature points. Note that in Eq. 4, the first
term on the right side has no relationship with the unknown
point and is thus irrelevant to upsampling scales, while the
left term does since the interpolated position x0 depends on
the scaling factor as well as any scale transformation of the
target image. Indeed, from the view of the Gaussian pro-
cess, Kriging can be simplified as follows:

ẑ0 =

scale independent︷ ︸︸ ︷
K−1

data(D)

scale dependent︷ ︸︸ ︷
Kscale(x0;X, r) z (5)
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where D is the training set, X and z denote positions
and values of observed data, respectively. Kdata denotes
the data kernel function irrelevant to the upsampling pro-
cess, which learns the prior distribution from observed data.
Kscale denotes the scale kernel function related to the spa-
tial location of sampling points, governed by the scale in-
formation in the interpolation process.

Neural Kriging. Inspired by the scale-equivalent advan-
tage of Kriging interpolation, we propose an upsampling
module named Neural Kriging (NK) with a higher learn-
ing ability dedicated to ASISR pipeline. Moreover, this
novel network module eliminates two main drawbacks of
the Kriging method: first, computationally complex and nu-
merical instability due to large matrix inversion, and sec-
ond, inflexibility to modify the trained and fixed covariance
matrix for adapting to on-the-fly data.

As shown in Figure 3, the proposed Neural Kriging mod-
ule has two collaborating branches. The first branch is a
scale-insensitive branch that uses SE Blocks [8] to explore
the prior relationship between image feature values and spa-
tial location learned from the training data, yielding data
kernels. Note that different from the original Kriging for-
mulation, scaled target data point coordinates are also in-
jected into the network, which utilizes on-the-fly data to
adjust/enhance/update the accuracy of its data kernels, i.e.,
to endow it with certain data-adaptive nature. The other
branch is scale-sensitive, which conducts relative position
encoding on sampling points with reference to the target
coordinates, calculating the spatial geometric relationship
through RBF function to obtain the distance kernels accord-
ing to the target scale. We also cascade the RBF function
with a MLP to enhance the learning ability. Then, we fuse
both kernels through modulation to generate hybrid features
that carry both spatial scale relationships and semantic in-
formation, followed by a series of 1 × 1 convolutions (i.e.,
inherently scale-equivariant/neighborhood-independent op-
eration), forming the HR output.

3.5. Measure of Scale-Equivariance

Mathematically, operator g is completely equivariant to
operation t if the formula g ◦ t = t ◦ g is satisfied. To quan-
titatively measure the scale-equivariance of the model, fol-
lowing the measurement of translation-equivariance [44],
we propose EQS , which is defined as the PSNR between
two sets of images, obtained by swapping the order of
upsampling and downsampling, as the metric of scale-
equivariance. The calculation can be formulated as follows:

EQS(ϕ, r) = 10 log
[
(ϕ(f(x; r), θ; r)− f(ϕ(x, θ; r); r))2

]
(6)

where ϕ(·) denotes the network, θ denotes the weights and
f(·) denotes bicubic degradation. We will use this tool to
analyze the equivariance of different models in Sec. 4.3.
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Figure 4. Data processing for arbitrary-scale training.

3.6. Pre-training Strategy

Recent works [3,19] have demonstrated that pre-training
plays an important role in low-level tasks. From the view
of Neural Kriging upsampler, pre-training provides the net-
work with more prior knowledge, which has the potential to
enhance the representation capability of the data kernel. To
this end, we also adopt the pre-training strategy for the train-
ing of our EQSR with ImageNet [17], aiming to enhance the
generalization and scale-equivariance of the model.

4. Experiments

4.1. Experiment Settings

Datasets and Metrics. Following [3,31,45], we employ
DF2K dataset [31] as training set. For testing, we adopt
five standard benchmarks: Set5 [1], Set14 [41], B100 [23],
Urban100 [10] and Manga109 [24]. We conduct our experi-
ments with Bicubic (BI) degradation model [43]. We report
peak signal-to-noise ratio (PSNR) results on Y channel (i.e.,
luminance) of transformed YCbCr space for evaluation.

