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Abstract

In this paper, we formally address universal object de-
tection, which aims to detect every scene and predict ev-
ery category. The dependence on human annotations, the
limited visual information, and the novel categories in the
open world severely restrict the universality of traditional
detectors. We propose UniDetector, a universal object de-
tector that has the ability to recognize enormous categories
in the open world. The critical points for the universal-
ity of UniDetector are: 1) it leverages images of multi-
ple sources and heterogeneous label spaces for training
through the alignment of image and text spaces, which guar-
antees sufficient information for universal representations.
2) it generalizes to the open world easily while keeping the
balance between seen and unseen classes, thanks to abun-
dant information from both vision and language modali-
ties. 3) it further promotes the generalization ability to
novel categories through our proposed decoupling train-
ing manner and probability calibration. These contribu-
tions allow UniDetector to detect over 7k categories, the
largest measurable category size so far, with only about
500 classes participating in training. Our UniDetector be-
haves the strong zero-shot generalization ability on large-
vocabulary datasets - it surpasses the traditional supervised
baselines by more than 4% on average without seeing any
corresponding images. On 13 public detection datasets with
various scenes, UniDetector also achieves state-of-the-art
performance with only a 3% amount of training data. 1

1. Introduction
Universal object detection aims to detect everything in

every scene. Although existing object detectors [18, 31, 42,

*corresponding author
1Codes are available at https://github.com/zhenyuw16/UniDetector.
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Figure 1. Illustration for the universal object detector. It aims to
detect every category in every scene and should have the ability to
utilize images of multiple sources with heterogeneous label spaces
for training and generalize to the open world for inference.

43] have made remarkable progress, they heavily rely on
large-scale benchmark datasets [12, 32]. However, object
detection varies in categories and scenes (i.e., domains).
In the open world, where significant difference exists com-
pared to existing images and unseen classes appear, one has
to reconstruct the dataset again to guarantee the success of
object detectors, which severely restricts their open-world
generalization ability. In comparison, even a child can gen-
eralize well rapidly in new environments. As a result, uni-
versality becomes the main gap between AI and humans.
Once trained, a universal object detector can directly work
in unknown situations without any further re-training, thus
significantly approaching the goal of making object detec-
tion systems as intelligent as humans.

A universal object detector should have the following
two abilities. First, it should utilize images of multiple
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sources and heterogeneous label spaces for training. Large-
scale collaborative training in classification and localization
is required to guarantee that the detector can gain sufficient
information for generalization. Ideal large-scale learning
needs to contain diversified types of images as many as pos-
sible with high-quality bounding box annotations and large
category vocabularies. However, restricted by human anno-
tators, this cannot be achieved. In practice, unlike small vo-
cabulary datasets [12,32], large vocabulary datasets [17,23]
tend to be noisily annotated, sometimes even with the incon-
sistency problem. In contrast, specialized datasets [8,55,70]
only focus on some particular categories. To cover ade-
quate categories and scenes, the detector needs to learn from
all the above images, from multiple sources with heteroge-
neous label spaces, so that it can learn comprehensive and
complete knowledge for universality. Second, it should gen-
eralize to the open world well. Especially for novel classes
that are not annotated during training, the detector can still
predict the category tags without performance degradation.
However, pure visual information cannot achieve the pur-
pose since complete visual learning demands human anno-
tations for fully-supervised learning.

In this paper, we formally address the task of univer-
sal object detection. To realize the above two abilities of
the universal object detector, two corresponding challenges
should be solved. The first one is about training with multi-
source images. Images collected from different sources are
associated with heterogeneous label spaces. Existing detec-
tors are only able to predict classes from one label space,
and the dataset-specific taxonomy and annotation inconsis-
tency among datasets make it hard to unify multiple het-
erogeneous label spaces. The second one is about novel
category discrimination. Motivated by the recent success
of image-text pre-training [20, 39, 58], we leverage their
pre-trained models with language embeddings for recogniz-
ing unseen categories. However, fully-supervised training
makes the detector focus on categories that appear during
training. At the inference time, the model will be biased to-
wards base classes and produce under-confident predictions
for novel classes. Although language embeddings make it
possible to predict novel classes, the performance of them
is still far less than that of base categories.

