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Abstract

Most existing 3D reconstruction methods result in either
detail loss or unsatisfying efficiency. However, effective-
ness and efficiency are equally crucial in real-world ap-
plications, e.g., autonomous driving and augmented reality.
We argue that this dilemma comes from wasted resources
on valueless depth samples. This paper tackles the prob-
lem by proposing a novel learning-based 3D reconstruc-
tion framework named Dionysus. Our main contribution
is to find out the most promising depth candidates from es-
timated semantic maps. This strategy simultaneously en-
ables high effectiveness and efficiency by attending to the
most reliable nominators. Specifically, we distinguish unre-
liable depth candidates by checking the cross-view semantic
consistency and allow adaptive sampling by redistributing
depth nominators among pixels. Experiments on the most
popular datasets confirm our proposed framework’s effec-
tiveness.

1. Introduction

Recovering 3D structures from 2D images is one of
the most fundamental computer vision tasks [7, 25, 26,

] and has wide applications in various scenarios (e.g.,
autonomous driving, metaverse, and augmented reality).
Thanks to the popularity of smartphones, high-quality RGB
videos are always obtainable. Since each image describes
only a tiny piece of the whole scenario [31,33], reconstruc-
tion from multiple frames [44, 50] is more attractive than
from a single image [13, 14]. Although model quality and
real-time response are equally essential, the existing 3D
reconstruction methods have difficulty performing well in
both aspects. For example, multi-view stereo (MVS) mod-
els [63,73] consume seconds on each image, while real-time
approaches [9, 57, 64] lead to missing details or large-area
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mess.

The mainstream reconstruction methods [15,63,72] gen-
erally sample a set of candidate depths or voxels, then use
neural networks (e.g., CNNs [21] and transformers [58]) to
evaluate each candidate’s reliability. The candidate num-
ber is generally small because of the evaluation networks’
high computational demand. Consequently, the reconstruc-
tion quality becomes unsatisfying because the ground truth
is less likely to be sampled.

Pursuing a higher candidate sampling density, CasMV S-
Net [15] shrinks the depth range in a coarse-to-fine fashion;
IS-MVSNet [63] searches for new candidates according to
the estimated error distribution; NeuralRecon [57] prunes
the voxels thought to be unreliable in the previous predic-
tions. All these methods select candidates according to the
initial depth estimations. Notably, small objects and del-
icate structures are hard to recover in the beginning low-
resolution phase because they require a high resolution to
distinguish. As a result, the final reconstruction often suf-
fers from missing objects and crude details because the ac-
tual depth can be outside the final search range when the
initial estimation is unreliable. However, decent reconstruc-
tion quality on delicate objects is crucial to many real-world
applications. Specifically, traffic accidents may occur if
any pedestrian or warning post fails to recover; frequent
collisions and even fire disasters might happen if cleaning
robots cannot well reconstruct table legs and electric ca-
bles. Besides the defects in meticulous structures, coarse-
to-fine models also have room to improve efficiency. As
mentioned, the mainstream coarse-to-fine methods sample
and then evaluate initial candidates multiple times to locate
the most valuable candidate depths. Notably, examining the
preliminary candidates may be more expensive (usually two
times more [ 15, 78]) than assessing the final nominators.

In addition to the costly evaluation networks widely
adopted in coarse-to-fine architectures, another natural so-
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Figure 1. The overall architecture of our framework. We first estimate a semantic map for the current frame and then retrieve the former
semantic estimations. After that, we locate the most valuable depth candidates through the semantic maps. Finally, we predict the depth

map for the current frame by examining each depth candidate.

lution is to measure each depth candidate’s reliability ac-
cording to the photometric consistency among RGB images
or feature maps from different views. The basic logic be-
hind these methods is that pixels from distinct perspectives
should own the same color if they are the correct projec-
tions from the same 3D point. However, a 3D point may
look distinct in different views due to illumination, trans-
parency, and reflection. Moreover, candidates close to but
not precisely coinciding with the ground truth may have dif-
ferent colors for delicate objects, thus leading to low photo-
metric consistency. Consequently, the found candidate may
correspond to a pixel distant from the ground truth but of a
similar color.