Data Processing. To enable ASISR training with differ-
ent training input/output sizes and avoid bias towards fixed
scale training samples as in ArbSR [33], we propose a new
data processing method to encourage a more general train-
ing scale coverage. More concretely, we first downscale HR
images to 48×48 pixels, forming stacked input batches. Af-
ter backbone feature map extraction, only target regions are
up-sampled to HR by the learned ASISR model, together
with the corresponding regions from the ground-truth HR
images, forming L1 loss training pairs. In this way, we
avoid the inconvenience caused by inputs of different scales.
Figure 4 illustrates the above pre-processing pipeline. For
data augmentation, we randomly rotate the training images
by 90◦, 180◦, 270◦ and flip them horizontally.

Training Settings. Our model is trained by Adam op-
timizer [15] with β1 = 0.9 and β2 = 0.999. The initial
learning rate is set as 2 × 10−4. Our model is trained for
1000k iterations, and we decrease learning rate to half after
every 200k iterations. If pre-training strategy is enabled, we
first train 800k iterations on ImageNet [17] and then con-
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Table 1. Quantitative comparison (PSNR) for arbitrary-scale SR with state-of-the-art methods on benchmark datasets. The best and
second-best results are marked in red and blue colors, respectively. “†” indicates that methods adopt the pre-training strategy on ImageNet.
“*” indicates the scale is out-of-distribution. Comparison at more scales are available in our supplementary material.

Set5 Set14 B100 Urban100 Manga109
×2 ×1.6 ×1.55 ×2 ×1.5 ×1.65 ×2 ×1.4 ×1.85 ×2 ×1.9 ×1.95 ×2 ×1.7 ×1.95

Bicubic 33.66 36.10 36.24 30.24 32.87 31.83 29.56 32.95 30.11 26.88 27.25 27.05 30.80 32.91 31.12
MetaSR [9] 38.22 40.66 40.93 34.00 37.51 36.17 32.36 36.95 33.22 33.12 33.62 33.30 39.32 41.30 39.59
ArbSR [33] 38.26 40.69 40.97 34.09 37.53 36.28 32.39 36.93 33.23 33.14 33.55 33.25 39.27 41.32 39.56

LIIF [4] 38.17 40.64 41.00 33.97 37.45 36.25 32.32 36.93 33.14 32.87 33.52 33.20 39.21 41.32 39.52
LTE [18] 38.33 40.75 41.20 34.25 37.79 36.56 32.44 37.05 33.26 33.50 34.11 33.83 39.58 41.69 39.89

Ours 38.35 40.76 41.16 34.45 38.83 36.59 32.46 37.11 33.29 33.62 34.15 33.86 39.44 41.67 39.81
Ours† 38.41 40.83 41.21 34.62 38.05 36.82 32.50 37.18 33.33 33.83 34.45 34.11 39.67 41.87 39.97

×3 ×2.4 ×2.75 ×3 ×2.8 ×2.95 ×3 ×2.2 ×2.15 ×3 ×2.3 ×2.35 ×3 ×2.7 ×2.55
Bicubic 30.39 32.41 31.06 27.55 27.84 27.46 27.21 28.88 29.12 24.46 25.91 25.72 26.95 27.77 28.27

MetaSR [9] 34.76 36.58 35.36 30.58 31.00 30.56 29.29 31.44 31.70 28.96 31.43 31.20 34.40 35.55 36.21
ArbSR [33] 34.76 36.59 35.39 30.64 31.01 30.59 29.32 31.48 31.72 28.98 31.48 31.26 34.55 35.64 36.27

LIIF [4] 34.68 36.47 35.38 30.53 30.97 30.56 29.26 31.47 31.67 28.82 31.30 31.09 34.17 35.49 36.18
LTE [18] 34.89 36.66 35.51 30.80 31.28 30.90 29.39 31.59 31.78 29.41 31.95 31.77 34.77 35.94 36.52