We propose UniDetector, a universal object detection
framework, to address the above two problems. With the
help of the language space, we first investigate possible
structures to train the detector with heterogeneous label
spaces and discover that the partitioned structure promotes
feature sharing and avoids label conflict simultaneously.
Next, to exploit the generalization ability to novel classes
of the region proposal stage, we decouple the proposal gen-
eration stage and RoI classification stage instead of training
them jointly. Such a training paradigm well leverages their
characteristics and thus benefits the universality of the de-

tector. Under the decoupling manner, we further present
a class-agnostic localization network (CLN) for producing
generalized region proposals. Finally, we propose probabil-
ity calibration to de-bias the predictions. We estimate the
prior probability of all categories, then adjust the predicted
category distribution according to the prior probability. The
calibration well improves the performance of novel classes.

Our main contributions can be summarized as follows:
• We propose UniDetector, a universal detection frame-

work that empowers us to utilize images of heteroge-
neous label spaces and generalize to the open world.
To the best of our knowledge, this is the first work to
formally address universal object detection.

• Considering the difference of generalization ability in
recognizing novel classes, we propose to decouple the
training of proposal generation and RoI classification
to fully explore the category-sensitive characteristics.

• We propose to calibrate the produced probability,
which balances the predicted category distribution and
raises the self-confidence of novel categories.

Extensive experiments demonstrate the strong universal-
ity of UniDetector. It recognizes the most measurable cat-
egories. Without seeing any image from the training set,
our UniDetector achieves a 4% higher AP on existing large-
vocabulary datasets than fully-supervised methods. Besides
the open-world task, our UniDetector achieves state-of-the-
art results in the closed world - 49.3% AP on COCO with a
pure CNN model, ResNet50, and the 1× schedule.

2. Related Work

Object detection aims to predict category tags and bound-
ing box coordinates of each object within an image. Exist-
ing methods can be generally divided into two-stage and
one-stage methods. Two-stage detectors mainly include
RCNN [15] and its variants [4, 14, 18, 43]. They usually
extract a series of region proposals first, then perform clas-
sification and regression. In comparison, one-stage detec-
tors [31, 33, 42] directly generate classification results for
the anchors. Different from these methods, models such
as [26, 50, 61, 67] are anchor-free for object detection. Re-
cently, transformer-based methods [5,10,27,60,71] also de-
velop rapidly. However, most of these methods can only
work in the closed world.

Open-vocabulary object detection. Traditional object de-
tection can only detect categories that appear at the train-
ing time. In universal object detection, categories that
need to be detected cannot be known in advance. For
this purpose, zero-shot object detection [1, 40, 68, 69] is
proposed and aims to generalize from seen to unseen cat-
egories. However, their performance is still far behind
fully-supervised methods. Based on these researches, open-
vocabulary object detection [57] forwards the task. By in-
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Figure 2. Overview of UniDetector. It consists of three steps. With the image-text pre-training parameters, UniDetector is trained with
images of different sources with multiple label spaces. In this way, it can directly detect in the open world for inference. ’V’ denotes
the module to process visual information, and ’L’ denotes the language encoder. The first stage conducts image-text pre-training to align
the two spaces, the second stage trains with images of heterogeneous label spaces in the decoupling manner, and the third stage applies
probability calibration to maintain the balance.

volving image-text aligned training, the unbounded vocabu-
laries from the texts benefit the generalization ability of the
model for detecting novel categories. With the development
of large-scale image-text pre-training works [20,39,58], re-
cent methods [11, 13, 16, 37, 63] have considered adopting
such pre-trained parameters in open-vocabulary detection,
and boosting the performance and category vocabulary to
a large extent. Despite their success, existing methods still
target at transferring within a single dataset. Besides, their
seen categories are usually more than unseen categories.
Their generalization ability is thus restricted.

Multi-dataset object detection training. Previous object
detection methods focus on only one single dataset. Since
only one dataset is involved in training, both the dataset
scale and vocabulary are limited. Recently, training on mul-
tiple datasets [3, 46] has been used to boost the model’s ro-
bustness and expand the detector’s vocabulary size. The
difficulty of multi-dataset training for object detection is to
utilize multiple heterogeneous label spaces. For this pur-
pose, [62] leverages pseudo labels to unify different label
spaces, [53, 66] adopt a partitioned structure, and [36] uti-
lizes language embeddings. However, these methods still
focus on detecting in the closed world. Different from them,
we target generalizing in the open world.

3. Preliminary
Given an image I , object detection aims to predict its

label y = {(bi, ci)}mi=1, which consists of bounding box
coordinates bi and category label ci. We are usually given a
single dataset Dtrain = {(I1, y1), ..., (In, yn)} and the goal
is to inference on the test dataset Dtest.

Traditional object detection can only work in the closed
world, where images are restricted to a single dataset. The
dataset has its own label space L. Each object category ci

from either Dtrain or Dtest belongs to the same predefined
label space (i.e. class vocabulary) L.