To get rid of detail defects and keep efficiency, it be-
comes crucial to accurately and efficiently find the most
promising candidate depths. This paper proposes a novel
high-quality real-time 3D reconstruction framework named
Dionysus, which looks for depth hypotheses based on se-
mantic estimations. Precisely, we distinguish each depth
candidate’s reliability according to its semantic consistency
among warped views. Fig. 1 illustrates the overall archi-
tecture of our framework. Our intuition is that two pixels
should share the same semantic label if they are projections
of the same 3D point. We argue that selecting depth candi-
dates according to the semantic tags results in various ben-
efits:

1. Consistent: A 3D point may have distinct colors when
observing from different perspectives, but its semantic

label never changes.

2. Efficient: Semantic estimation requires a meager cost.
A semantic segmentation model may spend only mil-
liseconds on each frame [ ! 1,47] while evaluating each
cost volume in coarse layers generally takes ten times
more cost. In addition, most hierarchical methods
shrink the depth range only by half in each stage, while
our method may significantly reduce the depth range
on delicate objects (e.g., desk legs).

3. Dense: Tiny objects always get missing in hierarchical
frameworks because the initial samples are too sparse.
However, the semantic maps are highly dense, thus re-
taining fine details.

4. Adaptive: Semantics indicate various properties of
the pixel. For example, an electric cable may demand
highly dense samples to recover, but a wall may not. In
other words, we can assign each pixel the most suitable
sampling density according to its semantic estimation.

Depth Reassignment: A bed pixel may have much more
valid depth candidates than a pen pixel after the semantic-
based pruning because there are likely many bed pixels in
other views. Consequently, we cannot form a regular cost
volume based on the pruned depth candidates because pix-
els may have different numbers of valid depth candidates.
However, most GPUs are not designed for irregular inputs
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and are inefficient in such cases. Thus, we further propose
reallocating depth samples from pixels with excess valid
candidates to those in the opposite. In this way, all pix-
els finally have the same number of candidates and thus can
be conveniently computed by GPUs. Moreover, we sam-
ple more densely for delicate structures, otherwise more
sparsely, because tiny objects have a narrower depth range
after semantic pruning, and all pixels have the same depth
number.

To summarize, this paper has two significant contribu-
tions:

1. Instead of densely evaluating all depths or sparsely
evaluating limited depths, we efficiently select the
most promising depth candidates based on the cross-
view semantic consistency.

2. We reallocate depth samples among pixels to make our
model adaptive to objects and efficient on GPUs.

The mentioned contributions significantly benefit the ef-
fectiveness while retaining efficiency. Our extensive exper-
iments on the most popular 3D reconstruction datasets [5]
further verify our proposed method’s validity.

2. Related Work

We first introduce the development of 3D reconstruction,
then present the progress in semantic segmentation, and fi-
nally discuss the existing semantic-based 3D reconstruction
networks.

2.1. 3D Reconstruction

Recovering 3D structures from images has been widely
studied for many decades. Despite the great success of tra-
ditional methods [1,12,52,53], most recent solutions [9, 15,

] are based on neural networks [21,35-38,62] because of
the latter’s popularity [27,32,71,75,76] in the last decades.
Thanks to the popularity of smartphones, continuous video
sequences can now be easily captured. Compared to inde-
pendent images, video sequences [28, 80] contain rich cor-
relations among frames, thus leading to more consistent re-
construction quality. In consequence, learning-based video
reconstruction [44,56,69] is becoming a hot spot. However,
due to their high computation demand, most video recon-
struction methods are limited in offline applications.

Real-time video reconstruction is attracting wide atten-
tion from the academy and the industry, considering its vi-
tal position in autonomous driving and augmented reality.
The mainstream real-time methods can be categorized into
depth-based [9, 16,40, 61] and volume-based [57]. Specif-
ically, the former estimates depth maps and fuses them
into 3D representations. In contrast, the latter directly re-
gresses 3D representations from the RGB inputs. Depth-
based methods generally lead to lower latency because they

immediately process each new frame without waiting. Con-
versely, volumetric methods estimate 3D representations
from a group of frames, thus cannot respond to new frames
at once and are less suitable for online scenarios. The main-
stream depth-based approaches usually uniformly sample
depth candidates from an overly broad range [©] or gradu-
ally shrink the search range by repeated predictions [15,72].
Our main difference from the existing depth-based methods
is that we utilize semantics to select depth candidates.

