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Abstract

With the springing up of face synthesis techniques, it
is prominent in need to develop powerful face forgery de-
tection methods due to security concerns. Some existing
methods attempt to employ auxiliary frequency-aware in-
formation combined with CNN backbones to discover the
forged clues. Due to the inadequate information inter-
action with image content, the extracted frequency fea-
tures are thus spatially irrelavant, struggling to general-
ize well on increasingly realistic counterfeit types. To ad-
dress this issue, we propose a Spatial-Frequency Dynamic
Graph method to exploit the relation-aware features in spa-
tial and frequency domains via dynamic graph learning. To
this end, we introduce three well-designed components: 1)
Content-guided Adaptive Frequency Extraction module to
mine the content-adaptive forged frequency clues. 2) Multi-
ple Domains Attention Map Learning module to enrich the
spatial-frequency contextual features with multiscale atten-
tion maps. 3) Dynamic Graph Spatial-Frequency Feature
Fusion Network to explore the high-order relation of spa-
tial and frequency features. Extensive experiments on sev-
eral benchmark show that our proposed method sustainedly
exceeds the state-of-the-arts by a considerable margin.

1. Introduction
Recent years have witnessed the continuous advances in

deepfake creation [11, 27, 36]. Utilizing booming open-

source tools such as Deepfakes [41], novices can readily

manipulate the expression and identity of faces to generate

visually untraceable videos. Face forgery technology has

stimulated many applications [12, 14, 44, 46] with wide ac-

ceptance. These techniques can whereas be abused by ma-
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Figure 1. The motivation of our proposed approach. Our SFDG

method (a) delves into the high-order relationships (b) of spatial

and frequency domain via cross-domain graph reasoning (c).

licious intentions to make pornographic movies, fake news

and political rumors. In the circumstances, it is desperately

in need to develop powerful forgery detection methods.

Early face forgery detection methods [7,30,52] treat this

challenge as vanilla dichotomy tasks in the prevailing view.

They use off-the-shelf backbones to extract the global fea-

ture of faces and a binary classifier follow-up to identify

the real and counterfeit faces. However, as the counter-

feits become increasingly realistic, it is intractable for these

methods to spot subtle and local forgery traces. One recent

study [50] reformulates deepfake detection as a fine-grained

classification task and designs a multi-attentional frame-

work to extract local discriminative features from multiple

attention maps. It is susceptible to common disturbances

and the generalized features remain therefore poorly un-

derstood. Some other works resort to specific forgery pat-

terns to encourage better classification such as DCT [24,28],

SRM [25] and steganalysis features [45]. Although promis-

ing advances have been achieved by these previous works,
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they always extract frequency features with hand-crafted

filter banks which are content-irrelevant, thus incapable to

adapt the changes of complex scenarios. Moreover, they

fuse multi-domain information via adding directly or atten-

tional projection. However, these approaches devote little

efforts to discover the high-order relation of spatial and fre-

quency features and integrating them in a reasonable way.

In this paper, we provide seminal insights to exploit

adaptive frequency features and delve into the interactions

of spatial-frequency domains. To this end, we propose an

adaptive extraction-multiscale enhancement-graph fusion
paradigm for deepfake detection via dynamic graph learn-

ing, which prompts to excavate content-aware frequency

clues and the high-order relation of multiple domains.

Firstly, for adaptive frequency extraction, we tailor a

Content-guided Adaptive Frequency Extraction (CAFÉ)

module with coarse-grained DCT and fine-grained DCT to

capture the local frequency cues guided by content-aware

masks. Different from PEL [9] and F3Net [28], our cus-

tomized frequency learning protocol provides potential for

more combinations of frequency features, which is indis-

pensable to spot complicated counterfeit patterns.

To further enhance the representation of content-guided

frequency features, we introduce a Multiple Domains At-

tention Map Learning (MDAML) module to generate mul-

tiscale spatial and frequency attention maps with high-level

semantic features. Specifically, we first propose a Multi-

Scale Attention Ensemble (MSAE) module, which pro-

duces multi-scale semantic attention maps with large re-

ceptive fields and endows rich contextual information to

spatial and frequency domains. Moreover, an Attention

Map Refinement Block (AMRB) is included in the MSAE

module to refine the obtained semantic attention maps con-

ducive to the following feature learning. In comparison with

MADD [50] that merely emphasizes the spatial domain, we

further introduce the semantic-relevant frequency attention

map with rich semantic information retained for the subse-

quent spatial-frequency relation-discovery paradigm.

