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Abstract

Deep hashing is an appealing approach for large-scale
image retrieval. Most existing supervised deep hashing
methods learn hash functions using pairwise or triple image
similarities in randomly sampled mini-batches. They suffer
from low training efficiency, insufficient coverage of data
distribution, and pair imbalance problems. Recently, cen-
tral similarity quantization (CSQ) attacks the above prob-
lems by using “hash centers” as a global similarity metric,
which encourages the hash codes of similar images to ap-
proach their common hash center and distance themselves
from other hash centers. Although achieving SOTA retrieval
performance, CSQ falls short of a worst-case guarantee on
the minimal distance between its constructed hash centers,
i.e. the hash centers can be arbitrarily close. This pa-
per presents an optimization method that finds hash cen-
ters with a constraint on the minimal distance between any
pair of hash centers, which is non-trivial due to the non-
convex nature of the problem. More importantly, we adopt
the Gilbert-Varshamov bound from coding theory, which
helps us to obtain a large minimal distance while ensuring
the empirical feasibility of our optimization approach. With
these clearly-separated hash centers, each is assigned to
one image class, we propose several effective loss functions
to train deep hashing networks. Extensive experiments on
three datasets for image retrieval demonstrate that the pro-
posed method achieves superior retrieval performance over
the state-of-the-art deep hashing methods.

1. Introduction

Hashing methods are widely-used in large-scale image
retrieval due to their excellent efficiency in both storage
and retrieval. Recently, much effort has been devoted to
deep-learning-based hashing (deep hashing) methods for
image retrieval. They use deep neural networks to learn
hash functions that encode similar/dissimilar images to
nearby/faraway binary codes, respectively. Most of the ex-
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isting deep hashing methods train models on pairwise/triple
similarities among training samples in randomly sampled
mini-batches (e.g., [1, 10, 18, 22, 24]). Very recently, Yuan
et al. [26] pointed out that these methods lead to restricted
performance due to three problems: low-efficiency to obtain
global similarity of the dataset, incomplete coverage of data
distribution that harms the discriminability of the generated
hash codes, and ineffectiveness on imbalanced amount of
similar/dissimilar data pairs. They then proposed central
similarities that finds mutually separated hash centers for
each class of similar images, and uses these centers to en-
sure small distances between the hash codes of similar im-
ages and large distances between those of dissimilar ones.

For deep hashing methods that use hash centers, it is cru-
cial to construct well-separated hash centers, i.e. the Ham-
ming distance between two hash centers should be signifi-
cantly larger than the Hamming distance between the hash
codes of two similar images, which makes it challenging
to generalize to various length of hash code and different
number of image classes. For instance, CSQ [26] adopts
Hadamard matrix and Bernoulli sampling to produce hash
centers with nice properties that any two centers’ Hamming
distance is on average half of the hash code length. How-
ever, pairs of hash centers constructed in this way can be
arbitrarily small in the worst case, i.e. zero in Hamming
distance (see Table 4). These degenerated hash centers are
expected to harm the retrieval performance.

To address this issue, we propose a novel deep hashing
method that uses an optimization procedure to produce hash
centers, with an additional constraint on a given minimal
distance d between any pair of hash centers. The value of d
is derived using the Gilbert-Varshamov bound [20] adopted
from coding theory, which help us to find a large d while
ensuring the feasibility of our optimization procedure.

As shown in Fig.1, the proposed method employs a two-
stage pipeline. In Stage 1, we tackle the optimization prob-
lem stated above to produce clearly-separated hash centers.
To solve this optimization problem, we propose an alternat-
ing optimization procedure that relies on the ℓp-box binary
optimization technique [23]. In Stage 2, we train a deep
hashing network by using the constructed hash centers as a
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Figure 1. The proposed method comprises of a two-stage pipeline. Stage 1 (left) employs a optimization procedure to produce hash centers
constrained by a minimal Hamming distance d between any pair of hash centers, each is assigned to one image class. d is given by the
Gilbert-Varshamov bound that guarantees the optimization’s feasibility. Stage 2 (right) employs a deep hashing network with three loss
functions. The first one brings the hash code of an image close to its corresponding hash center while keeping it distant from the other
centers. The second one draws similar data points within the same class even closer. The last one is to minimize quantization errors.

global similarity metric. Specifically, loss functions are de-
fined to make that (1) an input image’s hash code is close to
its class’s hash center but is distanced from other centers, (2)
the hash codes of images in the same class should be close
to each other, and (3) quantization errors are minimized.