2.2. Semantic Segmentation

Semantic segmentation focuses on estimating each
pixel’s object category (e.g., whether it represents a dog).
Most semantic segmentation networks [2,51,67,74,77] in-
herited a learning-based framework from FCN [39]. Real-
time solutions generally put their most effort into design-
ing a lightweight backbone considering its contribution to
the whole model’s complexity. The existing online meth-
ods generally own three backbone types [43]: classification-
based [22,24,60], segmentation-based [23,34,4 1], and two-
branch-based [48,74,79].

The first class encodes features using image classifica-
tion networks and then decodes to output semantics. The
second class designs segmentation-specific backbones con-
sidering the task difference between segmentation and clas-
sification. The third class processes macro and micro infor-
mation separately to reduce the overall cost. State-of-the-art
segmentation models can infer hundreds of frames per sec-
ond and retain high quality simultaneously. In comparison,
the fastest depth estimation networks are bounded to dozens
of frames per second.

2.3. Semantic-based 3D Reconstruction

Quite a few papers focus on integrating semantics into
depth estimation networks. Most related works belong to
single-image depth estimation and stereo matching.

In single-image depth estimation, view correspondence
does not exist; thus, semantic information becomes more vi-
tal. [66] simultaneously estimates depth and semantic maps
by multi-task learning. [65] shares depth weights among
pixels of the same semantic label. [10] jointly estimates
depth, semantics, and surface normal. [20] introduces a syn-
ergy network to share features between the semantic and
depth branches. [30] restricts depth predictions by semantic
priors (e.g., the sky is distant, and the ground is horizon-
tal). [59] infers invisible regions from semantics.

In stereo matching, two views with fixed relative poses
are given, and the goal is to match pixels in the two views.
These papers can be generally divided into two categories.
The first class treats semantic maps as additional chan-
nels. [8] refines disparities by concatenating semantic and
disparity features along the channel dimension. [70] con-
structs cost volumes for semantics and disparity and then
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Figure 2. Architecture of the semantic head. Former semantic and depth estimations are warped and then integrated with the current
frame. After that, we extract hierarchical information from the concatenated feature map. The semantic map for the current frame is
inferred from the feature volume composed of spatial and context information.

fuses them by summing and global pooling. [3] constructs
cost volume using semantic consistency between left and
right images and estimates disparity residuals according to
semantic category. The second class revises the disparity
using priors in semantics. [49] filters depth maps based on
semantic priors. For example, ground and water pixels with
heights higher than 90% get pruned. [46] refines edge and
texture-less regions using semantic cues. [4] estimates dis-
parity confidence using semantic consistency and refines
disparity in each semantic region.

The related works in multi-view stereo are limited. [ 18]
recovers a segmented 3D representation from 2D images
and semantics. [42] augments depth edges and guides cost
aggregation using semantics.

Unlike the mentioned works, we select depth candidates
by explicitly exploiting semantic consistency for multi-view
inputs. We also balance depth candidates among pixels and
adaptively attend to pixels in need.

3. Methodology

We first introduce the overall architecture of our model in
Sec. 3.1, then elaborate on each sub-component in Sec. 3.2
and 3.3. Our model inputs an RGB video sequence divided
into frames and the camera parameters of each frame, which
are estimated by off-the-shelf tools (e.g., ARKit). The out-
put is expected to be the depth map of each frame.

3.1. Overall Architecture

Fig. 1 exhibits the overall framework. We have a se-
mantic head to predict a semantic map .S; for the current
frame I;. At the same time, we retrieve the semantic maps

{S; E;tl_ ,, predicted in the previous timestamps from a se-
mantic queue.

After that, we look for the most promising depth candi-
dates for each pixel in I; using our novel semantic-based
depth candidate selection module, which is our main con-
tribution. Finally, we examine each depth nominator using
a depth head to output the final depth estimation. We sum
losses from the depth and semantic heads as the overall loss.

