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Abstract

Learning a generalizable and comprehensive similarity
metric to depict the semantic discrepancies between images
is the foundation of many computer vision tasks. While ex-
isting methods approach this goal by learning an ensemble
of embeddings with diverse objectives, the backbone net-
work still receives a mix of all the training signals. Differ-
ently, we propose a deep factorized metric learning (DFML)
method to factorize the training signal and employ different
samples to train various components of the backbone net-
work. We factorize the network to different sub-blocks and
devise a learnable router to adaptively allocate the training
samples to each sub-block with the objective to capture the
most information. The metric model trained by DFML cap-
ture different characteristics with different sub-blocks and
constitutes a generalizable metric when using all the sub-
blocks. The proposed DFML achieves state-of-the-art per-
formance on all three benchmarks for deep metric learn-
ing including CUB-200-2011, Cars196, and Stanford On-
line Products. We also generalize DFML to the image clas-
sification task on ImageNet-1K and observe consistent im-
provement in accuracy/computation trade-off. Specifically,
we improve the performance of ViT-B on ImageNet (+0.2%
accuracy) with less computation load (-24% FLOPs). 1

1. Introduction
Learning good representations for images has always

been the core of computer vision, yet measuring the sim-
ilarity between representations after obtaining them is an
equally important problem. Focusing on this, metric learn-
ing aims to learn a discriminative similarity metric un-
der which the interclass distances are large and the intra-
class distances are small. Using a properly learned simi-
larity metric can improve the performance of downstream
tasks and has been employed in many applications such

*Equal contribution.
†Corresponding author.
1Code is available at: https://github.com/wangck20/DFML.
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Figure 1. Comparisons between ensemble-based deep metric
learning methods and DFML. Ensemble-based DML learns an
ensemble of embeddings where diverse objectives are employed.
Differently, DFML factorizes the backbone and learns a certain
routine for each sample to achieve the diversity of features, which
further boosts the generalization ability of the model on unseen
classes. (Best viewed in color.)

as semantic instance segmentation [7, 21, 37], remote sens-
ing [5, 10, 31], and room layout estimation [77].

Modern metric learning methods [44, 55, 56, 78] usually
exploit deep neural networks to map an image to a single
embedding and use the Euclidean distance or cosine simi-
larity between embeddings to measure the similarity. As a
single embedding might not be able to fully characterize an
image, a number of methods [1, 43, 47, 49, 72, 79, 80] begin
to explore using an ensemble of embeddings to represent
an image, where each embedding describes one attribute
of the image. The key to ensemble-based methods lies in
how to enforce diversity in the ensemble of embeddings so
that they can capture more characteristics. They achieve
this by using a diversity loss [47, 49], selecting different
samples [53, 72, 80], and adopting various tasks [43, 79],
etc. Most existing methods adopt a shared backbone net-
work to extract a common feature and only apply a single
fully connected layer to obtain each specialized embedding.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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However, the shared backbone limits the diversity of the en-
semble and hinders its ability to capture more generalizable
features. It still receives a mix of all the training signals and
can hardly produce diverse embeddings.

To address this, we propose a deep factorized metric
learning (DFML) method to adaptively factorize the train-
ing signals to learn more generalizable features, as shown
in 1. We first factorize each block of the metric back-
bone model to a number of sub-blocks, where we make
the summed features of all the sub-blocks to be equal to
that of the full block. As different samples may possess
distinct characteristics [80], we devise a learnable router to
adaptively allocate the training samples to the correspond-
ing sub-blocks. We learn the router using a reconstruction
objective to encourage each sample to be processed by the
most consistent sub-block. We demonstrate the proposed
DFML framework is compatible with existing deep met-
ric learning methods with various loss functions and sam-
pling strategies and can be readily applied to them. Due to
the better modularity of vision transformers (ViTs) [15,61],
we mainly focus on factorizing ViTs and further bench-
mark various existing deep metric learning methods on
ViTs. Extensive experiments on the widely used CUB-200-
2011 [63], Cars196 [35], and Stanford Online Products [56]
datasets show consistent improvements of DFML over ex-
isting methods. We also provide an in-depth analysis of
the proposed DFML framework to verify its effectiveness.
Specifically, we show that backbone models trained by our
DFML achieve better accuracy/computation trade-off than
the original model on ImageNet-1K [52] and even improve
the performance of ViT-B (+0.2% accuracy) with less com-
putation load (-24% FLOPs).