The proposed method is assessed on three datasets for
image retrieval. The results indicate that the obtained hash
centers are always separated by the minimal distance we
derived, and the proposed method outperforms the state-of-
the-art deep hashing methods.

2. Related Work
This paper is built on the data efficient pointwise deep

hashing, which we improve by guaranteing a theoretical
minimal distance between hash centers and by showing em-
pirical performance gains.

Prior hashing methods for image retrieval [5,14,15] usu-
ally use hand-crafted visual features as image representa-
tions, which are followed by projection and/or quantization
to generate hash codes. In recent years, deep-learning-based
hashing (deep hashing) methods [1, 10, 18, 21, 22, 24] gain
popularity in generating more effective and compact bi-
nary representations. Deep hashing methods can be roughly
divided into pairwise methods, triplet-based methods and
pointwise methods.

Pairwise methods [2, 11, 13] learn hash functions by us-
ing pairwise similarities between data pairs while triplet
based methods [9,22] leverage relative similarities amongst
data triplets. However, both pairwise and triplet-based
methods can only capture partial similarity relationships
of data, which may suffer from the low training effi-
ciency, insufficient coverage of data distribution, and pos-
itive/negative pair imbalance problems [26].

Pointwise methods learn hash functions using the la-
bels of the data points as supervision. Pointwise methods
can be further divided into those assuming the availability
of class labels [12, 18, 25], and those deriving hash cen-
ters [3, 7, 26], where data points in the same semantic class
are assigned the same hash center. A key property of the lat-
ter is that the distances between any two hash centers should
be sufficiently large such that data points of distant semantic
class are clearly separable. DPN [3] proposes an optimiza-
tion algorithm to obtain hash centers. CSQ [26] produces
hash centers distanced on average by half of the hash-code
length, by using Hadamand matrix and Bernoulli sampling.
OrthoHash [7] employs a similar way to CSQ to get hash
centers and use them in a single objective. However, hash
centers derived in these methods can be arbitrarily close in
the worst-case.

Since the generated hash centers may degrade retrieval
performance, we propose an optimization approach that
guarantees a minimal distance between any pair of hash
centers. Specifically, we adopt the Gilbert-Varshamov
bound from coding theory, which helps us to obtain a large
minimal distance while ensuring the empirical feasibility of
our optimization approach.

3. The Proposed Approach
The goal of hash learning for images is to find a func-

tion M : X → {−1, 1}q that converts an image x ∈ X
to a hash code in {−1, 1}q with length q, so that similar
images have nearby hash codes but dissimilar images have
faraway codes. For deep hashing methods, M is usually im-
plemented by a deep network with a layer that outputs hash
codes.

The proposed deep hashing method employs a two-stage
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pipeline. In Stage 1, we develop an optimization procedure
to generate a set of hash centers with a constraint that, in
the worst case, the Hamming distance between any two cen-
ters is not less than a minimal distance d. More importantly,
we use the Gilbert-Varshamov bound [20] to determine a
large minimal distance d while ensuring the feasibility of
our optimization procedure. Each hash center is assigned to
one image class.

In Stage 2, we train a deep hashing network with three
loss functions: a loss towards hash centers to encourage the
hash code of an input image to be nearby the hash center
of its class but be far away from other centers, a loss for
similar images to encourage the hash codes of the images
in the same class to be mutually close, and a loss to reduce
quantization errors. In the following, we will illustrate both
stages, respectively.

3.1. Stage 1: Generate Hash Centers by Optimiza-
tion

In Stage 1, we develop an optimization procedure to find
a set of hash centers that are mutually separated at least by
a minimal distance d, where we adopt Gilbert-Varshamov
bound [20] to obtain a large d while ensuring the feasibility
of optimization. Each of these hash centers will be assigned
to an image class.