3.2. Semantic-based Depth Candidate Selection

This section introduces our main contributions.
Sec. 3.2.1 first shows how to prune unreliable depth candi-
dates using the semantic information, and then Sec. 3.2.2
demonstrates how to concentrate on pixels in need and
become efficient on GPUs.

3.2.1 Semantic-based Depth Pruning

To estimate the depth of a pixel in the current frame [;, we
sample a set of depth candidates and evaluate their reliabil-
ity one by one. The candidate number must be high enough
to hit the ground truth.

However, the existing learning-based methods can only
examine a small number of samples because they use a
giant neural network to assess each candidate. Conse-
quently, small objects distant from the background and deli-
cate structures get defective. The small object problem can-
not be solved via coarse-to-fine architectures because sig-
nificantly wrong predictions in the coarse stages cannot be
recovered in finer stages.

Unlike the existing methods, we first predict the seman-
tic labels for each pixel at a low cost; then, we use the se-
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Figure 3. Illustration of depth pruning. We uniformly sample depth candidates for a given pixel (purple) in the current frame, then
evaluate each candidate to determine whether it leads to a pixel of the same semantic label projected on the former frames.

mantic maps to restrict the depth candidate sampling only
to the most reliable regions.

I/O: The inputs include the current frame /; and retrieved
previous semantic {S;}!_! and depth {D;}!Z}  estima-
tions. Besides, similar to most existing methods [9,57,73],
we assume the camera parameters from time ¢t — n to ¢ are
available. In fact, the camera parameters can be obtained
from off-the-shelf tools (e.g., ARKit).

The outputs are the most promising depth candidates for

each pixel in the current frame I;.

Semantic Head: Instead of outputting the correct label,
semantic consistency among frames is more crucial because
we examine depth candidates by cross-view conformity.
Thus, we need to consider previous semantic estimations
when processing new frames.

We propose a highly efficient 2D convolutional network
to predict the semantic labels for each pixel in I;, as shown
in Fig. 2. The inputs of the semantic prediction head include
the current frame I, the semantic and depth maps predicted
from timestamp ¢ —n to ¢t — 1, and the corresponding camera
parameters.

The former depth and semantic predictions are warped
to the current view according to the relative poses and then
fused by concatenating along the channel dimension. In-
spired by STDC-Seg [11] and BiSeNet [74], we adopt a
two-pathway architecture to efficiently extract spatial and
context information, which are then fused to generate the
final semantic estimation.

Depth Pruning: After obtaining the semantic maps, we
start to prune depth candidates. According to the camera
parameters from time ¢ — n to ¢, we can draw a straight line

(i-e., the epipolar line) on each previous frame € {I; f;tl_n

for each pixel p; € the current frame I; and guarantee that
the correct correspondences can only lie on the epipolar
line.

Then, we sample N (a significant number) depth candi-
dates for each pixel in I;, as shown in Fig. 3. Each depth
corresponds to one pixel on the epipolar line in each former
frame. After that, we check whether the projected pixel’s
semantic label is exactly the same as p;. Only the candidate
depths leading to a positive answer get retained, otherwise
pruned.

Consequently, each former frame provides a set of reli-
able depth candidates. These sets of candidate overlap yet
may differ due to occlusion and field views. We use the
union of all the sets as the aggregated depth candidate set
because each pair of matched pixels may imply the exis-
tence of a 3D point.

Since we judge the reliability based on semantics, a
question might be whether our framework relies heavily on
each pixel’s precise prediction. The answer is no because
we only require semantics in different frames to be consis-
tent instead of strictly being the ground truth. Moreover, the
existing semantic segmentation architectures [11, 47] can
provide impressive enough label estimations.