2. Related Work
Deep Metric Learning: Deep metric learning meth-

ods focus on mapping an image to an effective embedding
space, in which we can measure the semantic distances
among samples. To achieve this, various methods devise
discriminative losses on the image embeddings and aim at
enlarging the interclass Euclidean distance while reducing
the intraclass Euclidean distance [4, 23, 55, 56, 59, 60, 65,
67,73]. For example, the widely used triplet loss [9,54,64]
imposes a constraint within a triplet that the distance be-
tween a negative pair should be larger than that between
a positive pair according to a margin. Proxy-based meth-
ods [33, 44, 51, 60] have attracted increasing attention in
recent years. Roth et al. proposed NIR to leverage Nor-
malizing Flows and enforce unique translatability of sam-
ples around respective proxies. Instead of random sam-
pling tuples in the training data, hard mining strategies to
select false positive tuples have been proven helpful for ef-
fective training [16,17,22,26,29,54,75]. For example, min-
ing hard but discriminative negative samples improves the

performance of the triplet loss and boosts the convergence
speed [26,29,54,75]. Additionally, a variety of methods ex-
plores other sampling strategies from different perspectives
to improve the training process [22, 39, 41, 44, 50, 58, 76].

Ensemble Learning: Conventional deep metric learn-
ing methods focus on producing discriminative represen-
tation resulting in poor generalizability. Since ensemble
learning is widely used in machine learning tasks, such as
reinforcement learning [3, 36, 69] and unsupervised learn-
ing [19,27,62], it is known that an elaborate combination of
several weak learners often performs better generalization
compared with the best single learner [25]. Additionally,
Breiman [2] advances that the diversity of the intermediate
outcomes in the ensemble is critical to the effectiveness of
the ensemble. Hence, recently proposed ensemble learning
methods combines diverse embeddings from several rela-
tively weak learners as the final representation for similarity
measure [34,43,46,53]. To encourage diversity, existing art
instantiates different learners by combining multi-level fea-
tures from different layers [75], adaptively selecting sam-
ples for different learners [53, 72, 80], or applying multiple
attention masks for different learners [34]. For example,
Zheng et al. [79] employed several learnable compositors
for different combination strategies and employed a self-
reinforced loss to enhance the compositor diversity.

Vision Transformers: After the transformer architec-
ture has shown great success in the natural language pro-
cessing field, Dosovitskiy et al. [15] first revealed that
a pure vision transformer (ViT) architecture can attain
comparable performance with state-of-the-art convolutional
neural networks (CNNs). Using alternating self-attention
layer and MLP layer instead of convolutions endows ViTs
with less inductive bias and more representation capacity.
The following improved variants [11, 24, 30, 38, 40, 42, 61,
66, 74] of vision transformer demonstrated even better ac-
curacy/FLOPs than the counterpart CNNs, further push-
ing the performance limit on several core computer vision
tasks such as image classification [11, 40, 61], object de-
tection [6, 12, 13, 81], and semantic segmentation [8, 57].
El-Nouby et al. [18] first introduced the transformer archi-
tecture to the image retrieval task and achieved state-of-the-
art results. However, they simply used the original ViT to
replace CNN as the backbone feature extractor. Differently,
we take advantage of the modularity of ViTs to perform fac-
torization for better generalization of the learned metric.

3. Proposed Approach
In this section, we first formulate the problem of existing

ensemble-based deep metric learning approaches and define
the factorization learning form. Then, we present our metric
factorization structure and the learnable router for factoriza-
tion learning. Lastly, we elaborate on the deep factorized
metric learning framework.
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3.1. Ensemble v.s. Factorization

Given an image set X = {x1,x2, ...,xN} and the corre-
sponding label set L = {l1, l2, ..., lN}, deep metric learning
extracts features from each image xi and obtains a trans-
formed embedding, denoted as yi = f(xi). The widely
adopted Euclidean distance metric is defined upon pairwise
samples, illustrated as follows:

D(xi,xj) = ||yi − yj ||2 = ||f(xi)− f(xj)||2, (1)

where || · ||2 is the L2 norm.
Generally, conventional deep metric learning methods

aim at enlarging distances between images from different
classes while pulling close positive samples, which ensures
the discrimination among classes:

Jdis(Y) = wpI(li, lj)D(xi,xj)−wn(1−I(li, lj))D(xi,xj),
(2)

where wp and wn are positive coefficients, I(li, lj) outputs
1 if li = lj and 0 otherwise.

Nevertheless, this strategy ignores the intraclass varia-
tions that images from the same class might encode simi-
lar characteristics, such as color and illumination. Further-
more, these characteristics might benefit the generalization
on unseen classes thus boosting testing performances. Un-
der such circumstances, ensemble-based deep metric learn-
ing approaches have been proposed to train an ensem-
ble of embeddings that encode diverse characteristics of
each image xi, denoted as {y1

i = h1(f(xi)), ...,y
M
i =

hM (f(xi))}. They employ different objectives on these
embeddings in addition to the overall objective on the com-
plete embedding, which can be formulated as follows:

Je(Y) = Jdis(Y) +

M∑
m=1

λmJm(Ym), (3)

where Jdis is the conventional deep metric learning loss
term, Jm denotes the mth objective, and λm balances dif-
ferent losses.