3.1.1 Optimization Objective

For images in c classes, we try to learn c hash centers
h1, h2, ..., hc, which aims to maximize the averaged dis-
tance between every two hash centers, and to enforce the
Hamming distance between any two centers not less than a
minimal distance d (see Section 3.1.3 for details of this min-
imal distance). The optimization objective is formulated as:

max
h1,...,hc∈{−1,1}q

1

c(c− 1)

∑
i

∑
j:j ̸=i

||hi − hj ||H

s.t. ||hi − hj ||H ≥ d (1 ≤ i, j ≤ c, i ̸= j),

(1)

where ||.||H is the Hamming distance, and d is the minimal
distance parameter.

Let ||.||2 be the ℓ2 norm. Since hi, hj ∈ {−1, 1}q , we
can verify that 4||hi−hj ||H = ||hi−hj ||22 = hT

i hi+hT
j hj−

2hT
i hj = 2q − 2hT

i hj , where q is the hash code length.
Hence, maximizing ||hi−hj ||H is equivalent to minimizing
hT
i hj , ||hi − hj ||H ≥ d is equivalent to hT

i hj ≤ q − 2d.
With these facts, the objective in Eq.(1) can be simplified to
its equivalent form:

min
h1,...,hc∈{−1,1}q

∑
i

∑
j:j ̸=i

hT
i hj

s.t. hT
i hj ≤ q − 2d (1 ≤ i, j ≤ c, i ̸= j).

(2)

3.1.2 Alternative Optimization Procedure

The optimization objective in Eq.(2) is a NP-hard problem
in general, due to the binary constraints h1, h2, ..., hc ∈
{−1, 1}q . We adopt a procedure that alternatively updates
one of the hash centers hi with other centers hj (1 ≤ j ≤
c, j ̸= i) being fixed.

By fixing all hj (j ̸= i), we formulate the subproblem
w.r.t. hi as:

min
hi∈{−1,1}q

∑
j:j ̸=i

hT
i hj

s.t. hT
i hj ≤ q − 2d (1 ≤ j ≤ c, j ̸= i).

(3)

We adopt the ℓp-box algorithm for binary optimiza-
tion [23] to solve the subproblem in Eq.(3).

Similarly to Proposition 1 in [23], the binary constraint
v ∈ {−1, 1}q is equivalent to v ∈ [−1, 1]q

⋂
{v : ||v||pp =

q}. For simplicity, we set p = 2.
With this fact, we can drop the binary constraint and re-

formulate Eq.(3) to the following equivalent form:

min
hi,v1,v2

∑
j:j ̸=i

hT
i hj

s.t. hT
i hj ≤ q − 2d (1 ≤ j ≤ c, j ̸= i)

hi = v1, hi = v2, v1 ∈ Vbox, v2 ∈ Vsph,

(4)

where Vbox = {v : −1q < v < 1q}, Vsph = {v : ||v||22 =
q}, 1q represents a q-dimensional vector whose elements
are all ones.

By introducing an auxiliary variable v3, the inequal-
ity constraints hT

i hj ≤ q − 2d can be replaced by an
equality constraint hT

i H∼i + v3 = (q − 2d)1c−1 with
a simple range constraint v3 ∈ Rc−1

+ , where H∼i =
[h1, ..., hi−1, hi+1, ..., hc] represents a matrix that consists
of hj(1 ≤ j ≤ c, j ̸= i), Rc−1

+ = {v : v ∈ [0,+∞)
c−1}.

The problem in Eq.(4) can be further reformulated as:

min
hi,v1,v2,v3

∑
j:j ̸=i

hT
i hj

s.t. hT
i H∼i + v3 = (q − 2d)1c−1, v3 ∈ Rc−1

+ ,

hi = v1, hi = v2, v1 ∈ Vbox, v2 ∈ Vsph.