In this work, we propose a brand new object detection
task, which focuses on the universality of detectors. At the
training time, we utilize images from multiple sources. That
is, images of heterogeneous label spaces L1, L2, ...Ln. At
the inference time, the detector predicts class labels from a
new label space Ltest, which is provided by the users.

The advances in traditional object detection cannot be
trivially adapted to our universal detection task. The main
reason is that there exist novel categories at the inference
time: Lnovel = Ltest\

⋃n
i=1 Li. Techniques in traditional

object detection benefit base categories Lbase =
⋃n

i=1 Li

but may hurt novel categories. The core issue of our work
is therefore how to utilize images of heterogeneous label
spaces, and how to generalize to novel categories.

4. The UniDetector Framework
We propose the UniDetector framework to address the

universal object detection task, which is illustrated in Fig.
2. The basic process consists of three steps.

Step1: Large-scale image-text aligned pre-training. Tra-
ditional fully-supervised learning with only visual informa-
tion relies on human annotations, which restricts the univer-
sality. Considering the generalization ability of language
features, we introduce language embeddings to assist de-
tection. Inspired by the recent success of language-image
pre-training, we involve the embeddings from a pre-trained
image-text model [20, 39, 58, 63]. We adopt RegionCLIP
[63] pre-trained parameters for our experiments.

Step2: Heterogeneous label space training. Unlike tra-
ditional object detection, which concentrates on a single
dataset with the same label space, we collect images from
different sources with heterogeneous label spaces to train
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Figure 3. Possible structures to utilize images from heterogeneous label spaces for training. The above boxes denote the structure for
training, and the below boxes denote the inference process. All the classification head here adopts the similarity between the region features
and language embeddings. The separate structure trains individual networks and ensembles them for inference, the unified structure unifies
the multiple datasets into one dataset, and the partitioned structure shares the same backbone but different classification heads.

the detector. The various training images are necessary for
the detector’s universality. Meanwhile, we adopt the de-
coupling manner during the training process instead of the
previous joint training.

Step3: Open-world inference. With the trained object de-
tector and the language embeddings from the test vocabu-
lary, we can perform detection in the open world directly
for inference without any finetuning. However, since novel
categories do not appear during training, the detector is easy
to generate under-confident predictions. We propose prob-
ability calibration to keep the inference balanced between
base categories and novel categories in this step.

4.1. Heterogeneous Label Space Training

Existing object detectors can only learn from images
with one label space because of their single classification
layer. To train with heterogeneous label spaces and ob-
tain sufficiently diversified information for universality, we
present three possible model structures, as shown in Fig. 3.

One possible structure is to train with separate label
spaces. As in Fig. 3a, we train multiple models on every
single dataset (i.e., label space). With new language embed-
dings at the inference time, each single model can perform
inference on the test data. These individual test results can
be combined to obtain the ultimate detection boxes. An-
other structure is to unify multiple label spaces into one
label space, as in Fig. 3b. Then we can treat these data
the same as before. Since images are treated as if they are
from one single dataset, they can be processed with tech-
niques like Mosaic [2] or Mixup [59] to boost information
integration among different label spaces. With the help of
language embeddings for classification, we can also use the
partitioned structure in Fig. 3c, where images of multiple
sources share the same feature extractor but have their own
classification layer. At the inference time, we can directly
use the class embedding of test labels to avoid label conflict.

We then need to consider the data sampler and the loss
function. When the data turn large-scale, an unavoidable
problem is their long-tailed distribution [23, 25, 45]. Sam-

plers like the class-aware sampler (CAS) [38] and the repeat
factor sampler (RFS) [17] are helpful strategies for multi-
dataset detection in the closed world [66]. However, the
open-world performance is unaffected. The reason is that
the core issue here is about novel classes. With language
embeddings, the adverse effect of the long-tailed problem
becomes negligible. We thus adopt the random sampler.

Likewise, loss functions like equalized loss [48, 49] and
seesaw loss [52] influence universal object detection little.
Instead, the sigmoid-based loss is more suitable since the
classification of base and novel categories will not interfere
with each other under the sigmoid function. To avoid an
excessive value of sigmoid-based classification loss when
the number of categories increases, we randomly sample a
certain number of categories as negative ones.