Although existing ensemble-based methods employ di-
verse objectives on these embeddings, the backbone net-
work f(·) receives mixed training signals as follows:

∂Je(Y)

∂θf
=

∂Jdis(Y)

∂Y
· ∂Y
∂θf

+

M∑
m=1

λm
∂Jm(Ym)

∂Ym
·∂Y

m

∂Y
· ∂Y
∂θf

,

(4)
where θf denotes the parameters of the backbone network.
Therefore, the backbone network learns to extract mixed
characteristics from the input images, which still limits the
generalization ability of the model.

Differently, we directly factorize the backbone network
as F = {f1(·), f2(·), ...} and each factorized network fi(·)

Js
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Figure 2. The learning process of DFML. We minimize the L2
norm of the complete output and the factorized output to optimize
the parameters of each router. (Best viewed in color.)

comprises several components of f(·). A non-linear map-
ping G : X → F from the image space X to the fac-
torized network space F determines which factorized net-
work an input image xi passes through. Therefore, the
corresponding factorized embedding of xi is denoted as
yf
i = G[xi](xi) on which the metric learning objective

is employed. Under such circumstances, we factorize the
training signal by employing different samples to train dis-
tinguished components of f(·) to extract more diverse char-
acteristics, which further boosts the generalization ability
of the learned model on unseen classes compared with the
ensemble-based approaches.

3.2. Metric Factorization

Metric factorization exploits different components of
the backbone network to obtain the corresponding em-
bedding for each sample, which is conducted by design-
ing the factorization pattern of the network and the map-
ping form of G. Specifically, supposing that the backbone
network f(·) is composed of multiple blocks, denoted as
{b1,b2, ...,bT }, we formulate the process of metric factor-
ization for the ith block as bi = {b1

i ,b
2
i , ...,b

K
i }. We re-

strict that each sub-block of bi has the same structure. Ad-
ditionally, the summation of the outputs of {bj

i}Kj=1 equals
the output of bi, which is formulated as follows:

bi(zi,n) =

K∑
j=1

bj
i (zi,n), (5)

where zi,n denotes the input for the ith block of xn. (5)
ensures the consistency of our proposed metric factorization
that we can still handle conventional deep metric learning
problems with our factorized network.

To encode more diverse characteristics from images, we
force G to choose one from {bj

i}Kj=1 in the ith block for
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Figure 3. The overall framework of the proposed DFML method. We factorize the MHSA and MLP blocks into multiple sub-blocks. Each
training sample will be passed through diverse sub-blocks chosen by the routers. The routines are distinguished with different colors. We
impose the discriminative deep metric learning loss on the factorized embeddings. (Best viewed in color.)

each input sample individually. To be specific, we as-
sume that G is a composition of K routers denoted as
G = {g1,g2, ...,gK}. Each router gi maps the input
feature zi to a certain sub-block in {bj

i}Kj=1, denoted as
gi : Z → Bi. Then zi,n will pass through the chosen sub-
block and serve as the input for the (i + 1)th block, which
is shown as follows:

bj
i = gi(zi,n), zi+1,n = bj

i (zi,n), (6)

where i = {1, 2, ..., T} (zi+1,n denotes the final output
when i = T ) and j = {1, 2, ...,K}.

Generally, the proposed metric factorization strategy is
capable of encoding K different characteristics from the in-
put samples in each block. Therefore, the whole network
possesses KT distinguished routines for images resulting
in relatively diverse feature encoding. In contrast, existing
ensemble-based deep metric learning approaches merely
encode no more than M characteristics and M ≪ KT ,
which demonstrates that the proposed metric factorization
strategy extracts more diverse information thus boosting the
generalization ability on unseen classes.

3.3. Learning to Factorize

We consider that the learning to factorize process needs
to guarantee both discrimination and significance of each
factorized embedding yf

i . Specifically, we hope that the
learned factorized embeddings satisfy the original deep
metric learning objective to be discriminative among classes
that positive pairs are pulled together while negative sam-
ples are pushed away. Therefore, we directly employ the
discriminative metric learning loss on these embeddings
Yf , which can be formulated as follows:

Jd(Y) = Jdis(Y
f ), (7)

where Jdis is the conventional deep metric learning loss
term similar to (3).

In addition, we deem that the factorized embeddings
should encode the most significant information from the in-
put images to take full advantage of the data. To achieve
this, we propose to devise learnable routers {gi}Ki=1 and
optimize these routers to select the dominant sub-blocks for
training samples. Each router gi contains a fully connected
layer with the softmax activation function employed on the
input feature zi,n to obtain the weighting score:

cki (zi,n) =
exp(wk

i
T
zi,n + bki )∑K

j=1 exp(w
j
i

T
zi,n + bji )

, (8)

where wi and bi are the learnable parameters of the fully
connected layer, cki denotes the kth component of the
weighting score.