(5)

The augmented Lagrange function w.r.t. Eq.(5) is:

L(hi, v1, v2, v3, k1, k2, k3) =
∑
j ̸=i

hT
i hj + kT1 (hi − v1)+

µ

2
||hi − v1||22 + kT2 (hi − v2) +

µ

2
||hi − v2||22

+ kT3 (h
T
i H∼i + v3 − e) +

µ

2
||hT

i H∼i + v3 − e||22

s.t. v1 ∈ Vbox, v2 ∈ Vsph, v3 ∈ Rc−1
+ ,

(6)
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Algorithm 1 Optimization Procedure to Generate Hash Centers
Initialize: initialize h1, ..., hc by Hadamard matrix and Bernoulli sam-
pling [26]. ρ = 1.02,maxµ = 1010, ϵ = 10−6, T = 50.
For t = 1,2,...,T

For i=1,2, . . . , c
Set v1, v2, v3, k1, k2, k3 to be zero vectors. Set µ = 10−6.
Repeat

Update hi via Eq.(7).
Update v1, v2, v3 via Eq.(10).
Update k1, k2, k3 via Eq.(11).
Update µ by µ← min(ρµ,maxµ).

Until max(||hi− v1||∞, ||hi− v2||∞, ||hT
i H∼i + v3− e||∞) ≤ ϵ.

End For
T ← T + 1.

End For
Output: hi (i = 1, 2, ...c)

where e = (q − 2d)1c−1, and k1, k2, k3 are Lagrange mul-
tipliers.

Next we will present the update rules for each of the vari-
ables hi, v1, v2, v3 respectively, by minimizing L in Eq.(6)
with other variables being fixed.
Update hi By fixing other variables except hi, the subprob-
lem of L in Eq.(6) w.r.t. hi is an unconstrained objective.
The gradient of L w.r.t. hi is

∂L(hi)

∂hi
=2µhi + µH∼iH

T
∼ihi +

∑
j ̸=i

hj + k1 + k2 +H∼ik3

− µ(v1 + v2 +H∼ie−H∼iv3).

By setting this gradient to zeros, we can update hi by

hi ←(2µIq + µH∼iH
T
∼i)

−1(µ(v1 + v2 +H∼ie−H∼iv3)

−
∑
j ̸=i

hj − k1 − k2 −H∼ik3).

(7)
Update v1, v2, v3 The subproblem of L in Eq.(6) w.r.t. v1,
v2, v3 are

L(v1) = kT1 (hi − v1) +
µ||hi − v1||22

2
s.t.v1 ∈ Vbox

L(v2) = kT2 (hi − v2) +
µ||hi − v2||22

2
s.t.v2 ∈ Vsph

L(v3) =kT3 (h
T
i H∼i + v3 − e) +

µ

2
||hT

i H∼i + v3 − e||22
s.t.v3 ∈ Rc−1

+

(8)

By setting the gradients to zeros, we obtain the update rules
for v1, v2 and v3.

v1 ← PVbox
(hi +

k1
µ
)

v2 ← PVsph
(hi +

k2
µ
)

v3 ← PRc−1
+

(e− hT
i H∼i −

k3
µ
)

(9)

Note that we need to project v1, v2, v3 onto Vbox, Vsph and
Rc−1

+ , respectively. Following [23], all of these projections
have closed form solutions:



v1 ← max(−1,min(1, hi +
k1
µ
))

v2 ←
√
q

hi +
k2

µ

||hi +
k2

µ ||2
v3 ← max(0, e− hT

i H∼i −
k3
µ
)

(10)

Update k1, k2, k3 The Lagrange multipliers k1, k2 and k3
can be updated by

kt1 = kt−1
1 + µ(hi − v1)

kt2 = kt−1
2 + µ(hi − v2)

kt3 = kt−1
3 + µ(hi

TH∼i + v3 − e)

(11)

The sketch of the proposed optimization procedure is shown
in Algorithm 1.

3.1.3 Deriving the minimal distance d

For the objective in Eq.(1), we need to set the minimal dis-
tance parameter d so that, for any two centers hi, hj (i ̸= j),
the Hamming distance ||hi − hj ||H is not less than d. We
need a large d to make the hash centers to be far from
each other. But d cannot be too large to ensure the fea-
sibility of the minimal distance constraint in Eq.(1). Here
we determine a large d by adopting the Gilbert-Varshamov
bound [20] from coding theory.