Decoupling proposal generation and RoI classification.
A two-stage object detector consists of a visual backbone
encoder, a RPN and a RoI classification module. Given an
image I from the dataset D with the label space L, the net-
work can be summarized as: {zij}|L|

j=1 = ΦRoI ◦ ΦRPN ◦
Φbackbone, pij = 1/(1 + exp(−zTijej/τ)), j ∈ L, where
pij is the probability of the i-th region for the category j,
{zij}|L|

j=1 denotes the logit outputs from the RoI head, and
ej is the language embedding of the category j.

The region proposal generation stage and the RoI clas-
sification stage act differently when it comes to universal
detection. The proposal generation stage maintains satisfy-
ing universality ability since its class-agnostic classification
can be easily extended to novel classes. In contrast, the
class-specific RoI classification stage cannot even work for
novel categories. Even with language embeddings, it is still
biased to base classes. The distinct properties affect their
joint training since the sensitivity of the classification stage
to novel classes hampers the universality ability of the pro-
posal generation stage. Consequently, we decouple these
two stages and train them separately to avoid such conflict.

Specifically, the region proposal generation stage is ini-
tialized with traditional ImageNet pre-trained parameters
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Figure 4. Illustration of class-agnostic localization network.
The localization confidence and class-agnostic classification con-
tribute together to generating proposals for universal detection.

and trained in a class-agnostic way. After training, it pro-
duces a series of region proposals. With the generated pro-
posals, the RoI classification stage is trained in the Fast
RCNN [14] manner. This stage is initialized with image-
text pre-trained parameters for predicting unseen categories.
These two kinds of pre-trained parameters also contain
complementary features, which provide more comprehen-
sive information for universal object detection.

Class-agnostic localization network. To produce gener-
alized proposals in the open world, we present the class-
agnostic localization network (CLN), as illustrated in Fig.
4. Instead of a single RPN module, our CLN contains both
the RPN and the RoI head to generate proposals for uni-
versal object detection. Such kind of network promotes
box refinement during proposal generation. We mainly
adopt localization-based objectness for object discovery
since localization-related metric tends to be robust to novel
objects in the open world [21]. In the RoI head, based on
the localization confidence, we also keep the binary class-
agnostic classification because it provides strong supervised
signals to the network training. For the i-th proposal, denot-
ing its localization confidence from the RPN as sr1i , from
the RoI head as sr2i , and its classification confidence as
sci , the ultimate confidence from our CLN can be obtained
through geometric weighting: ηi = (sci )

α · (sr1i sr2i )(1−α),
where α is a pre-defined hyperparameter.

4.2. Open-world Inference

With the language embeddings of the test vocabulary
Ltest, our trained detector can directly perform inference in
the open world. However, since only base categories appear
during training, the trained detector will be biased toward
base categories. As a result, boxes of base categories in de-
tection results tend to have a larger confidence score than
novel categories, thus predominating in the inference pro-
cess. Considering the huge number of novel categories, the
over-confidence of base classes will easily make the detec-
tor ignore novel category instances of a larger number and
hurt the detector’s performance in the open world.

To avoid the bias issue, we propose probability calibra-
tion for post-processing the predictions. The purpose of cal-

ibration is to decrease the probability of base categories and
increase that of novel categories, thus balancing the ulti-
mate probability prediction. The probability calibration is
illustrated as follows:

pij =
1

1 + exp(−zTijej/τ)
/πγ

j , j ∈ Ltest (1)

Our probability calibration is mainly about dividing the
original probability with a prior probability πj of the cat-
egory j. The prior probability πj records the bias of the
network to category j. γ is a pre-defined hyperparameter.
A larger πj indicates that the model is more biased toward
the category. After calibration, its probability turns smaller,
which contributes to the probability balance. We can con-
duct inference on the test data first and use the number of
categories within the results to obtain πj . If the number of
test images is too small to estimate the accurate prior prob-
ability, we can also use the training images to calculate πj .

pij from Eq. 1 reflects the class-specific prediction for
the i-th region proposal. Considering the open world gen-
eralization ability of the class-agnostic task, we multiply
pij with its objectness score ηi from CLN for the detec-
tion score. After further introducing a hyper-parameter β,
the final detection score is sij = pβijη

(1−β)
i .

5. Experiments
To demonstrate the universality of our UniDetector, we

conduct experiments and evaluate our UniDetector in the
open world, in the traditional closed world and in the wild.
Its superior performance under various conditions well il-
lustrate its universality.
Datasets. To simulate images of multiple sources and het-
erogeneous label spaces, we adopt three popular object de-
tection datasets for training the detector: COCO [32], Ob-
jects365 [45], and OpenImages [25]. COCO contains dense
and high-quality annotations from human labor on 80 com-
mon classes. Objects365 is larger-scale and contains 365
classes. OpenImages consists of more images and 500 cat-
egories, and many annotations are sparse and dirty. Due to
the large scale of these datasets, we randomly sample 35k,
60k, and 78k images from them respectively for training.
Without specification, we all use the selected subset.