Ours 34.83 36.58 35.52 30.82 31.31 30.94 29.42 31.57 31.81 29.53 32.01 31.86 34.89 36.01 36.55
Ours† 34.92 36.65 35.55 30.97 31.50 31.14 29.41 31.62 31.84 29.76 32.29 32.07 34.93 36.04 36.61

×4 ×3.1 ×3.25 ×4 ×3.2 ×3.95 ×4 ×3.2 ×3.55 ×4 ×3.7 ×3.85 ×4 ×3.4 ×3.65
Bicubic 28.42 29.89 29.21 26.00 26.98 25.68 25.96 26.91 26.32 23.14 23.38 23.14 24.89 25.97 25.41

MetaSR [9] 32.56 34.46 33.98 28.85 30.08 28.73 27.75 28.86 28.30 26.71 27.25 26.93 31.33 33.00 32.22
ArbSR [33] 32.55 34.50 34.03 28.87 30.08 28.74 27.76 28.93 28.33 26.68 27.22 26.90 31.36 33.12 32.29

LIIF [4] 32.50 34.47 34.12 28.80 30.09 28.88 27.74 28.90 28.34 26.68 27.23 26.94 31.20 32.87 32.11
LTE [18] 32.81 34.69 34.42 29.06 30.35 29.13 27.86 29.03 28.42 27.24 27.86 27.60 31.77 33.42 32.69

Ours 32.71 34.68 34.37 29.12 30.36 29.20 27.86 29.02 28.45 27.30 27.92 27.63 31.86 33.55 32.79
Ours† 32.78 34.74 34.44 29.13 30.48 29.22 27.90 29.05 28.48 27.54 28.09 27.81 32.05 33.69 32.91

×6* ×5.5* ×6.25* ×6* ×4.25* ×5.25* ×6* ×4.75* ×6.75* ×6* ×5.75* ×6.5* ×6* ×5.25* ×6.75*
Bicubic 24.17 24.46 23.70 23.15 24.17 23.23 23.69 24.25 23.11 20.82 20.73 20.55 21.53 21.83 20.95

MetaSR [9] 29.09 29.96 28.55 26.55 28.47 27.10 25.91 26.92 25.24 24.04 24.37 23.60 27.02 28.19 25.99
ArbSR [33] 28.45 29.24 27.66 26.22 28.46 26.89 25.74 26.89 25.16 23.70 23.81 23.23 26.18 27.59 24.93

LIIF [4] 29.15 30.04 28.73 26.64 28.50 27.38 25.98 26.96 25.53 24.20 24.44 23.79 27.34 28.54 26.37
LTE [18] 29.50 30.20 29.03 26.86 28.55 27.46 26.09 26.98 25.61 24.62 24.79 23.95 27.84 28.96 26.41

Ours 29.41 30.24 28.97 26.79 28.72 27.49 26.07 27.03 25.63 24.66 24.86 24.15 27.97 29.14 26.69
Ours† 29.51 30.38 29.12 26.90 28.78 27.63 26.11 27.10 25.66 24.83 25.10 24.36 28.04 29.36 26.85

duct 200k iterations on DF2K dataset. In each iteration, we
stack 16 LR patches in a batch with size 48×48 as inputs us-
ing the above data processing method. Our proposed model
is implemented in PyTorch [28] framework and trained on
two Nvidia 3090 GPUs with 24GB RAM.