Finally, to fully discover the spatial and frequency re-

lationships, we propose a Dynamic Graph-based Spatial-

Frequency Feature Fusion network (DG-SF3Net) to formu-

late the interaction of two domains via a graph-based rela-

tion discovery protocol. Specifically, DG-SF3Net is com-

posed of two ingredients: Dynamic GCN [16] and Graph

Information Interaction layers. The former constructs kNN-

graph dynamically and performs graph convolution to rea-

son high-order relationships in spatial and frequency do-

mains, while the latter is designed to enhance the mutual

relation with several graph-weighted MLP-Mixer [40] lay-

ers via channel-wise and node-wise interaction.

The achievements, including contributions are threefold:

• From a new perspective, we propose a novel Spatial-

Frequency Dynamic Graph (SFDG) framework, which

is qualified to exploit relation-aware spatial-frequency

features to promote generalized forgery detection.

• We first harness a CAFÉ module for content-aware fre-

quency feature extraction, and then tailor an MDAML

scheme to dig deeper into multiscale spatial-frequency

attention maps with rich contextual understanding of

forgeries. Finally, a seminal DG-SF3Net module is

proposed to discover the multi-domain relationships

with a graph-based relation-reasoning approach.

• Our method achieves state-of-the-art performance on

six benchmark datasets. The cross-dataset experiment

and the perturbation analysis show the robustness and

generalization ability of the proposed SFDG method.

2. Related Works
Over the past several years, with the remarkable progress

of forgery creation techniques, increasing efforts have been

made to boost the development of face forgery detection in

computer vision communities. In this section, we briefly

review previous works exploring the authenticity of faces.

Rudimentary deepfake detection approaches base pri-

marily on obvious counterfeit artifacts, which utilize hand-

crafted features to detect anomalies in spatial domain, e.g.,
inconsistent head pose [47] and unnatural eye blinding [21].

However, these traditional methods feel intractable to deal

with the improved realistic deepfakes. With the overwhelm-

ing success of deep learning, some works [1,4,7] adopt off-

the-shelf classification backbones to extract high-level se-

mantic features for deepfake detection. Although consider-

able performances have been achieved on specific datasets,

their vanilla structures would lead to catastrophic overfitting

and lag behind the advanced face synthesis technology.

To further exploit the essential forged clues, general

deepfake detection [15, 20, 26, 34, 35] has been an area of

intense investigation. Nguyen et al. [26] employ multi-task

learning strategy to detect forged artifacts and locate manip-

ulated regions simultaneously. Face X-ray [20] observes the

specific blending step of face swapping and locates forgery

boundary in a self-supervised manner. FReTAL [15] adopts

the knowledge distillation to prevent catastrophic forgetting

and enhance adaptability in different domains. DCL [35]

performs dual-granularity contrastive learning to further im-

prove the generalization. However, these approaches cap-

tures category-level differences instead of the intrinsic dis-

crepancies between authentic and forged images.

Recently, other studies focus on mining specific forgery

patterns, such as local texture, high-frequency noise, re-

construction residual and frequency clues. Among them,

Zhao et al. [50] propose a fine-grained deepfake detection

framework that aggregates the local texture and high-level

semantic information into multiple attention maps. How-

ever, it fails to distinguish highly compressed videos with
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Figure 2. (a) Overview of the proposed Spatial-Frequency Dynamic Graph (SFDG) framework. (b) The Content-guided Adaptive Fre-

quency Extraction (CAFÉ) module. (c) The Multiple Domains Attention map Learning (MDAML) network.

blurry texture. Luo et al. [25] utilize the high-pass fil-

ter SRM [8] to extract high-frequency noise guiding face

forgery detection. RECCE [2] employs the reconstruction

difference of authentic faces as guidance of forgery traces.