We mainly perform inference on the LVIS [17], Ima-
geNetBoxes [24], and VisualGenome [23] datasets to eval-
uate the detector’s open-world performance. Considering
their large category numbers, these datasets can simulate
the open-world environment to some extent. LVIS v0.5
consists of 1,230 categories, and LVIS v1 contains 1,203
categories, with 5,000 images and 19,809 images for the
validation set, respectively. ImageNetBoxes contains over
3,000 categories. We random sample 20,000 images from
the dataset for evaluation. To compare with the supervised

11437



Table 1. The performance of UniDetector in the open world. We evaluate it on LVIS, ImageNetBoxes and VisualGenome. S, U, P
denote treating heterogeneous label spaces as separate spaces, a unified one or a partitioned one. The Faster RCNN (closed world) row is
from the traditional supervised Faster RCNN C4 baseline trained on the corresponding dataset with the same random data sampler. We
select 35k, 60k, 78k images from COCO, Objects365 and OpenImages respectively for training.

Training data Structure LVIS v0.5 (1,230) LVIS v1 (1,203) ImageNetBoxes (3,622) VisualGenome (7,605)
AP APr APc APf AP APr APc APf AP AP50 Loc. Acc AR1 AR10 AR100

Faster RCNN (closed world) 17.7 1.9 16.5 25.4 16.2 0.9 13.1 26.4 3.9 6.1 15.3 3.5 4.3 4.3
COCO - 16.4 18.7 17.1 14.5 13.7 13.5 13.6 13.9 4.8 6.8 8.3 4.3 5.9 5.9
O365 - 20.2 21.3 20.2 19.8 16.8 14.7 16.2 18.3 3.8 5.5 8.4 5.4 7.3 7.3
OImg - 16.8 21.8 17.6 13.8 13.9 14.7 14.2 13.2 7.9 10.8 16.0 5.9 8.1 8.2

COCO + O365 S 21.0 22.2 21.8 19.4 17.5 16.0 17.2 18.4 4.5 6.5 8.9 6.2 8.5 8.6
COCO + O365 U 20.9 19.6 21.0 21.3 17.6 14.6 17.0 19.6 3.6 5.1 8.0 5.3 7.1 7.2

COCO + O365 (+mosaic) U 21.4 22.3 21.5 21.0 16.8 13.5 16.2 18.9 3.6 5.1 7.7 5.0 6.8 6.9
COCO + O365 (+pseudo [62]) U 20.8 22.5 22.7 19.7 16.6 13.4 16.1 18.7 3.6 5.1 7.6 5.0 6.6 6.7

COCO + O365 P 22.2 23.7 22.5 21.2 18.2 15.5 17.6 20.1 4.7 6.6 10.1 5.9 8.0 8.1
COCO + OImg P 19.9 22.1 20.7 17.9 16.8 16.0 16.8 17.1 6.9 9.5 14.7 5.7 7.7 7.8

COCO + O365 + OImg P 23.5 23.6 24.3 22.4 19.8 18.0 19.2 21.2 8.2 11.4 16.9 6.5 8.7 8.8

closed world baseline, we sample 90,000 images as the
training set. The most recent version of the VisualGenome
dataset contains 7,605 categories. However, since a large
number of its annotations come from machines, the annota-
tions are pretty noisy. We select 5,000 images that do not
appear in the training images for inference.
Evaluation metrics. We mainly adopt the standard box AP
for evaluating the performance. For the LVIS dataset, we
also evaluate the performance on its rare, common and fre-
quent categories separately, denoted as APr, APc, and APf .
For the ImageNetBoxes dataset, since most of the images
within it are object-centric, besides the AP and AP50 met-
rics, we also adopt the top-1 localization accuracy (denoted
as Loc. Acc.) from the ImageNet challenge [44] to eval-
uate the object-centric classification ability of the detector.
For the VisualGenome dataset, considering the noise and in-
consistency of its annotations, we adopt the Average Recall
(AR) metric for evaluation.
Implementation details. We implement our method with
mmdetection [7]. Without otherwise specified, we choose
ResNet50-C4 [19] based Faster RCNN [43] as our detec-
tor, initialized with RegionCLIP [63] pre-trained parame-
ters. All the models are trained in the 1× schedule, which
is 12 epochs. For hyperparameters, τ is set to 0.01, γ is set
to 0.6, and α, β are set to 0.3 both.

