
Dynamically Instance-Guided Adaptation: A Backward-free Approach for
Test-Time Domain Adaptive Semantic Segmentation

Wei Wang1 , Zhun Zhong2, Weijie Wang2, Xi Chen3 , Charles Ling1, Boyu Wang1*, Nicu Sebe2
1Western University 2University of Trento 3Huawei Noah’s Ark Lab

(a)  
Optimization Based

Forgetting 
Source

Distribution

Instance BN

Semantic

Instance Proto

(d)  
Ours

Source

No updating
→ No Forgetting

Forward-only → High EfficiencyGradient

Second Forward

TTDA 
Semantic 

Segmentation

Source  
Model

Instance Statics

(c)  
BN Statistics Update

Source

Forgetting 

 

(b)  
Instance Normalization

Instance Statistic

Unstable 
Shift

Source
Stablity

Efficiency

Semantic Adapt

No Cumulated Error

Distribution Adapt

Adapted
Model 

Rain SnowNight
Adapted 

Model
...

Figure 1. Top: Illustration of test-time domain adaptive semantic segmentation (TTDA-Seg). Bottom: Comparison with different TTDA
methods. The proposed DIGA is a holistic method that has the properties of effectiveness (distribution&semantic adaptation and avoid
unstable training&error accumulation) and efficiency (backward-free).

Abstract

In this paper, we study the application of Test-time
domain adaptation in semantic segmentation (TTDA-Seg)
where both efficiency and effectiveness are crucial. Exist-
ing methods either have low efficiency (e.g., backward op-
timization) or ignore semantic adaptation (e.g., distribution
alignment). Besides, they would suffer from the accumu-
lated errors caused by unstable optimization and abnormal
distributions. To solve these problems, we propose a novel
backward-free approach for TTDA-Seg, called Dynamically
Instance-Guided Adaptation (DIGA). Our principle is uti-
lizing each instance to dynamically guide its own adapta-
tion in a non-parametric way, which avoids the error ac-
cumulation issue and expensive optimizing cost. Specifi-
cally, DIGA is composed of a distribution adaptation mod-
ule (DAM) and a semantic adaptation module (SAM), en-
abling us to jointly adapt the model in two indispensable
aspects. DAM mixes the instance and source BN statistics to
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encourage the model to capture robust representation. SAM
combines the historical prototypes with instance-level pro-
totypes to adjust semantic predictions, which can be asso-
ciated with the parametric classifier to mutually benefit the
final results. Extensive experiments evaluated on five target
domains demonstrate the effectiveness and efficiency of the
proposed method. Our DIGA establishes new state-of-the-
art performance in TTDA-Seg. Source code is available at:
https://github.com/Waybaba/DIGA.

1. Introduction
Semantic segmentation (Seg) [3, 40, 45, 46, 49] is a fun-

damental task in computer vision, which is an important
step in the visual-based robot, autonomous driving and etc.
Modern deep-learning techniques have achieved impressive
success in segmentation. However, one serious drawback
of them is that the segmentation models trained on one
dataset (source domain) may undergo catastrophic perfor-
mance degradation when applied to another dataset sam-
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pled from a different distribution. This phenomenon will be
even more serious under complex and ever-changing con-
texts, e.g., autonomous driving.

To solve this well-known problem caused by domain
shifts, researchers have devoted great effort to domain gen-
eralization (DG) [6,11,18,19,21,30] and domain adaptation
(DA) [23,47,47,50]. Specifically, DG aims to learn general-
ized models with only labeled source data. Traditional DA
attempts to adapt the model on the target domain by using
both labeled source data and unlabeled target data. How-
ever, both learning paradigms have their own disadvantages.
The performance of DG is limited especially when evalu-
ated on a domain with a large gap from the source since
it does not leverage target data [11]. DA assumes that the
unlabeled target data are available in advance and can be
chronically exploited to improve target performance. This
assumption, however, can not always be satisfied in real-
world applications. For example, when driving in a new
city, the data are incoming sequentially and we expect the
system to dynamically adapt to the ever-changing scenario.

To meet the real-world applications, [41] introduces the
test-time domain adaptation (TTDA), which aims at adapt-
ing the model during the testing phase in an online fashion
(see Fig. 1 Top). Generally, existing methods can be divided
into two categories: backward-based methods [1,22,27,37,
41] and backward-free methods [15,25,28,33]. The former
category (see Fig. 1 (a)) focuses on optimizing the parame-
ters of models with self-supervision losses, such as entropy
loss [27, 41]. In this way, both distribution adaptation and
semantic adaptation can be achieved, which however has
the following drawbacks. (1) Low-Efficiency : Due to the
requirement of back-propagation, the computation cost will
be multiplied, leading to low efficiency. (2) Unstable Op-
timization & Error Accumulation: Since the gradient is
calculated with single sample by weak supervision, the ran-
domness could be high thus leading to unstable optimiza-
tion. Although this problem can be mitigated in some cer-
tain by increasing the testing batch size, it still cannot be
solved well. In such cases, the accumulated errors may lead
the model to forget the original well-learned knowledge and
thus cause performance degradation.