The weighting score demonstrates the contribution of
each sub-block for zi,n. We force the k value correspond-
ing to the maximum {cki }Kk=1 to be the chosen sub-block
that extracts features from zi,n, formulated as follows:

j = argmax
k

cki (zi,n), zi+1,n = bj
i (zi,n), (9)

After that, we calculate the original output of bi, which
we define as the complete output of the ith block, denoted
as zci+1,n = bi(zi,n) and we employ a reconstruction ob-
jective by minimizing the L2 norm of two outputs as the
significance loss:

J i,n
s (Y) = ||zi+1,n − zci+1,n||2, (10)

where J i,n
s denotes the loss term corresponding to the ith

block and the nth input image, which forces the router gi to
choose the sub-block that extracts the characteristics closest
to the complete ones. Note that the significance loss only
optimizes the parameters of the learnable routers and thus
we detach the features before they are processed by each
router. The learning process is illustrated in Figure 2.
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Generally, the final objective of our proposed factoriza-
tion learning is as follows:

Jf (Y) = Jd(Y) + λs
1

N × T

N∑
n=1

T∑
i=1

J i,n
s (Y), (11)

where λs balances the effect of the significance loss.

3.4. Deep Factorized Metric Learning

We present the formulation of our DFML framework,
as illustrated in Figure 3. We adopt modern vision trans-
formers (ViTs) [15] as our backbone network, which are
composed of multiple spatial attention blocks and channel
processing blocks. Specifically, the attention blocks run H
self-attention (SA) operations and concatenate the outputs
for projection: (We ignore the Layernorm for simplicity.)

MHSA(z) = [SA1(z);SA2(z); ...;SAH(z)]Q, (12)

where z ∈ RW×D denotes the input feature, W is the
token number for per image, D is the channel dimension,
MHSA denotes the multi-head self-attention operation, H
is the head number, and Q ∈ RD×D is a projection matrix.

We conduct the metric factorization for MHSA by di-
viding the head into K copies and adjusting the dimension
of the projection matrix. Each sample will pass through a
chosen MHSA sub-block following (9). We formulate the
ith MHSA operation as follows: (i = 1, 2, ...,K)

MHSAi(z) = [SA(i−1)·HK +1(z); ...;SAi·HK
(z)]Qi, (13)

where Qi ∈ RD/K×D projects the features from the re-
duced dimension D

K to the original dimension D. Specially,
we force MHSA(z) =

∑K
i=1 MHSAi(z) following (5).

A channel processing block in ViTs utilizes an MLP
block with two fully connected layers {fc1, fc2} that first
projects the input feature z from D to r ×D and then from
r×D back to D, where r denotes the ratio of the hidden di-
mension: (We ignore the activation function for simplicity.)

MLP (z) = fc2(fc1(z)). (14)

Differently, we factorize the MLP block by constructing
K sub-blocks with the hidden dimension of r×D

K . The ith
sub-block is formulated as follows: (i = 1, 2, ...,K)

MLPi(z) = fc2i (fc
1
i (z)), (15)

where fc1i ∈ RD×(rD/K) and fc2i ∈ R(rD/K)×D. Simi-
larly, we ensure the consistency by restricting MLP (z) =∑K

i=1 MLPi(z).
In consequence, we set a series of routers in the spa-

tial attention blocks and the channel processing blocks to
choose a certain routine for each input image. The signifi-
cance loss in (10) optimizes the parameters of these routers

to focus on the most important sub-blocks. Note that we
employ a discriminative objective on the complete output
of the backbone network to further maintain the discrimina-
tion of the learned metric. The overall objective of DFML
can be formulated as follows:

J(Y) = Jdis(Y) + λfJf (Y), (16)

where λf balances the effect between the discriminative
loss and the factorization loss.

Our DFML framework is compatible with various loss
functions. For example, we can instantiate Jdis with the
widely adopted ProxyAnchor loss [33] as follows:

Jdis(Y)=
1

|P+|
∑

p∈P+

log(1+
∑
li=lp

e−α(s(yi,p)−δ))

+
1

|P|
∑
p∈P

log(1+
∑
li ̸=lp

eα(s(yi,p)+δ)),

(17)

where P is the set of all proxies, P+ denotes the set of the
positive proxies, | · | outputs the size of the set, s(yi,p)
computes the cosine similarity between yi and p, α and δ
are pre-defined hyper-parameters.