F3Net [28] collaboratively mines the forged frequency clues

with frequency-aware decomposition and local frequency

statistics. However, the extracted frequency feature is

coarse-grained, incapable of assembling discriminative fea-

ture patterns. To ameliorate this issue, PEL [9] learns the

fine-grained frequency features using sliding window DCT

combined with RGB images in a progressive enhancement

learning fashion. Nevertheless, the fine-grained frequency

is content-irrelevant and in compliance with the vanilla

spatial-frequency fusion ethos, thus failing to achieve the

utter information interaction of both domains.

Different from existing studies, our proposed end-to-end

SFDG approach excavates content-adaptive frequency clues

and facilitates the comprehensive fusion of spatial and fre-

quency features via dynamic graph learning.

3. Method
In this section, we propose a Spatial-Frequency Dynamic

Graph (SFDG) framework, which consists of three major

modules, i.e., Content-guided Adaptive Frequency Extrac-

tion (CAFÉ), Multiple Domains Attention Map Learning

(MDAML), and Dynamic Graph Spatial Frequency Feature

Fusion Network (DG-SF3Net). The primary idea of our ap-

proach is to exploit content-aware frequency features uti-

lizing CAFÉ module. As limited context information do

these features embrace, we present the MDAML module

to generate high-level frequency attention maps in a mul-

tiscale learning manner. Beyond these improvements, we

finally design a DG-F3Net to perform relation reasoning of

spatial and frequency features via dynamic graph learning.

3.1. Content-aware Frequency Extraction

Towards the frequency-aware face forgery detection, for-

mer studies generally use DCT to transform the input image

into frequency domain. However, for the scarcity of spatial

information in DCT process, the extracted frequency fea-

ture is presumably not compatible to the image content. To

this end, we propose the CAFÉ module to fully exploit the

forgery clues via content-aware frequency learning in or-

der to handle complex or simple manipulated patterns adap-

tively. Without loss of generality, let xs ∈ R
3×H×W de-

notes the RGB image, where H and W are the height and

width of the input image. As shown in Fig. 2(b), we gen-

erate an attentional content mask Ms using a UNet [29]

submodule with the spatial information retained. We then

propose a coarse-grained counterpart to partition the com-

pact frequency spectrum into several bands. Specifically,

we manually design Nf binary filters {fi|i = 1, ..., Nf}
to decompose the frequency domains into low, middle and

high frequency bands. The low-frequency component lies

on the top-left corner while the high-frequency response lo-

cates on the bottom-right corner [28]. As described, the
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coarse-grained process can be formulated as:

xf,i
coarse = H−1

[
H (xs)� f i

]
, i = {1, 2, . . . , Nf}, (1)

where � is the Hadamard product. H and H−1 represent the

DCT and inverse DCT respectively. xf
coarse ∈ R

3Nf×H×W

is the extracted coarse frequency feature, which indicates

global frequency information to some extent.

Further, we design a fine-grained frequency extraction

method to emphasize on the localized frequency features.

Specifically, we slice xs via a sliding window to obtain a set

of l× l patches. pm,n ∈ R
3×l×l denotes the patch sliced by

the (m-th, n-th) sliding window. After performing DCT on

each patch, we get the localized fine-grained frequency fea-

tures dfm,n ∈ R
3×l×l. We repeat the channel of each dfm,n

to match the coarse-grained frequency features abovemen-

tioned. All localized patched are then gathered into a whole

feature map df ∈ R
3Nf×H×W and go through several con-

volution Blocks composed by Conv2d, BN, and ReLU to

form the output fine-grained frequency features xf
fine.

Finally, we obtain the overall frequency head xfh

through an adaptive frequency combine module guided by

the learned content mask Ms, which can be formulated as:

xfh = (1−Ms)� xf
fine +Ms � xf

coarse. (2)

The extracted frequency head xfh ∈ R
3Nf×H×W will be

fed into several stride convolution layers to obtain the final

frequency feature Cf channels xf with size of Hf ×Wf .