Specifically, for c q-bit binary codes hi ∈ {−1, 1}q (1 ≤
i ≤ c), the Hamming distance of any two codes is at least d,
the Gilbert-Varshamov bound establishes that, there exist c
q-bit codes that the minimal Hamming distance of any two
codes is d, as long as c, q and d satisfy

2q

c
≤

d−1∑
i=0

(
q
i

)
(12)

To generate c q-bit hash centers, as long as we set a d
satisfying Eq.(12), the Gilbert-Varshamov bound ensures
the feasibility of the minimal distance constraint in Eq.(1).
Hence, to obtain a large d, we only need the maximum of d
satisfying Eq.(12). The function f(d) =

∑d
i=0

(
q
i

)
is mono-

tonically increasing w.r.t. d. Hence, let d⋆ be the maximum
of d satisfying Eq.(12), we have

{
2q

c ≤
∑d⋆−1

i=0

(
q
i

)
2q

c >
∑d⋆−2

i=0

(
q
i

) (13)

Since d⋆ is an integer in {1, 2, ..., q}, we can find it easily
by exhaustive search.
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Table 1. The values of the minimal distance parameter d for differ-
ent hash code lengths, on three datasets used in our experiments.

dataset 16bits 32bits 64bits
ImageNet (100 classes) 4 10 24

Stanford CARs (196 classes) 4 10 23
NABirds (555 classes) 3 9 21

We set d = d⋆ as the minimal distance parameter in
Eq.(1). Table 1 shows the values of the minimal distance
parameter d that are derived from Eq.(13), with different
code lengths on three datasets used in our experiments.

3.2. Stage 2: Train a Deep Hashing Network

With the obtained hash centers as supervised informa-
tion, we train a deep hashing network which can convert
input images to hash codes. As shown in Fig. 1, this deep
network consists of three blocks.

The first block is a ResNet-50 [6] backbone, which con-
sists of stacked convolution layers to capture the feature rep-
resentation of an input image.

The second block is a hash code layer implemented by a
fully-connected layer with TanH activations, which converts
image features to an approximate hash-code vector with all
elements restricted to the range [−1,+1]. In prediction, we
use simple quantization to convert this approximate hash
code to a binary code.

The third block consists of three loss functions. With the
hash centers obtained from Stage 1, the first loss function is
designed to make the hash code of an image to be close to
the hash center of its class, but simultaneously be far from
the hash centers of other classes. The second loss function
is a pairwise loss that makes a pair of images in the same
class have nearby hash codes. The third loss function is to
reduce quantization errors. Next we will illustrate these loss
functions, respectively.

3.2.1 Loss towards Hash Centers

After obtaining c hash centers, we assign one center to one
of the c image classes. We develop a loss function that
makes an image’s output (approximate) hash code to be
nearby to the center that is assigned to the class of this im-
age, and to be faraway from other hash centers. Specifically,
given c hash centers h1, h2, ..., hc, N image I1, I2, ..., IN
whose output hash codes are b1, b2, ..., bN , respectively, the
loss function towards hash centers is defined by

LC = − 1

N

N∑
j=1

c∑
i=1

yj,i logPj,i + (1− yj,i) log(1− Pj,i)

(14)

Figure 2. An illustrative example to show that, for a similar image
pair whose hash codes are close towards the same hash center, the
distance between their hash codes may be varying, e.g., the dis-
tance between the two hash codes in (a) is larger than that between
the two hash codes in (b).

with

Pj,i =
exp[−S(bj , hi)]∑c

m=1 exp[−S(bj , hm)]
, (15)

where we define S(x, y) as a metric of similarities between
x and y, yj,i is an indicator that yj,i = 1 if the image Ij
belongs to the i-th class whose hash center is hi, otherwise
yj,i = 0. Following the existing hashing methods [4, 7], we
use the scaled cosine similarity as the similarity metric, so
Pj,i in Eq.(15) can be reformulated as:

Pj,i =
exp[
√
q cos(bj , hi)]∑c

m=1 exp[
√
q cos(bj , hm)]

, (16)

where we define cos(x, y) = xT y
||x||2||y||2 as the cosine simi-

larities between x and y, q is the length of hash codes.