In addition, DFML can be applied to the image classifi-
cation task by adding a classifier head to the final embed-
ding to obtain the logits, denoted as ui = CLS(yi). Then
we utilize classification-based losses to optimize the train-
ing process. For instance, Jdis instantiated with the softmax
loss is as follows:

Jdis(Y) = − 1

N

N∑
i=1

log
eui,li∑
j e

ui,j
, (18)

where ui,j denotes the jth component of the logits.

4. Experiments
In this section, we evaluated DFML on the image re-

trieval task and generalizes to image classification as well.

4.1. Datasets

For image retrieval, we conducted various experiments
on three widely adopted benchmark datasets: CUB-200-
2011 [63], Cars196 [35], and Stanford Online Prod-
ucts [55]. The CUB-200-2011 dataset contains 11,788 im-
ages including 200 bird species. The first 100 classes with
5,864 images are used for training and the remaining 100
classes with 5,924 images are for testing. The Cars196
dataset comprises 196 car models of 16,185 images. The
training set contains the first 98 classes with 8,054 images
and the test set includes the rest 96 classes with 8,131 im-
ages. The Stanford Online Products dataset is composed
of 22,634 products of 120,053 images. The first 11,318
products with 59,551 images are for training the rest 11,316
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Table 1. Experimental results (%) on the CUB-200-2011, Cars196, and Stanford Online Products datasets compared with state-of-the-art
methods. * denotes our reproduced results under the same settings.

CUB-200-2011 Cars196 Stanford Online Products
Method Setting R@1 R@2 NMI M@R RP R@1 R@2 NMI M@R RP R@1 R@10 NMI M@R RP
SoftTriple [48] 512BN 65.4 76.4 69.3 - - 84.5 90.7 70.1 - - 78.3 90.3 92.0 - -
MIC [49] 128R 66.1 76.8 69.7 - - 82.6 89.1 68.4 - - 77.2 89.4 90.0 - -
RankMI [32] 128R 66.7 77.2 71.3 - - 83.3 89.8 69.4 - - 74.3 87.9 90.5 - -
CircleLoss [59] 512R 66.7 77.4 - - - 83.4 89.8 - - - 78.3 90.5 - - -
PADS [50] 128BN 67.3 78.0 69.9 - - 83.5 89.7 68.8 - - 76.5 89.0 89.9 - -
ProxyNCA++ [60] 512R 69.0 79.8 73.9 - - 86.5 92.5 73.8 - - 80.7 92.0 - - -
NIR [51] 512R 70.5 80.6 72.5 - - 89.1 93.4 75.0 - - 80.7 91.5 90.9 - -
Ensemble-based methods:
A-BIER [47] 512G 57.5 68.7 - - - 82.0 89.0 - - - 74.2 86.9 - - -
Ranked [68] 1536BN 61.3 72.7 66.1 - - 82.1 89.3 71.8 - - 79.8 91.3 90.4 - -
DREML [72] 9216R 63.9 75.0 67.8 - - 86.0 91.7 76.4 - - - - - - -
D & C [53] 128R 65.9 76.6 69.6 - - 84.6 90.7 70.3 - - 75.9 88.4 90.2 - -
DRML [80] 512BN 68.7 78.6 69.3 - - 86.9 92.1 72.1 - - 79.9 90.7 90.1 - -
DiVA [43] 512R 69.2 79.3 71.4 - - 87.6 92.9 72.2 - - 79.6 91.2 90.6 - -
IRTR [18] 384D-S 76.6 85.0 - - - - - - - - 84.2 93.7 - - -
ABE-8* [34] 384D-S 77.0 86.1 78.5 35.6 45.3 87.1 92.6 74.0 29.3 39.5 82.6 92.8 93.0 57.1 60.4
Hyp [20] 384D-S 77.8 86.6 - - - 86.4 92.2 - - - 83.3 93.5 - - -
DCML-PA* [79] 384D-S 78.4 86.4 78.6 36.1 46.1 87.8 92.8 74.1 30.0 39.8 83.4 93.4 93.7 58.8 61.5
Triplet-SH* [54] 384D-S 74.0 83.3 74.5 30.8 41.4 84.1 89.5 70.9 27.6 37.7 79.9 91.2 91.3 53.7 56.6
DFML-TSH 384D-S 75.8 84.2 76.9 33.8 44.4 85.2 91.2 72.2 29.3 39.1 81.6 92.4 92.3 55.5 58.2
N-Pair* [55] 384D-S 75.5 83.9 76.4 33.9 44.1 83.6 89.3 70.5 27.5 37.5 79.1 90.2 90.5 52.3 55.3
DFML-NP 384D-S 76.8 84.9 77.5 35.6 46.0 85.4 91.3 72.4 29.8 39.5 80.0 91.0 91.3 53.9 56.8
Margin-DW* [71] 384D-S 76.2 84.2 77.2 34.2 44.6 85.2 91.1 71.9 27.4 37.2 81.5 92.2 92.0 55.5 58.3
DFML-MDW 384D-S 77.4 85.4 78.8 35.6 45.5 86.1 92.1 72.9 29.8 39.7 82.3 92.8 92.5 56.8 59.8
ProxyNCA* [44] 384D-S 76.4 84.8 77.1 35.2 45.3 84.3 90.0 71.1 27.9 37.9 82.1 92.7 92.6 56.7 59.6
DFML-PN 384D-S 78.1 85.6 78.1 36.6 46.5 85.8 91.2 72.5 29.7 39.5 83.2 93.2 93.6 58.1 61.2
Contrastive* [28] 384D-S 76.4 84.7 77.4 34.5 44.4 86.0 91.9 72.8 28.4 38.4 82.3 93.0 92.7 56.7 59.8
DFML-Con 384D-S 77.2 85.2 77.9 35.8 46.0 87.2 92.6 73.9 29.6 39.3 83.1 93.2 93.5 58.9 61.0
ProxyAnchor* [33] 384D-S 77.5 85.7 79.0 35.7 45.8 87.7 92.9 74.1 29.9 39.6 82.7 93.1 93.1 58.0 60.9
DFML-PA 384D-S 79.1 86.8 80.2 37.5 47.3 89.5 93.9 76.8 31.0 40.6 84.2 93.8 94.1 59.7 62.6