5.1. Object Detection in the Open World

We list the open-world results of UniDetector in Tab. 1.
For comparison, we conduct supervised closed-world ex-
periments with the same Faster RCNN C4 structure and the
random data sampler. On the LVIS v0.5 dataset, the tradi-
tional supervised detector obtains the 17.7% AP. In com-
parison, our UniDetector with only 35k COCO images ob-
tains the 16.4% AP. With only 60k Objects365 images, it
obtains 20.2% AP. With significantly fewer images and an-
notated categories, the detection AP is even higher. The
effectiveness of our UniDetector is demonstrated: it can

achieve comparable or even better performance compared
to the corresponding closed-world detector, while the re-
quired training budget is less. Another noticeable result is
that the traditional closed-world detector suffers from the
long-tailed problem - APr is only 1.9% compared to the
25.4% APf . In comparison, the APr and APf from our de-
tector are significantly more balanced. This illustrates that
UniDetector also greatly alleviates the long-tailed effect.

We then analyze the effects of different structures on the
COCO and Objects365 datasets. We use WBF [47] to en-
semble two detectors for the separate label spaces. Images
of different sources cannot interact during training under
this structure, which restricts the feature extraction ability.
For the unified space, the inconsistency labels of different
datasets lead to a serious missing annotation problem. Al-
though we adopt pseudo labels according to [62] and boost
the image fusion through mosaic, the open-world AP is still
not improved. In contrast, with the partitioned structure, all
kinds of images train the backbone together, thus promoting
feature extraction. In the classification time, the partitioned
label space mitigates the label conflict. Therefore, the par-
titioned structure performs the best among them.

With the partitioned structure, COCO and Objects365
joint training achieves the 22.2% AP, higher than the sin-
gle results of 16.4% and 20.2%. We also notice that Open-
Images single training obtains the 16.8% LVIS AP, only
slightly higher than COCO and even lower than Objects365.
Considering the more images and categories within it, the
limited performance can be attributed to its noisy annota-
tions. However, if we further add OpenImages images to
COCO and Objects365, the LVIS v0.5 AP can be improved
to 23.5%. At this time, COCO and Objects365 images
have high-quality annotations, while OpenImages provides
more categories but noisy annotations. Images from mul-
tiple sources cooperate and bring various information, thus
contributing to better open-world performance. This is the
most significant superiority of training with heterogeneous
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Table 2. The performance of UniDetector in the closed world.
The models are trained on COCO train2017 set with the 1× sched-
ule (12 epochs), ResNet50 backbone and evaluated on COCO
val2017. §: the method uses extra images and more epochs.

Model AP AP50 APS APM APL

transformer-based models
DETR (DC5) [5] 15.5 29.4 4.3 15.1 26.7

Dynamic DETR [9] 42.9 61.0 24.6 44.9 54.4
DN-Deformable-DETR [27] 43.4 61.9 24.8 46.8 59.4

DINO [60] 49.0 66.6 32.0 52.3 63.0
CNN-based models

Faster RCNN (FPN) [30, 43] 37.9 58.8 22.4 41.1 49.1
DenseCLIP [41] 40.2 63.2 26.3 44.2 51.0

HTC [6] 42.3 61.1 23.7 45.6 56.3
Dyhead [9] 43.0 60.7 24.7 46.4 53.9

R(Det)2 + Cascade [29] 42.5 61.0 24.6 45.5 57.0
Softteacher § [54] 44.5 - - - -
UniDetector (ours) 49.3 67.5 33.3 53.1 63.6

label spaces to universal object detection. A similar trend
of results is also observed for LVIS v1.

We further evaluate our UniDetector on ImageNetBoxes
and VisualGenome datasets. These two datasets contain
more categories, thus better simulating the open-world en-
vironment. Our UniDetector keeps an excellent open-world
generalization ability. On the ImageNetBoxes dataset, it ob-
tains the 8.2% AP, surpassing the 3.9% AP from traditional
detectors with comparable training images. It is also worth
mentioning that the domain gap between the ImageNet-
Boxes dataset and COCO-style datasets is relatively large,
since ImageNetBoxes images are mainly object-centric. In
this situation, our UniDetector still generalizes well, which
validates the universality of our UniDetector. On the Visu-
alGenome dataset, where category numbers are more than
7,000, our UniDetector also obtains a higher detection re-
sult compared to the traditional Faster RCNN. The most sig-
nificant improvement comes from the AR100 metric, which
is more than 4%. Through this experiment, the category
recognition ability of our UniDetector is revealed.