3.2.2 Loss for Similar Pairs of the Same Hash Center

Consider images Ix and Iy whose hash codes are bx and by
respectively, Ix and Iy belong to the same class that is as-
signed a hash center h. The loss function towards hash cen-
ters in Eq.(14) makes that bx and by to be close to the hash
center h. Suppose both bx and by are close to h, however,
the distance between bx and by may be diverse depending
on their relative position. Fig.2 shows an illustrative exam-
ple. In both Fig.2(a) and Fig.2(b), bx and by have the same
small distance to h. However, the distance between bx and
by in Fig.2(a) is much larger than that in Fig.2(b).

Inspired by the above observation, we develop a loss to
make the Hamming distance of the similar images’ hash
codes to be small. This loss is defined by

LP = −
∑

Ix,Iy are similar

log
1

1 + eD(bx,by)
(17)

where D(x, y) is the distance metric of x and y. Eq.(17)
uses the negative log likelihood function to make the dis-
tance D(bx, by) as small as possible.

Note that for two binary codes h1, h2 ∈ {−1, 1}q ,
we have the scaled Hamming distance 1

q ||h1 − h2||H =
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Table 2. Comparison results of retrieval performance w.r.t. MAP on three datasets

Methods ImageNet(mAP@1000) NABirds(mAP@All) Stanford Cars(mAP@All)
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DSH [13] 0.7179 0.7448 0.7585 0.0820 0.1011 0.2030 0.2153 0.3124 0.4309
DPSH [11] 0.6241 0.7626 0.7992 0.1171 0.1855 0.2811 0.1764 0.2949 0.4132
HashNet [2] 0.6024 0.7158 0.8071 0.0825 0.1439 0.2359 0.2637 0.3611 0.4845
DTSH [22] 0.6606 0.7580 0.8120 0.1307 0.1410 0.2218 0.4251 0.5461 0.6553

GreedyHash [18] 0.7394 0.7977 0.8243 0.3519 0.5350 0.6177 0.7312 0.8271 0.8432
DPN [3] 0.7987 0.8298 0.8394 0.6151 0.6928 0.7244 0.7287 0.8214 0.8488
CSQ [26] 0.8377 0.8750 0.8836 0.6183 0.7210 0.7491 0.7435 0.8392 0.8634

OrthoHash [7] 0.8540 0.8792 0.8936 0.6366 0.7243 0.7544 0.8012 0.8490 0.8676
Ours 0.8639 0.8863 0.9019 0.6977 0.7417 0.7619 0.8579 0.8731 0.8814

q−hT
1 h2

2q . Since bi and bj are continuous vectors that
cannot be used in calculating Hamming distance, we set
D(bx, by) =

q−bTi bj
2q as an approximation of the scaled

Hamming distance. Hence Eq.(17) can be simplified as

LP =
∑

Ix,Iy are similar

log(1 + e
q−bTx by

2q ) (18)

3.2.3 Quantization loss

In the proposed network, the output hash code is continuous
because the hash code layer is implemented by a fully con-
nected layer with tanh activations. To reduce quantization
errors, similarly to the existing methods (e.g, [27]), we use
a loss with bi-modal Laplacian prior, which is defined as:

LQ =

N∑
i=1

||||bi||1 − 1||1, (19)

where ||.||1 is the ℓ1 norm, 1 is the vector with all ones.

3.2.4 Combination of Loss Functions

We combine the three loss functions to form the optimiza-
tion objective used in the proposed deep hashing network.

L = LC + λ1LP + λ2LQ (20)

where λ1, λ2 are trade-off hyper-parameters.

4. Experiments
4.1. Experiment Settings

We conduct experiments on three datasets for image re-
trieval, ImageNet [17], NABirds [19] and Stanford Cars [8].
Each dataset has hundred(s) of image classes. Follow-
ing the settings in [2, 26], the ImageNet dataset contains

143,495 images in 100 classes, where we use 10,000 im-
ages for training (100 images from each of the 100 classes),
5,000 query images for test, and the remains as the retrieval
database. The Stanford Cars dataset contains 16,185 im-
ages in 196 classes. The NABirds dataset contains 48,562
images in 555 classes. On NABirds/Stanford Cars, we use
the official train set as the training images and the retrieval
database, the official test set as the test queries for retrieval.