products 60,502 images are for testing. For image classifi-
cation, we evaluated our DFML framework on ImageNet-
1K [52], which contains 1,000 categories of images. The
training set consists of 1,200,000 images and the test set
comprises 50,000 samples.

4.2. Implementation Details

We adopted the conventional deep metric learning set-
ting [55] to evaluate the proposed DFML framework. We
employed the ImageNet [52] pretrained DeiT-Small (D-
S) model provided by Timm [70] as the backbone, which
contains a knowledge distillation token for efficient train-
ing [61]. The parameters of the factorized sub-blocks were
loaded according to (13) and (15). We abandoned the last
classification head and fixed the embedding size to 384. Ab-
lation studies of other architectures are involved as well.
During training, we randomly cropped the training images
to 224 × 224 with a random horizontal flipping of 50%
probability. We set the batch size to 120 and adopted the
AdamW optimizer with a learning rate of 1e−4. The num-
ber of the sub-blocks K was set to 3 in the main exper-

iments. We fixed the hyper-parameters λs and λf to 1.0
and set the training epoch to 50. During testing, we re-
sized the images to 256×256 and then center-cropped them
to 224 × 224. Specifically, we utilized the complete out-
put of the backbone to conduct the evaluation process. We
provided various evaluation metrics [45, 55] including Re-
call@Ks, normalized mutual information (NMI), Mean Av-
erage Precision at R (M@R), and R-Precision (RP).

4.3. Results and Analysis

Comparisons with State-of-the-art Methods for Im-
age Retrieval. We compared our DFML framework with
state-of-the-art deep metric learning approaches for image
retrieval, including conventional deep metric learning meth-
ods and ensemble-based methods. To verify the effec-
tiveness of our framework, we applied DFML to various
loss functions and sampling strategies including the triplet
loss with semi-hard sampling (Triplet-SH) [54], the N-Pair
loss [55], the margin loss with distance-weighted sampling
(Margin-DW) [71], the ProxyNCA loss [44], the contrastive
loss [28], and the ProxyAnchor loss [33].
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Table 2. Effect of different numbers of sub-blocks.

CUB-200-2011 Cars196 SOP
Number R@1 M@R R@1 M@R R@1 M@R

1 77.5 35.7 87.7 29.9 82.7 58.0
2 78.8 37.3 89.4 31.0 84.3 59.7
3 79.1 37.5 89.5 31.0 84.2 59.7
6 78.4 37.0 89.2 30.6 84.0 59.6

Table 3. Ablation study of different loss functions.

CUB-200-2011 Cars196 SOP
Method R@1 M@R R@1 M@R R@1 M@R
DFML w/o Jdis 70.6 25.5 53.8 8.2 56.5 23.6
DFML w/o Jd 77.5 35.7 87.7 29.9 83.2 57.9
DFML w/o Jf 78.5 36.7 88.5 30.6 83.7 59.3
DFML-PA 79.1 37.5 89.5 31.0 84.2 59.7

Table 4. Experimental results of the soft gating mechanism.
CUB-200-2011 Cars196 SOP

Method R@1 M@R R@1 M@R R@1 M@R
ProxyAnchor 77.5 35.7 87.7 29.9 82.7 58.0
Soft-gating-PA 77.4 35.7 87.8 30.0 82.5 58.1
DFML-PA 79.1 37.5 89.5 31.0 84.2 59.7

The experimental results on three datasets are shown in
Table 1. The bold numbers indicate the improvement of
the proposed DFML framework compared with the base-
line methods. The best results and the second best results
are presented with red and blue colors, respectively. We ob-
serve that DFML achieves a constant performance boost to
existing methods on three datasets. In particular, DFML
performs the best when applied to the ProxyAnchor loss
and achieves the best results on all the datasets., surpassing
the original performance by 1.8% at Recall@1 and 2.7% at
NMI on the Cars196 dataset. This is because DFML fac-
torizes the backbone architecture and extracts more diverse
information from the training samples, thus improving the
generalization ability on unseen classes.