3.2. Multiple Domains Attention Map Learning

To fully exploit the forged clues in spatial domain, we

adopt EfficientNet-b4 as the backbone and further parti-

tion the entire network into low-level, mid-level and high-

level layers, respectively. As shown in Fig. 2(c), to acquire

spatial-frequency features with rich semantics, we further

design a Multi-Scale Attention Ensemble (MSAE) mod-

ule in spatial and frequency domains to generate multiscale

attention maps and aggregate them with hierarchical fea-

ture pyramid. The MSAE includes light weighted Con-

vBlocks, which consist of several convolution layer, BN and

non-linear activation layers ReLU, and certain global aver-

age layers to downsample the attention maps into multiple

scales. With the multi-scale feature representation, we can

obtain a sufficient receptive field and rich contextual infor-

mation, which are of great significance for the deepfake de-

tection task. Inspired by [48], we propose an Attention Map

Refinement Block (AMRB) to get refined feature maps.

As Fig. 2(c) shows, AMRB employs global average

pooling to capture global context and uses a subsequent sig-

moid layer to produce an attention vector that determines

the feature distribution of attention maps in each scale. Fi-

nally, we upsample the refined multi-scale attention maps to

the original size and add them spatially. We use AMRB in

both spatial and frequency streamline to acquire the multi-

scale spatial attention map F s and frequency feature map

F f , which have Ts and Tf channels on behalf of the corre-

sponding number of attention maps in these two domains.

After obtaining the refined multi-scale attention maps F s

and F f , we perform Bilinear Attention Pooling (BAP) [23]

to get the relation-aware feature matrix P s and P f respec-

tively. As illustrated in Fig. 2(c), we use the Textural Fea-

ture Enhancement block [50] to capture the manipulated

artifacts hidden in low-level layers. After the enhance-

ment of the texture features, we get a textual feature map

F tex ∈ R
Ctex×Htex×Wtex . For the spatial domain, we

element-wisely multiply textural feature map F tex by each

spatial attention map F s
k to obtain the partial textural fea-

ture maps F tex
k and compute the final spatial feature matrix

employing BAP, which can be formulated as:

psk =

∑Htex

m=1

∑Wtex

n=1 F tex
k,m,n∥∥∥∑Htex

m=1

∑Wtex

n=1 F tex
k,m,n

∥∥∥
2

(3)

The spatial attention vector psk ∈ R
1×Ctex is stacked to-

gether to get the texture-relevant spatial feature matrix P s ∈
R

Ts×Ns . For the frequency domain, we perform the BAP

with the frequency attention maps F f and the spatial feature

after high-level backbone layers as shown in Fig. 2(a). Sim-

ilar to Eq. 3, we can obtain the content-relevant frequency

feature matrix P f ∈ R
Tf×Nf . Finally, the learnt relation-

aware feature matrices will be fed into the follow-up DG-

SF3Net to collaboratively learn a comprehensive feature

representation in a graph-based relation reasoning way.

3.3. Dynamic Graph Learning

After obtaining the spatial feature matrix P s ∈ R
Ts×Ns

and frequency feature matrix P f ∈ R
Tf×Nf , we propose

a novel DG-SF3Net to discover the comprehensive relation

of them as shown in Fig. 3. Inspired by [19, 49, 51], we

provide the intuition that there exists high-order relation of

spatial and frequency features and Graph Convolution Net-

work (GCN) performs tremendous potential in relation rea-

soning. As illustrated in Fig. 1(c), we confirm the above

intuition by visualizing the corelation heatmap of spatial

and frequency features. Therefore, we build a graph-based

relation-discovery module to conduct reasoning with im-

proved GCN to integrate spatial and frequency features.

Firstly, we concatenate P s and P f in the channel dimen-

sion to get V (0) ∈ R
T (0)×N(0)

, where T (0) = Ts + Tf and

N (0) = max(Ns, Nf ). We treat each column of V (0) as

a node. As shown in the right bottom of Fig. 3, a dynamic

GCN module is proposed to aggregate features based on

their similarity. Different from original GCN, our model

learns to dynamically design appropriate graph structures

in each layer, rather than treating it as a fixed constant one.
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Figure 3. The proposed Dynamic Graph Spatial-Frequency Feature Fusion Network (DG-SF3Net), which includes two modules: Dynamic

Graph Convolution Network (DGCN) and Graph Information Interaction (GI2) layers.