3.2.2 Semantic-based Depth Reallocation

After pruning unreliable candidates, pixels may own in-
consistent numbers of depth nominators because different
objects might occupy distinct amounts of space, as shown
in the left of Fig. 4. Since the initial depth candidates
are uniformly sampled, a pixel owning many reliable depth
nominators likely belongs to a large object (e.g., walls and
floors). These objects usually do not require dense samples
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Figure 5. Illustration of candidate reallocation. Top: pixel with too many candidates. We reduce the nominator number by down-

sampling. Bottom: pixel with too few candidates.

because they have smooth surfaces, and their depths can be
easily inferred from neighbors. In contrast, coarser sam-
pling may help the network overcome repetitive patterns
and non-textured regions by collecting information from a
larger field of view.

However, delicate objects (e.g., toothbrushes and nail
clippers) eagerly demand higher depth resolution for detail
recovery. Thus, we should put more effort into pixels hold-
ing fewer candidates.

Reallocate Candidates: We propose to set a unified
depth number N, for all pixels by transfer payment, as
shown in Fig. 4. Specifically, if a pixel occupies too many
candidates, we lower its sampling density; otherwise, we
promote.

As shown in Fig. 5, we uniformly position N,, candidates
within the depth range bounded by the N valid nominators
for each pixel p;. Segmented depth ranges may occur when
multiple objects of the same semantic label appear in the
same image, as shown in Fig. 3. In such cases, candidates in
different fragments are reallocated separately, and the quota
of new candidates in each fragment is proportional to the
number of valid candidates inside the fragment.

To avoid fractional new candidate numbers, we priori-
tize the narrowest fragments and offer them slightly more

candidates by the ceiling function. After that, we assign the
remaining quotas for the rest fragments. This way, atten-
tion transfers from large surfaces to small objects because
fragments containing fewer valid candidates get promoted.

A more significant unified depth number N, offers
higher effectiveness while lowering the model efficiency. In
default, the value of IV, is set to ensure the whole model
runs as fast as the state-of-the-art real-time methods.

Efficiency: Our reallocation strategy benefits effective-
ness by attending more to delicate structures and contributes
to efficiency.

We take Fig. 4 as an example. Although these three
pixels have the same number of initial depth hypotheses,
they get different valid candidate numbers after the seman-
tic pruning. Notably, most GPUs are designed to process
regular inputs and are inefficient on irregular data.

Thus, without reassignment, we have to pad pixels 2 and
3 with zeros to form a three (pixel number) by three (the
max valid candidate number among pixels: max; {N’})
matrix as the input of the depth head. In comparison, a
three-by-two matrix is enough after reallocation. The re-
duction of input matrix size directly lowers the computation
demand of the costly depth head.

Although sparsification may sound like a good solution,
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Figure 6. Architecture of the depth head. The outputs of the semantic-based depth selection module are used to warp the previous video
frames to the current view for cost volume calculation. The depth predictions are regressed based on the current cost volume and former

estimations.

it heavily relies on specialized hardware and is usually less
efficient on inputs of irregular zero distributions. In addi-
tion, it leads to lower sampling density on small objects.

Spatial Correlation: Since our samples are pixel-wisely
determined, a possible doubt might be whether the spatial
correlation still holds. The answer is yes because neigh-
boring pixels generally share the same semantic label. As
a result, they should match adjacent pixels in other views,
thus leading to similar depth candidates after the semantic
pruning.

Moreover, our candidate reassignment module evenly
distributes candidates in the valid depth range; thus, neigh-
boring pixels should have similar final depth samples. The
local spatial correlation still holds as illustrated in Fig. 7.
In other words, we can exploit convolutions to evaluate the
candidate depths.

Depth 1 2 3 -+ 5

Pixel 1 o o @ @ O
Pixel 2 @ @ ®o-@ ®
Pixel 3 o @ o -0 @
Pixel 4 @ o - @ o
Pixel 5 o @ o- @ L
@ @ @ - @ L

Figure 7. Spatial correlation after depth selection. Neighboring
pixels generally have similar sets of depth candidates.

3.3. Depth Head

After determining the depth candidates for each pixel,
we predict the depth map by assessing each depth candidate.
The model starts by extracting image features from the cur-
rent frame I; using a feature pyramid network (FPN) [29].
After that, we warp the image features from previous time
stamps to the current view and then construct a cost volume
by measuring the pixel-wise correlation between the current
and former features.