4.2. Comparisons with the State-of-the-Art

We first compare our EQSR with other state-of-the-
art arbitrary-scale SR methods including MetaSR [9],
ArbSR [33], LIIF [4] and LTE [18]. Quantitative compar-
ison results are shown in Table 1. Comparisons are con-
ducted for three aspects to comprehensively evaluate the
ASISR performances at various up-sampling scales, includ-
ing 1) integer scale SR results with ×2/3/4/6 settings; 2)
real-valued scale SR results with several sampled scales
(×1.6/2.4/3.1/3.65, etc.); and 3) large scale SR results for
out-of-distribution ability assessment (×6/6.75, etc.). Note
that all comparison ASISR models are based on one sin-
gle model protocol. For our method, we also report the re-

sults with model pre-training on ImageNet, as denoted by
“Ours†”. In the meantime, examples of resulting SR images
with different up-sampling scales on Urban100 are also il-
lustrated in Figure 5. We also upsample the same image at
different scales in Figure 6 to compare with LTE.

From Table 1, Figure 5 and Figure 6 , we make the fol-
lowing observations. First, our model outperforms SOTA
approaches at almost all scales (i.e., ×2, ×3, and ×4) on
all datasets, showing the superiority of our proposed scale-
equivariant model. Second, our method achieves a large
gap of 0.21dB compared with LTE on the urban100 dataset
at out-of-distribution scale ×6, proving the effectiveness of
our scale-equivariant upsampler. Third, as shown in Fig-
ure 6, our method shows clearer results under various cases,
which indicates that our method can effectively deal with
arbitrary real-valued scales. Fourth, for the same model,
pre-training on ImageNet brings extra performance gain.
This could be due to large image variations of the pre-
training data, providing an extensive training scale distribu-
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Figure 5. Visual comparison for arbitrary-scale SR models on Urban100 dataset. More results can be found in our Suppl.

GT ×1.7 ×2.65 ×4.2* ×5.7*

LTE

Ours

×3.5

Figure 6. Visual comparison for real-valued SR on the Urban100
dataset. We first downscale the HR image with ×r and then
upsample the results with the same scale. “*” indicates out-of-
distribution scales. Please enlarge the pdf for details.

tion coverage. From visualized results, we observe that our
EQSR has significant advantages in restoring patterns such
as repeated textures, edges of cross grids, and other high-
frequency dense details which are sensitive to scale changes
(for example, in Figure 5, the holes in the first row and the
floor tiles in the third row). However, previous methods of-
ten damage these repeated structures.

4.3. Analysis

We conduct ablation studies to validate the effects of our
proposed two major blocks (i.e., Adaptive Feature Extractor
and Neural Kriging Upsampler) and reveal their working
mechanisms.

The Effect of Neural Kriging Operator. To sup-
port the significance of each component, we first disable the
adaptive feature extractor and replace Neural Kriging with
Bicubic in the network as our baseline. We conduct two ex-
periments to test Neural Kriging Operator’s two branches:
Model A uses only data kernels, and Model B uses only

Table 2. Effects of different modules. We report quantitative re-
sults (PSNR) on Urban100 of various network designs for scales
×2/4/6. Note that “NK” is our Neural Kriging module, and “S-A
Conv” denotes Scale-Aware Convolution in ArbSR [33].

Model Config.
Urban100

×2 ×4 ×6
Baseline EQSR w/o NK/AFE 33.17 26.99 24.23

A Baseline+Kdata 33.34 26.93 24.35
B Baseline+Kscale 32.26 25.80 23.79
C Baseline+NK 33.54 27.26 24.63
D Model C+S-A Conv. 33.59 27.27 24.52
E Model C+AFE 33.62 27.30 24.66

scale kernels. As shown in Table 2, Model A outperforms
the baseline slightly, which demonstrates that the data ker-
nel is able to acquire prior knowledge for upsampling from
the training set. On the contrary, Model B’s performance
degrades significantly because Model B has scale kernels
that perceive scale information only; however, the vital fea-
tures extracted by the backbone are not effectively used.
Then we test Model C, which uses the whole Neural Krig-
ing as the upsampler. The results show that Model C out-
performs Model A by a large margin, especially at a higher
sampling rate ×6, where a gap of 0.28dB is observed.
These experiments show that our Neural Kriging effectively
perceives scale information and optimizes the results under
different sampling conditions.