At t-th layer, we have a tailored sparse-connected graph

G(t) = (V (t), E(t)) for graph convolution, where the local

neighbor of each center node v
(t)
i can be defined as:

N (t)(i) =
{
v
(t)
jim

| v(t)jim
∈ kNN

(
v
(t)
i

)
,m = 1, . . . , k

}
,

where v
(t)
ji1

, . . . , v
(t)
jik

are k nodes closest to v
(t)
i according

to the Euclidean distance. After getting the localized kNN

graph, we formulate the adjacency matrix A(t) based on k
neighbors attached to center node with self-loop added.

With this sparse-connected GCN, the node features can

be updated with the message passing as follows:

V (t+1) = ReLU
(
D̃(t)− 1

2 Ã(t)D̃(t)− 1
2V (t)W (t)

)
, (4)

where D̃(t) ∈ R
T (t)×T (t)

is the degree matrix. W (t) ∈
R

N(t)×N(t+1)

is the learnable graph weight. In addition, the

output channel is conforming with the input one.

Finally, we propose a Graph Information Interaction

(GI2) component for the spatial-frequency feature interac-

tion. The GI2 component is composed of several MLP-

Mixers [40] layers weighted by the graph adjacent matrix.

Each of them leverages a channel-mixing MLP layer and

a token-mixing MLP layer, which perform information in-

teraction across all channels and node positions embedded

in high-dimensional feature space. These two types of lay-

ers are interleaved to enable interaction of both input di-

mensions. Particularly, in order to highlight the localized

features defined on the kNN graph abovementioned, we uti-

lize the adjacent matrix derived from the first GCN layer to

weight the feature of the token-mixing MLP.

3.4. Loss Function

After dynamic graph learning, we obtain the semantic

feature matrix Ṽ ∈ R
M×N . Following MADD, we regard

Region Independent Loss (RIL) with Cross Entropy (CE)

loss as the loss function. The auxiliary RIL is defined as:

LRIL =

B∑
i=1

M∑
j=1

ReLU

(∥∥∥Ṽ i
j − ctj

∥∥∥2
2
−min (yi)

)

+

M∑
i �=j

ReLU
(
mout −

∥∥cti − ctj
∥∥2
2

) (5)

c ∈ R
M×N are feature centers of Ṽ that can be updated

iteratively during training. B is the batch size, M is the

number of attention maps and yi is the label. min and mout

represent the margin of intra-class and inter-class.

In conclusion, the total loss function L of our proposed

SFDG framework can be described as:

L = λ1 ∗ LCE + λ2 ∗ LRIL (6)

where λ1, λ2 are hyper-parameters for balancing different

terms. We set λ1 = λ2 = 1 in the following experiments.

4. Experiment
4.1. Experimental Setup

Datasets. We appraise our proposed SFDG method

and current state-of-the-art approaches on FaceForensics++

(FF++) [30], WildDeepfake [52], DFDC [5], Celeb-

DF [22], DF-v1.0 [13] and DFD [6]. FF++ (low qual-

ity (LQ) and high quality (HQ) counterparts) is a widely-

used benchmark dataset composed of 1000 real videos from

YouTube and corresponding fake videos generated by four

types of manipulated techniques: Deepfakes (DF) [41],

Face2Face (F2F) [39], FaceSwap (FS) [17] and Neural-

Textures (NT) [38]. WildDeepfake is a small real-scenario

dataset including 7314 face sequences. Celeb-DF contains
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Method
FF++ (LQ) FF++ (HQ) WildDeepfake Celeb-DF

Acc AUC Acc AUC Acc AUC Acc AUC

Xception [4] 86.86 89.30 95.73 96.30 79.99 88.86 97.90 99.73

EfficientNet-b4 [37] 86.67 88.20 96.63 99.18 82.33 90.12 98.19 99.83

Add-Net [52] 87.50 91.01 96.78 97.74 76.25 86.17 96.93 99.55

SCL [18] 89.00 92.40 96.69 99.30 —— —— —— ——

MADD [50] 88.69 90.40 97.60 99.29 82.62 90.71 97.92 99.94

F3Net [28] 90.43 93.30 97.52 98.10 80.66 87.53 95.95 98.93

PEL [9] 90.52 94.28 97.63 99.32 84.14 91.62 —— ——

RECCE [2] 91.03 95.02 97.06 99.32 83.25 92.02 98.59 99.94

Local Relation [3] 91.47 95.21 97.59 99.46 —— —— —— ——

M2TR [43] 92.35 94.22 98.23 99.48 —— —— —— ——

SFDG (Xception) 91.08 94.49 97.61 99.45 83.36 92.15 98.95 99.94
SFDG (Ours) 92.28 95.98 98.19 99.53 84.41 92.57 99.22 99.96