To evaluate the retrieval performance, we use two
widely-used metrics: Mean Average Precision (MAP) and
Precision-Recall curves. Since ImageNet has a large-size
retrieval database, following [26], we use MAP@1000 as
the MAP metric on ImageNet. On NABirds and Stanford
Cars, we use MAP@ALL as the MAP metric.

We compare the performance of the proposed method
with eight deep hashing baselines, including three state-
of-the-art pointwise methods that use hash centers (Ortho-
Hash [7], CSQ [26], DPN [3]), and five other deep hash-
ing methods (Greedy Hash [18], DTSH [22], HashNet [2],
DPSH [11], DSH [13]). For fair comparison, all of these
methods use the ResNet50 pre-trained model as backbones.

4.2. Implementation Details

The proposed deep network is implemented with Py-
torch [16] on a server with GeForce RTX 3090 Ti GPUs.
In all experiments, our deep hashing network are optimized
by RMSProp and the mini-batch size of images is 64. For
each dataset, we randomly split the training images into to
a validation set with 20% images and a training set with the
rest 80% images. Then we train models with the training set
and determine λ1, λ2 used in Eq.20 by the validation set. Fi-
nally, we train the final models by using all of the training
images and the obtained λ1 and λ2. After training the deep
hashing network, the hash code of an image is computed
by sign(b), where b is the image’s output approximate hash
code of the deep hashing network.
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Table 3. Comparison results w.r.t. MAP for different combinations of loss functions

ImageNet Stanford CAR NABirds
LC LP LQ 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

! ! ! 0.8639 0.8863 0.9019 0.8579 0.8731 0.8814 0.6977 0.7417 0.7619
! ! 0.8561 0.8852 0.8984 0.8221 0.8587 0.8742 0.6810 0.7299 0.7552
! ! 0.8601 0.8858 0.8995 0.8451 0.8672 0.8752 0.6937 0.7372 0.7573
! 0.8558 0.8839 0.8977 0.8182 0.8578 0.8750 0.6715 0.7266 0.7548

CSQ-Lc 0.8457 0.8830 0.8922 0.7888 0.8467 0.8677 0.6351 0.7050 0.7480

(a) 16bits (b) 32bits (c) 64bits

Figure 3. Comparison results w.r.t. Precision-Recall curves on ImageNet

(a) 16bits (b) 32bits (c) 64bits

Figure 4. Comparison results w.r.t. Precision-Recall curves on Stanford Cars

(a) 16bits (b) 32bits (c) 64bits

Figure 5. Comparison results w.r.t. Precision-Recall curves on NABirds

4.3. Results of Retrieval Accuracies

Table 2 displays the Mean Average Precision (MAP)
for retrieval performance on three datasets. The proposed
method outperforms the baseline methods on all of these
datasets. To illustrate, the MAP results of the proposed
method demonstrate a relative increase of 1.0% ∼ 9.6% /
1.6% ∼ 7.1% / 0.9% ∼1.2% on NABirds / Stanford Cars

/ ImageNet, respectively, when compared to the best base-
line. Fig.3, Fig.4 and Fig.5 show the retrieval performance
w.r.t. Precision-Recall curves on three datasets, in which we
can see that the proposed method outperforms all the base-
lines on three datasets. The proposed approach yields sig-
nificant improvements in scenarios with a high number of
image classes and short hash codes. To illustrate, the pro-
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Table 4. Comparison results of mean Hamming distance over all
pairs of hash centers and minimum Hamming distance between
any two hash centers, for different ways to generate hash centers