Number of Sub-blocks. The proposed DFML frame-
work divides each block in the vision transformer backbone
into K sub-blocks to conduct the metric factorization. We
analyzed the effect of the number of sub-blocks on three
datasets. We applied DFML to the ProxyAnchor loss on
DeiT-Small with the original attention head number of 6 and
the MLP hidden dimension of 1536. We used 1, 2, 3, and
6 as the number of sub-blocks, rendering the head number
of each MHSA sub-block to 6, 3, 2, 1 and the hidden di-
mension of each MLP sub-block to 1536, 768, 512, 256.
The experimental results are illustrated in Table 2. We ob-
serve that the performance generally improves as the num-
ber of sub-blocks rises and DFML achieves the best results
when K = 3 for the CUB-200-2011 and Cars196 datasets.
This demonstrates that increasing K essentially enhances
the generalization ability on unseen classes because more
routines are available. However, the results become worse
when K = 6, which means that the model might fail to
extract sufficient information from images when we further

Table 5. Effect of different backbone architectures. § denotes the
backbone pretrained on ImageNet-21K.

CUB-200-2011 Cars196
Method R@1 M@R R@1 M@R
BN (baseline) 68.5 27.2 86.2 29.8
DFML-BN 69.3 27.8 88.4 30.6
D-T (baseline) 72.2 31.0 82.4 24.6
DFML-D-T 73.1 31.7 83.1 25.5
D-S (baseline) 77.5 35.7 87.7 29.9
DFML-D-S 79.1 37.5 89.5 31.0
D-B (baseline) 80.2 39.3 90.3 34.7
DFML-D-B 81.2 39.9 91.4 36.3
V-T (baseline) 68.2 27.1 79.8 22.8
DFML-V-T 69.1 28.0 80.9 23.2
V-S (baseline) 73.8 31.1 85.5 27.9
DFML-V-S 75.9 32.8 86.4 28.7
V-B (baseline) 78.7 36.6 89.5 33.4
DFML-V-B 79.8 37.0 90.7 33.9
V-T (baseline) § 78.3 37.7 78.9 22.8
DFML-V-T § 79.1 39.5 79.4 23.1
V-S (baseline) § 85.7 50.2 87.3 31.6
DFML-V-S § 86.3 51.2 88.4 32.0
V-B (baseline) § 87.1 53.6 89.4 33.3
DFML-V-B § 87.8 54.0 90.5 34.5

Table 6. Experimental results (%) of the proposed DFML on the
ImageNet-1K dataset. † denotes that the metric factorization was
only applied to the MLP blocks.

Method Epoch #param FLOPs Top-1 Acc
V-S (baseline) 300 22M 4.6G 79.8
DFML-V-S 100 22M 2.4G (-48%) 79.0 (-0.8)
DFML-V-S 300 22M 2.4G (-48%) 79.3 (-0.5)
DFML-V-S† 100 22M 3.5G (-24%) 79.5 (-0.3)
DFML-V-S† 300 22M 3.5G (-24%) 79.8 (+0.0)
V-B (baseline) 300 86M 17.5G 81.8
DFML-V-B 100 86M 9.1G (-48%) 80.8 (-1.0)
DFML-V-B 300 86M 9.1G (-48%) 81.4 (-0.4)
DFML-V-B† 100 86M 13.3G (-24%) 81.6 (-0.2)
DFML-V-B† 300 86M 13.3G (-24%) 82.0 (+0.2)

compress the head number of the MHSA sub-block and the
hidden dimension of the MLP sub-block.

Ablation Study of Each Loss Function. We conducted
an ablation study of each loss function in the DFML frame-
work on three datasets. The results for comparison are pre-
sented in Table 3. We can see that combining all three
losses in the experiment achieves the most competitive per-
formance on both datasets, which indicates the effectiveness
of the adopted loss functions.

Ablation Study of the Gating Mechanism. We con-
ducted experiments to compare the effect of different gat-
ing mechanisms. Specifically, we introduced a soft gating
mechanism for all self-attention heads and FFN channels,
as shown in Table 4. We observe that simply using the soft
gating mechanism cannot improve the final performances.
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Figure 4. Sample ratio of each MHSA and MLP sub-block.