Finally, we send the raw cost volume into a U-shape
refining network to regress the depth prediction at time ¢.
Notably, we keep the temporal consistency by introducing
a ConvLSTM [54] to update the extracted features and by
warping the previous depth estimations to the current view-
point.

4. Experiments

Our model is implemented using PyTorch [45]. We
optimize the model using MADGRAD [6] on eight A100
GPUs. The input image is cropped and scaled to 256 x 256.
The weights for testing are selected according to their losses
on the validation set. The depth metrics are borrowed from
DeepVideoM VS [9].

Keyframe Selection: Considering the high similarity be-
tween adjacent frames, estimating depth maps for every raw
frame is inefficient. Thus, we select the most iconic frames
(i.e., keyframes) from the input video sequences. When a
new frame comes, we examine its pose distance to the lat-
est keyframe and only adopt the new frames leading to pose
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ScanNet

Abs Diff] AbsRel] SqRell o6 < 1.057 6 <1.251 Time (ms) ]
DPSNet [ 0] 0.1548  0.0789  0.0292 4939 93.31 308 ms
MVDepthNet [61] 0.1643  0.0844  0.0341 46.73 92.80 46 ms
DELTAS [55] 0.1492  0.0783  0.0271 48.68 93.81 83 ms
GPMVS [16] 0.1492  0.0753  0.0290  51.09 93.98 49 ms
DeepVideoMVS (Fusion) [9]  0.1182  0.0580  0.0187 60.23 96.78 30 ms
Ours 0.1069  0.0506 0.0165  61.34 97.13 30 ms

Table 1. Depth evaluation results on the ScanNet dataset. The best results are marked in bold. Our model is leading in both effectiveness

and efficiency.

distances above a threshold. We define the pose distance
as Eq. (1) and set the threshold as 0.35, following [9, 17].
Notably, we do not estimate depth for the first frame in a
video sequence because it has no predecessors to provide
multi-view information.

2
Dis, = \/|trcmsiti0n|2 + ngce(I — rotation) (1)

Datasets: Following the mainstream settings [9, 57], we
train and evaluate our model on ScanNet [5], which is a
large-scale real-world video dataset containing 1201 scenes
for training, 321 for validation, and 100 for testing.

Comparison to existing SOTAs Tab. | demonstrates that
our method outperforms various state-of-the-art depth esti-
mation approaches in effectiveness and efficiency.

Compared to real-time SOTAs [9], our method shows
significant advantages in all effectiveness metrics while re-
taining comparable time efficiency. Compared to semi-real-
time algorithms [16, 55, 61], our method dominates infer-
ence time and offers significant competitiveness in recon-
struction quality. In addition, our real-time framework even
generates more accurate depth maps than some offline solu-
tions [19] while spending one magnitude less cost.

Moreover, our method benefits relative error more than
absolute error and favors L' difference more than L2. These
results indicate that delicate structures and small objects
win more attention.

Impacts of the Semantic Head To assess the effective-
ness of our proposed semantic-based depth selection strat-
egy, we fix all other variables and only examine the seman-
tic head’s impacts. Tab. 2 confirms that our semantic-based
depth selection module offers significant benefits.

5. Limitations

Like most dense reconstruction models, our pipeline re-
quires the camera parameters to be known, which may not

Abs Diftf] AbsRell SqRel]
0.1225 0.0633 0.0192
0.1069 0.0524 0.0161

No Semantic Head
+ Semantic Head

Table 2. Improvements from our semantic head.

always be feasible. Besides, our current model may have
difficulty with unseen object categories, although we only
require adjacent frames to have the same class prediction
(even if it is incorrect).

6. Conclusion

This paper proposes a novel 3D reconstruction network
that is leading in effectiveness and efficiency. Our core
contribution is to locate the most promising depth candi-
dates using semantic maps. Specifically, we prune unreli-
able candidates according to the cross-view semantic con-
sistency and then resample the candidates to look after pix-
els in need. Consequently, our method produces highly del-
icate reconstructions of meticulous structures and generates
smooth surfaces for large planes with low overhead. Ex-
perimental results on the most popular datasets verify the
proposed method’s advantages in real scenarios.
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