Table 1. Quantitative comparison in terms of Acc(%) and AUC(%) on FF++, WildDeepfake and Celeb-DF dataset. The red represents the

best performance while the blue indicates the second-best results.

590 real videos and 5,639 high quality fake videos tampered

with the improved deepfake methods. DFDC is a remark-

able large-scale dataset with over 100,000 video clips. DFD

and DF-v1.0 are two another large-scale publicly available

dateset to evaluate the model’s generalization ability.

Evaluation Metrics. Following previous works [9, 28],

we employ the commonly used Accuracy (Acc), Area Un-

der the Receiver Operating Characteristic Curve (AUC) and

Equal Error Rate (EER) as our evaluation metrics.

Implementation Details. Following the official split of

FF++ dataset, we use 740 videos for training, 140 for vali-

dation and 140 remained for testing. We sample 50 frames

per video at equal interval during training and validation

phases, 20 frames in testing period. We use the remark-

able DLIB [32] for face detection and alignment. We em-

ploy EfficientNet-b4 [37] pretrained on ImageNet [31] as

the backbone of our network. We set mout to 0.2 and min

to [0.05,0.1] in Eq. 5. The whole network is trained with

Adam optimizer with an initial learning rate of 1 × 10−4,

the weight decay of 1× 10−5. A step learning scheduler is

used to reduce the learning rate half every 5 epochs.

4.2. Experimental Results

Intra-testing. We compare our proposed method versus

current state-of-the art approaches on the FF++ dataset un-

der different quality settings (HQ and LQ), WildDeepfake

and Celeb-DF datasets. As shown in Table 1, our method

consistently achieves admirably performance on all quality

settings and trumps all reference methods by a considerable

margin. Specifically, in terms of Acc, our method achieves

92.28% and 98.19% on LQ and HQ settings respectively,

with a remarkable improvement in comparison to PEL [9],

i.e., 2.1% performance gain on LQ and 0.6% on HQ. Dif-

ferent from PEL which only utilizes fine-grained frequency

features, our model extracts adaptive frequency features

with a content mask providing rounded frequency represen-

tations. More importantly, we boost the information inter-

action between spatial and frequency domains via dynamic

graph learning instead of vanilla convolution paradigm in

PEL. Further, our method achieves a noteworthy perfor-

mance compared with Local Relation [3] and M2TR [43],

which introduce powerful priors of forgery masks. Instead,

our SFDG only employs real/fake images as the input, but

the AUC on both LQ and HQ settings surpass these two

works strikingly. As discussed, these fruitful results give

explanation of the effectiveness of our SFDG method.

Cross-testing. To further appraise the generalization ability

of our method on unseen manipulated types, we herein con-

duct cross-dataset experiments by training and testing on

different datasets. Following PEL [9], we reimplement sev-

eral state-of-the-art models for a fair comparison on FF++

(LQ) dataset and testing them on Celeb-DF, DFDC, DFD,

DF-v1.0 and WildDeepfake dataset. Comparisons under

AUC and EER metrics are detailedly shown in Table 2. It

implicates that our SFDG method generally outperforms all

competitors conspicuously on all testing datasets. Instead of

overfitting with specific forged patterns as in most existing

methods, SFDG explores the essential forgery with content-

aware semantic attention maps and reasons about general-

ized forged cues via graph-based high-order relation discov-

ery in spatial and frequency domains, which guarantees the

superior generalization ability of our proposed method.