5.2. Object Detection in the Closed World

A universal object detection model should not only gen-
eralize well to the open world, but also keep its superior-
ity in the closed world that has been seen during training.
We thus train our UniDetector using only images from the
COCO training set and evaluate it on the COCO 2017 val-
idation set. We compare our results with existing state-of-
the-art closed-world detection models and present the detec-
tion AP in Tab. 2. In this subsection, we utilize R(Det)2 [29]
with the cascade structure [4] for our detector. For our CLN,
we introduce the Dyhead [9] structure, and focal loss [31]
for classification. AdamW [22, 34] optimizer is adopted,
with 0.00002 for the initial learning rate.

With the ResNet50 backbone and the 1× schedule, our
UniDetector obtains the 49.3% AP with a pure CNN-based

Table 3. Zero-shot performance on 13 ODinW datasets.
Model #Data Datasets Avg. AP

GLIP-T (A) [28] 0.66M Objects365 28.8
GLIP-T (B) 0.66M Objects365 33.2
GLIP-T (C) 1.46M Objects365, GoldG 44.4

GLIP-T 5.46M Objects365, GoldG, Cap4M 46.5
UniDetector (ours) 173k subset of COCO, Objects365, OpenImages 47.3

Table 4. Comparison with existing open-vocabulary detection
methods on the COCO dataset.

Model novel base all
OVR-CNN [57] 22.8 46.0 39.9

HierKD [35] 20.3 51.3 43.2
ViLD [16] 27.6 59.5 51.3

RegionCLIP [63] 31.4 57.1 50.4
OV-DETR [56] 29.4 61.0 52.7
PromptDet [13] 26.6 - 50.6

Detic [64] 27.8 47.1 45.0
UniDetector (ours) 35.2 56.8 51.2

structure. We surpass the Dyhead [9], the state-of-the-art
CNN detector by 6.3% AP. Compared to Softteacher [54],
a semi-supervised model that utilizes additional images and
trains with more epochs, our UniDetector also achieves a
4.8% higher AP. Compared to recent transformer-based de-
tectors, the performance superiority is also obvious. The
results show that our UniDetector not only generalizes well
in the open world, but also holds effectiveness in the closed
world. The superiority on both the open world and closed
world strongly confirms the universality of our UniDetector.

5.3. Object Detection in the Wild

To further demonstrate the ability of our UniDetector to
detect everything in every scene, we follow [28] to con-
duct experiments on 13 ODinW datasets. These datasets
cover various domains, such as airdrone, underwater, ther-
mal, thus also with a diversity of categories. Such prop-
erty makes it suitable to measure the universality of a de-
tector. We list the average AP on these 13 datasets in
Tab. 3. Compared to GLIP-T, whose backbone (Swin-Tiny)
requires a little more budget than ours (ResNet50), our
method achieves a higher average AP (47.3% v.s. 46.5%).
In comparison, our method only utilizes 3% amount of data
of GLIP-T. This experiment corroborates the universality of
UniDetector and illustrates its excellent data efficiency.

5.4. Comparison with Open-vocabulary Methods

We conduct experiments on the settings of existing open-
vocabulary works for a fair comparison with them to fur-
ther show the effectiveness of our UniDetector, Specifically,
the COCO dataset and the LVIS v1 dataset are splitted in
the 48/17 and 866/337 way separately for base and novel
classes. For the LVIS experiment, we adopt the same Cen-
terNet2 [65] structure and image-level annotated images as
Detic [64] for detection learning, and Dyhead [9] for pro-
posal generation. The box and mask AP on novel and base
classes is listed in Tab. 4 and Tab. 5
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Table 5. Comparison with existing open-vocabulary detection
methods on the LVIS v1 dataset. For LVIS based training, Detic
and our method use LVIS base images and image-level annotated
images from ImageNet. For unrestricted open-vocabulary training,
we only use 10% amount of images from Objects365.