Datasets Methods 16bits 32bits 64bits
min mean min mean min mean

ImageNet baseline 2 8.04 6 16.11 32 32.23
ours 4 8.08 10 16.16 32 32.23

Stanford Cars baseline 0 8.01 6 16.03 16 32.10
ours 4 8.05 10 16.09 23 32.16

NABirds baseline 0 7.98 4 15.98 14 32.01
ours 3 8.01 9 16.03 21 32.06

Table 5. Comparison results w.r.t. MAP for different ways to gen-
erate hash centers

datasets methods 16bits 32bit 64bits

ImageNet baseline 0.8535 0.8844 0.9019
ours 0.8639 0.8863 0.9019

Stanford Cars baseline 0.7977 0.8665 0.8759
ours 0.8579 0.873 0.8814

NABirds baseline 0.6544 0.7321 0.7545
ours 0.6977 0.7417 0.7619

posed method displays a relative improvement of 9.6% and
7.1% compared to the best baseline for NABirds with 555
classes and Stanford Cars with 196 classes, respectively,
when 16-bit codes are used.

4.4. Ablation Studies

4.4.1 Effectiveness of Hash Centers

Our primary contribution is the proposed optimization pro-
cedure to produce hash centers mutually separated by a
worst-case guaranteed minimal distance, being avoid of
badly separated hash centers with arbitrary small distance.
To assess the effectiveness of these centers, a two-stage
baseline is implemented. In Stage 1, hash centers are pro-
duced by Hadamand matrix and Bernoulli sampling (as
in [26]). In Stage 2, a deep hashing network was trained
with these centers using the same settings as the proposed
method. The sole distinction between the baseline and the
proposed method is the method of producing hash centers.

Table 4 presents the comparison results of the averaged
Hamming distance across all pairs of hash centers and the
minimum Hamming distance between any two hash cen-
ters, for the hash centers generated by the baseline or the
proposed method, respectively. Three observations can be
made from Table 4. (1) In all cases, the minimal dis-
tances obtained by the proposed method meet the derived
values of d that are set before optimization (see Table 1),
indicating the empirical success of our optimization ap-
proach. (2) In most cases, the minimal distances of the
baseline are smaller than those of the proposed method, in-

dicating some hash centers generated by the baseline are
not separated well, e.g., 0 distances with 16-bit codes on
NABirds/Stanford Cars. (3) In both methods, the mean dis-
tances over all hash center pairs are similar and close to a
half of code lengths.

Table 5 demonstrates a clear superiority of the proposed
method over the baseline on all datasets. These results, in
conjunction with Table 4, validate that our optimization ap-
proach for obtaining hash centers with a guaranteed mini-
mal distance, even under worst-case scenarios, can enhance
the retrieval performance. For example, in Table 4, for 16-
bit codes on NABirds and Stanford Cars, some hash centers
generated by the baseline are not separated well because the
minimal distances are 0, while the hash centers generated by
the proposed method are separated by a minimal distance 4
(Stanford Cars) and 3 (NABirds). Simultaneously we ob-
serve that, in Table 5, the proposed method makes large im-
provements over the baseline with 16-bit codes, i.e., 6.6%
on NABrids and 7.5% on Stanford Cars.

4.4.2 Effectiveness of Loss Functions

To investigate the individual improvements made by the loss
functions, in the proposed deep network, we assess several
combinations of the loss LC towards hash centers, LP for
similar image pairs and LQ for quantization.

Table 3 presents the MAP results for four methods, each
utilizing identical hash centers and network architecture.
CSQ-Lc utilizes the loss Lc for hash centers proposed in
CSQ [26]. The rest methods use different combinations of
the losses LC , LP and LQ of the proposed method. Table 3
reveals two observations: (1) The method with the proposed
loss LC outperforms the baseline CSQ-Lc, which uses a re-
lated loss for hash centers, thereby validating the effective-
ness of LC . (2) The loss LP which is designed for similar
image pairs, also enhances the retrieval performance.

5. Conclusions

This paper presents an optimization approach for pro-
ducing hash centers mutually separated with a guaranteed
minimal distance, using the Gilbert-Varshamov bound to
obtain a large distance while maintaining optimization
feasibility. With these centers, we propose effective loss
functions to train deep hashing networks. Empirical
evaluations for image retrieval show that the proposed
method outperforms the state-of-the-art methods.
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