Robustness. Considering the image quality will be dete-

riorated seriously by inevitable noise in video acquisition

process, we further investigate the robustness of our SFDG

model under several common perturbations. Specifically,
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Training

DataSet
Method

Testing Dataset

Celeb-DF DFD WildDeepfake DFDC DF-v1.0

AUC EER↓ AUC EER↓ AUC EER↓ AUC EER↓ AUC EER↓

FF++

Xception [4] 60.05 0.432 65.43 0.393 60.59 0.619 55.65 0.461 80.27 0.265

Ef-b4 [37] 64.29 0.419 83.17 0.235 64.27 0.376 60.12 0.428 85.31 0.228

Add-Net [52] 57.83 0.444 57.16 0.453 54.21 0.462 51.60 0.548 —— ——

MADD [50] 68.64 0.371 74.18 0.327 65.65 0.397 63.02 0.410 89.34 0.173

F3Net [28] 67.95 0.368 69.50 0.354 60.49 0.434 57.87 0.442 82.27 0.246

PEL [9] 69.18 0.357 75.86 0.308 67.39 0.383 63.31 0.404 —— ——

SFDG (Ours) 75.83 0.303 88.00 0.197 69.27 0.377 73.64 0.337 92.10 0.151

Table 2. Cross-testing results in terms of AUC(%) and EER training on FF++ dataset. The bold indicates the best performance.

Method
+GaussianNoise +SaltPepperNoise +GaussianBlur

ΔAcc(FF) ΔAcc(Wild) ΔAcc(FF) ΔAcc(Wild) ΔAcc(FF) ΔAcc(Wild)

Xception [4] -2.65% -0.98% -32.44% -27.80% -6.22% -12.71%

Add-Net [52] -41.51% -11.66% -11.28% -18.21% -11.28% -12.91%

F3Net [28] -9.86% -1.17% -31.08% -43.57% -11.08% -12.43%

MADD [50] -1.79% -0.99% -49.30% -29.47% -12.23% -14.86%

PEL [9] -0.10% -0.86% -9.39% -4.25% -7.41% -10.88%

SFDG (Ours) -0.10% -0.75% -10.10% -3.74% -3.76% -5.12%

Table 3. Robustness evaluation under three types of perturbations. Our SFDG performs admirably under several common perturbations.

following PEL [9], we apply GaussianNoise, SaltPepper-

Noise and GaussianBlur to the FF++ (LQ) and WildDeep-

fake testing images, and adopt the decay of Acc to indicate

the robustness of face forgery detection model. As shown

in Table 3, a series of experiments throw light on that our

method with the least performance decline is more robust

to the perturbations abovementioned. We attribute it to the

elaborate CAFÉ module which extracts the adaptive fre-

quency features among multiple bands and acts as an image

denoiser. We provide sufficient experiments results in terms

of AUC in the supplementary materials.

4.3. Ablation Study

Effectiveness of Proposed Components. As shown in

Table. 4, a series of ablation experiments on FF++ (LQ)

benchmark have been conducted to verify the effective-

ness of different components in our framework. Specifi-

cally, we develop the following variants: (a) the baseline

model equipped with the MADD [50] pipeline, (b) the base-

line model with the proposed CAFÉ module, (c) the pro-

posed method w/o. DG-SF3Net, (d) the proposed method

w/o. MDAML module. Comparing (a) and (b), we observe

that the proposed CAFÉ module brings a considerable im-

provement of Acc and AUC metrics on FF++ (LQ) dataset.

From variant (b) and (c), we empirically demonstrate that

adding the MDAML module will bring 2.19% Acc and

1.52% AUC gains, which are attributed to the multi-scale

contextual information and large receptive field of refined

attention maps. When adding the DG-SF3Net module, as

ID CAFÉ MDAML
DG

-SF3Net

Acc

(LQ)

AUC

(LQ)

(a) 88.69 90.4

(b)
√

89.52 93.37

(c)
√ √

91.48 94.79

(d)
√ √

92.05 95.45

Ours
√ √ √

92.28 95.98

Table 4. Ablation study on the FF++ (LQ) dataset.

shown in variant (c) and Ours, we observe a remarkable ad-

vance on both Acc and AUC metrics, which benefits from

the dynamic graph learning protocol to reason about the

relation-aware forged clues. Finally, the best performance

is achieved when combining all components, with the Acc

and AUC of 92.28% and 95.98% respectively.