Model Data APb
r APb APm

r APm

LVIS based training
ViLD [16] LVIS base 16.7 27.8 16.6 25.5

RegionCLIP [63] LVIS base 17.1 28.2 - -
DetPro [11] LVIS base 20.8 28.4 19.8 25.9

OV-DETR [56] LVIS base - - 17.3 26.6
PromptDet [13] LVIS base 21.8 27.3 21.4 25.3

Detic [64] LVIS base + IN-L 26.7 36.2 24.9 32.4
UniDetector (ours) LVIS base + IN-L 29.3 36.8 26.5 32.5

Unrestricted open-vocabulary training
GLIP, Swin-T [28] O365 (all), GlodG, ... 10.1 17.2 - -

OWL-ViT, ViT-B/32 [37] O365 (all), VG 18.9 22.1 - -
UniDetector (ours), ResNet50 O365 (10%), VG 20.2 23.4 - -

Table 6. Ablation study on region proposal generation on the
LVIS v0.5 dataset. The networks listed here are all trained on the
subset of COCO and Objects365 dataset.

decouple proposal generation model AP APr APc APf

RPN 18.1 19.0 17.6 18.9
✓ RPN 19.1 19.4 18.7 18.9
✓ Faster RCNN (class-agnostic) 19.7 20.4 19.3 19.9
✓ OLN [21] 19.7 20.4 19.0 20.3
✓ Cascade RPN [51] 20.0 21.5 19.1 20.5
✓ CLN (ours) 21.2 22.0 20.6 21.0

The obtained box AP powerfully demonstrates the gen-
eralization ability of our UniDetector to novel classes. On
the COCO dataset, we obtain the 35.2% box AP for novel
classes, which surpasses the best previous method (31.7%
from RegionCLIP) by 3.5%. On the LVIS dataset, we
obtain the 29.3% box AP and 26.5% mask AP for novel
classes (i.e. APr in this case), which outperforms Detic
by 2.6% and 1.6% separately. The extraordinary improve-
ment on novel categories validates the excellent ability of
our method for unseen classes. It is worth mentioning that
only one detection dataset is involved in this experimen-
tal setting, where our UniDetector is even a little restricted
by the single source of images. When introducing multiple
datasets for training, the superiority of our method is more
prominent. With only 10% amount of the training images,
we surpass OWL-ViT by 1.3% for novel categories. The
comparison well demonstrates the universality.

5.5. Ablation Study

Finally, we conduct ablation studies in this subsection.
We mainly analyze the effect of decoupling region proposal
generation and probability calibration here.

Decoupling proposal generation and RoI classification.
Tab. 6 analyzes the effect of the decoupling training man-
ner. A trivial Faster RCNN trained on COCO and Ob-
jects365 obtains the 18.1% open-world AP on LVIS. If we
decouple the two stages, the box AP is 19.1%. The 1.0%
AP improvement demonstrates that the decoupling manner

APb
novel APb

base APb
all APm

novel APm
base APm

all
30
32
34
36
38
40
42
44

AP

w/o calibration
w calibration

Figure 5. Illustration for probability calibration on the LVIS
v0.5 dataset. We train the Centernet2 model on LVIS base images
and image-level annotated images from ImageNet.

is beneficial for open world detection, while this does not
happen in traditional closed world detection. If we extract
region proposals with a class-agnostic Faster RCNN, the AP
is 19.7%. The 0.6% improvement indicates that the struc-
ture with both RPN and RoI head is more suitable for gen-
erating proposals in the open world than a single RPN. If
we adopt the OLN [21], also with the RoI head, the LVIS
AP is still 19.7%, which indicates that pure localization in-
formation cannot bring a further improvement. Our CLN,
with both classification score and localization quality, con-
tributes to a 21.2% AP. This AP is higher than not only
networks with similar budgets, but also more complicated
models like Cascade RPN. This demonstrates the effective-
ness of the decoupling learning manner and our CLN.

Probability calibration We further measure the AP on
novel and base categories separately to test the ability of
probability calibration. We follow the settings of Detic [64]
on LVIS v0.5 and plot the box and mask AP in Fig. 5. We
notice that after calibration, both box AP and mask AP on
novel classes improve significantly, more than 2%. As a re-
sult, the performance gap between base and novel classes
is reduced remarkably. In comparison, the performance on
base classes almost remains the same. This is because the
prior probability we design reduces the self-confidence of
base categories significantly. As we can see, the probability
calibration alleviates the bias of trained models, thus help-
ing generate more balanced predictions in the open world.

6. Conclusion

In this paper, we propose UniDetector, a universal ob-
ject detection framework. By utilizing images of multiple
sources, heterogeneous label spaces, and generalizing the
detector to the open world, our UniDetector can directly
detect everything in every scene without any finetuning.
Extensive experiments on large-vocabulary datasets and di-
verse scenes demonstrate its strong universality - it behaves
the ability to identify the most categories so far. Univer-
sality is a vital issue that bridges the gap between artificial
intelligence systems and biological mechanisms. We be-
lieve our research will stimulate following research along
the universal computer vision direction in the future.
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ple multi-dataset detection. In CVPR, 2022.

[67] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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