Effect of Different Backbone Architectures. We tested
the performance of DFML on different backbone architec-
tures. Specifically, we employed BN-Inception (BN), DeiT-
X and ViT-X (X=Tiny, Small, Base) as the backbone, re-
spectively. DeiT-X models are pretrained on the ImageNet-
1K [52] dataset with an extra token to distill knowledge
from teacher models. Differently, ViT-X models are pre-
trained without the distillation token but might be on the
larger ImageNet-21K [14] dataset. We instantiated DFML
with the ProxyAnchor loss for all the architectures. We
provided the results on the CUB-200-2011 and Cars196
datasets in Table 5. We can see that DFML constantly
improves the performance of the baseline models. Spe-
cially, we observe the best results on ViT-Base pretrained
on ImageNet-21K for CUB-200-2011 and on DeiT-Base for
Cars196, demonstrating the effectiveness of DFML.

Effectiveness of the Factorized Network. We also eval-
uated the effect of DFML on the learned backbone. We fol-
lowed mainstream methods of network architecture to con-
duct experiments on the ImageNet-1K [52] dataset. As they
usually adopt the accuracy/computation trade-off to mea-
sure the performance of a backbone network, we use the
factorized network for comparisons. The factorized net-
work can greatly reduce the inference computation (mea-
sured by floating-point operations per second, FLOPs) since
each token is only routed to only one sub-block at each
layer. As shown in Table 6, we observe that DFML can
effectively maintain the performance of the original net-
work with significantly less computation, demonstrating a
better trade-off. In particular, when only factoring the MLP
blocks, DFML even achieves +0.2 performance with 24%
fewer FLOPs. This further verifies the effectiveness of en-
forcing different sub-modules to focus on diverse features.

Diversity of the Factorized Network. The diversity of
the factorized network is essential to the generalization abil-
ity on unseen classes. We conducted experiments on CUB-
200-2011 and provided the sample ratio of each MHSA and
MLP sub-block, as shown in Figure 4, where the attention
blocks and the MLP blocks are staggered with different col-
ors. We fixed the number of sub-blocks for each MHSA and

Sub-block 1

Sub-block 2

Sub-block 3

Sub-block 1

Sub-block 2

Sub-block 3

(a)

(b)

Figure 5. Qualitative results of samples passing through the last
(a) MHSA block and (b) MLP block on the Cars196 dataset.

MLP block to 3 and calculated the percentage of samples
that were passed through each factorized sub-block. We
observe that different sub-blocks learn to process diverse
training samples and each sub-block is chosen by at least
a certain proportion of samples. This verifies that different
images are employed to update the parameters of various
components of the backbone, which indicates that DFML
encodes more diverse characteristics from the input images.

Qualitative Results. We qualitatively provided several
samples passing through the last MHSA block and MLP
block on the Cars196 dataset, as shown in Figure 5. We
observe that the last MHSA block tends to encode the pose
features of the cars. Differently, the final MLP block dis-
tinguishes the samples by their colors. This demonstrates
that DFML indeed extracts diverse characteristics from the
input images in addition to the class information.

5. Conclusion

In this paper, we have presented a deep factorized met-
ric learning framework to factorize the backbone network
and optimize the components of the network with different
training samples. We have factorized the network to vari-
ous sub-blocks and allocated the samples to each sub-block
chosen by learnable routers. We have applied discriminative
losses on the factorized output of the network and updated
the parameters of the routers with a reconstruction objec-
tive. We have performed experiments on four benchmark
datasets and demonstrated the effectiveness of DFML.
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data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357, 2021. 2, 6

[62] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar
Das, Bharat Kaul, and Theodore L Willke. Out-of-
distribution detection using an ensemble of self supervised
leave-out classifiers. In ECCV, pages 550–564, 2018. 2

[63] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge J Belongie. The Caltech-UCSD Birds-200-
2011 dataset. Technical Report CNS-TR-2011-001, Califor-
nia Institute of Technology, 2011. 2, 5

[64] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-
ing fine-grained image similarity with deep ranking. In
CVPR, pages 1386–1393, 2014. 2

[65] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing
Lin. Deep metric learning with angular loss. In ICCV, pages
2593–2601, 2017. 2

[66] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. 2021. 2

7681



[67] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In CVPR, pages 5022–
5030, 2019. 2

[68] Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu,
Romain Garnier, and Neil M Robertson. Ranked list loss
for deep metric learning. In CVPR, pages 5207–5216, 2019.
6

[69] Marco A Wiering and Hado Van Hasselt. Ensemble algo-
rithms in reinforcement learning. TSMC, 38(4):930–936,
2008. 2

[70] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 6

[71] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and
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