The Effect of Adaptive Feature Extractor. To vali-
date the effect of our AFE, we enable Scale-Aware Convo-
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Figure 7. Analysis of equivariance. (a)Visual comparison of fea-
ture maps with different upsampling scales. (b) Visualizations of
scale-equivariance in EQS . We calculate the difference with re-
spect to ArbSR [33] for better comparison.

lution [33] and AFE based on Model C to obtain Model D
and Model E, respectively. As shown in Table 2, Model D
outperforms Model C at ×2 and ×4 with the help of Scale-
Aware Convolution, demonstrating that an adaptive back-
bone can extract more useful information pertinently. When
our AFE is added to Model B’s transformer group, the per-
formance continues to increase. Specifically, at the out-of-
distribution scale ×6, Model E achieves a gap of 0.14dB
compared with Model D, demonstrating that our proposed
AFE module plays an essential role in our model due to
its strong generalization ability. Also note that compared
with Scale-Aware Convolution, AFE has a more straight-
forward structure and significantly fewer parameters (only
about 25% of Scale-Aware Convolution). A detailed com-
parison can be found in our Suppl.

Analysis of Equivariance. To analyze the scale-
equivariance of our EQSR, the following two experiments
are performed. First, we visualize the extracted features
from the end of our model’s backbone with different scales
in Figure 7(a). Note that we calculate the feature maps in
mean and a brighter area indicates a stronger signal. It is
observed that feature intensity at edges increases with the
increase of scale, proving that our model is capable of ex-
tracting different scaled features adaptively.

We also make a quantitative analysis of the differ-
ent models’ equivariance measurement with our proposed
EQS . To make the comparison more obvious, we calculate
∆EQS(ϕ, r) = EQS(ϕ, r)−EQS(ArbSR, r) and the re-
sults are shown in Figure 7(b). It can be observed that with
the help of AFE and Neural Kriging, our model achieves
better equivariance at all the test scales. Specifically, when
upsampled with ×2 and ×5, our model outperforms others
with a large gap.

Plug-in Ability Demonstration. In addition to our
proposed architecture, our key modules AFE and Neural
Kriging can also be plugged into most mainstream super-
resolution networks to enhance their scale-equivariance

Table 3. Experiments on different backbone networks. “*” indi-
cates combining with our operators.

baseline
Set14 Urban100

×2 ×3 ×4 ×2 ×3 ×4
EDSR 33.95 30.53 28.81 32.95 28.82 26.65

EDSR* 34.06 30.59 28.89 33.10 28.86 26.73
SwinIR 34.14 30.77 28.94 33.40 29.29 27.07

SwinIR* 34.21 30.82 29.02 33.52 29.46 27.28

EDSR* SwinIR* Ours GT

Figure 8. Qualitative comparison on different backbone networks
for ×8 SR. “*” indicates combining with AFE and Neural Kriging.

ability. Table 3 shows qualitative comparisons with or
without our modules for mainstream SR models based on
EDSR [21] and SwinIR [20]. We note that models with
our operators have consistently achieved performance gain
when plugged into different SR models, demonstrating their
general ability to encourage scale-equivariance in feature
extraction and upsampling. Figure 8 also shows that the per-
formance has a positive correlation with the learning ability
of baseline networks, which means that with the develop-
ment of deep learning, our method can be further improved
in the future.

5. Conclusion
In this paper, we revisit the problem of arbitrary-scale

super-resolution from the perspective of equivariance. We
design an Adaptive Feature Extractor, which can be inserted
into most mainstream upsampling networks and enables the
model with equivariance. Meanwhile, we explore and de-
sign a Neural Kriging upsampling module, which can si-
multaneously perceive prior information from data and dis-
tance information from scale, and integrate both for equiv-
ariant upsampling. Combining above modules, we develop
a scale-equivariant ASISR model called EQSR which con-
sistently achieves significant improvements over previous
methods on integer, decimal, and out-of-distribution scales.
Extensive experiments have demonstrated the effectiveness
of our method.
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