Setting of Hyper-parameters. During graph construc-

tion, the number of neighbor nodes k is a hyperparame-

ter which determines the structure and aggregated scope of

GCNs [10]. As shown in Table 5, to further evaluate the ef-

fectiveness using different k, we conduct a series of experi-

ments on FF++ (LQ) and WildDeepfake datasets. From the

experimental results, we conclude that too few neighbors

can not guarantee the representative ability of the dynamic

GCN module, thus degrades the information exchange of

forged clues in spatial and frequency domains. Further, too

many neighbors will tamper the regional separability of at-

tention maps and tend to catastrophic overfitting. In our

7284



Figure 4. The Grad-CAM visualization for forged faces.

(a) Ef-b4 (b) SFDG (c) Ef-b4 (d) SFDG

FF++ Real 

FF++ Fake

Wild Real

Wild Fake

Figure 5. The t-SNE feature visualization of the Ef-b4 and SFDG.

#Neighbors
FF++ (LQ) WildDeepfake

Acc AUC Acc AUC

5 92.10 95.60 82.03 90.57

10 92.28 95.98 84.41 92.57
15 92.28 95.49 83.57 91.15

20 92.02 91.59 81.46 90.38

Table 5. Results in terms of Acc(%) and AUC(%) for different

number of neighboring nodes in the graph construction.

work, we observe that our model achieves the best perfor-

mance in terms of Acc and AUC when setting k to 10.

4.4. Visualization

Grad-CAM visualization. To better understand the inter-

nal mechanism of our method and explore interested regions

for specific forged types, we supply the Grad-CAM [33] vi-

sualization on FF++ dataset. As shown in Fig. 4, the forgery

artifacts in different domains locate on independent regions.

Detailedly, the spatial branch focuses on the facial region

with pronounced forgery traces, which are effortlessly dis-

covered by CNN backbones in spatial domain. Conversely,

the frequency streamline searches manipulated clues essen-

tially concerned with a wider area, e.g., the background,

hair or entire face. These regions are subtle and dynami-

cally change according to the image content thus provides

a generalized feature representation. Just as we have spec-

ulated, the frequency domain acts as the complementary to

the spatial domain and these two domains contribute to each

other via graph-based high-order relation discovery for ex-

ploiting comprehensive forged cues.

Figure 6. The visualization results of feature maps from MDAML

module at different scales on FF++ and WildDeepfake datasets.

Attention Maps Visualization. We verify the effectiveness

of our tailored MDAML module and visualize the results in

Fig 6. We observe that feature maps with different scales

highlight distinctive activated intensities. Detailedly, the

large scale features with high resolution representation em-

brace richer and global manipulated traces, while the small

scales concentrate on more localized salient feature around

facial landmarks. Further, we aggregate the attention maps

via hierarchical pyramid paradigm to exploit the essential

discrepancy between authentic and counterfeit faces, which

can resist the noise disturbance and visual compression.

Feature Distribution Visualization. In this part, we in-

vestigate the discriminative ability of the proposed SFDG

model. Leveraging the t-SNE [42] technique, we visualize

the semantic feature distribution of the Ef-b4 [37] model

and our SFDG on FF++ (LQ) and WildDeepfake dataset.

As shown in Fig. 5, our approach encourages the samples of

same class into a relatively compact feature space. To ex-

plain, our SFDG adequately captures the intrinsic discrep-

ancy between genuine and forged faces in multiple domains

through graph-based relationships discovery, thus improv-

ing the generalization ability of our method.

5. Conclusion

In this paper, we propose a novel Spatial-Frequency Dy-

namic Graph network that develops graph model to exploit

relationships of spatial and frequency domains for spot-

ting subtle forgery clues. Firstly, the Content-guided Adap-

tive Frequency Extraction module is proposed to mine the

adaptive frequency clues via content-aware frequency learn-

ing. Further, a Multiple Domains Attention Map Learn-

ing scheme captures rich contextual information of spatial-

frequency feature through multi-scale feature ensemble. Fi-

nally, Dynamic Graph based Spatial-Frequency Feature Fu-

sion module performs relation reasoning of spatial and fre-

quency domains via improved graph convolution. Exten-

sive experiments and detailed visualizations on widely-used

benchmarks confirm the effectiveness and generalizability

of our SFDG method compared with other contenders.
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