The second category aims to adapt the model in the dis-
tribution level by updating statistics in batch normalization
(BN) [25] layers, which is very efficient as it is directly im-
plemented in forward propagation with a light computation
cost. Instance normalization [28] (see Fig. 1 (b)) directly
replaces the source statistics with those from each instance,
which is sensitive to the target variations due to discard-
ing the basic source knowledge and thus is unstable. Mirza
et al [25] (see Fig. 1 (c)) study the impacts of updating
the historical statistics by instance statistics with fixed mo-
mentum or dynamically fluctuating momentum. However,
these methods also suffer from the error accumulation is-
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Figure 2. Illustration of the implementation of our DIGA. Given a
source model, our DIGA can be readily equipped with only access
to the BN layers, classifier head and feature head.

sue caused by abnormal target distributions as well as the
neglect of semantic adaptation, both of which will result in
inferior adaptation performance.

To this end, we propose a holistic approach (see
Fig. 1 (d)), called Dynamically Instance-Guided Adaptation
(DIGA), for TTDA-Seg, which takes into account both ef-
fectiveness and efficiency. The main idea of DIGA is lever-
aging each instance to dynamically its own adaptation in a
non-parametric manner, which is efficient and can largely
avoid the error accumulation issue. In addition, our DIGA
is implemented in a considerate manner by injecting with
distribution adaptation module (DAM) and semantic adap-
tation module (SAM). Specifically, in DAM, we compute
the weighed sum of the source and current statistics in BN
layers to adapt target distribution, which enables the model
to obtain a more robust representation. In SAM, we build
a dynamic non-parametric classifier by mixing the histori-
cal prototypes with instance-level prototypes, enabling us
to adjust the semantic prediction. In addition, the non-
parametric classifier can be associated with the parametric
one, which can further benefit the adaptation results. Our
contributions can be summarized as follows:

• Efficiency. We propose a backward-free approach for
TTDA-Seg, which can be implemented within one for-
ward propagation with a light computation cost.

• Effectiveness. We introduce a considerate approach
to adapt the model in both distribution and semantic
aspects. In addition, our method takes the mutual ad-
vantage of two types of classifiers to achieve further
improvements.

• Usability. Our method is easy to implement and is
model-agnostic, which can be readily injected into ex-
isting models (see Fig.2).

• Promising Results. We conduct experiments on three
source domains and five target domains based on driv-
ing benchmarks and show that our method produces
new state-of-the-art performance for TTDA-Seg. We
also study the continual TTDA-Seg and verify the su-
periority of our method in this challenging task.
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2. Related Work
Test-time Domain Adaptation (TTDA) aims to adapt
models on the target domain only in test time. It is firstly
proposed in TTT [37] and has been applied to many fields
such as instance tracking [9], object detections [16] and re-
inforcement learning [12]. The early works (TTT [37] and
its extensions [20, 22]) require an extra training process on
source data, making it inapplicable when only the source
model is available. In this paper, we focus on the more
practical Fully Test-time Domain Adaptation setting pro-
posed in [41]. Current fully TTDA methods can be cate-
gorized into two main branches: backward-based adapta-
tion and backward-free adaptation. As the pioneer of the
self-supervision adaptation methods, TENT [41] proposes
to minimize the entropy by updating BN affine parameters
during test time. EATA [27] shows that skipping low en-
tropy samples would achieve higher efficiency and perfor-
mance. Also, an updated regularization term is utilized to
alleviate the forgetting problem. [1] introduce an efficient
framework by introducing contrastive learning. The prob-
lem with these methods is that they cost a long time and
large GPU memory due to backpropagation, which largely
limited the application for real-time inference. As for the
backward-free branch, most of the approaches focus on BN
statistics adaptation. IN [28] directly uses batch statistics
while Momenmtum [33] and DUA [25] use running average
to update the statistics. This branch is much more efficient
while they only work on distribution, ignoring the seman-
tic adaptation, leading to discounted adaptation power. Be-
sides the above two branches, T3A [14] proposes to denoise
the classification results in the post-processing stage, where
adaptation of the model itself is not well exploited.
Domain Adaptive for Semantic Segmentation (DASS)
aims to bridge the domain gap between the training and test-
ing data. The early works in DASS mainly focus on build-
ing adversarial training architectures to learn the domain-
invariant features [24, 38, 43]. Complementary modules
have been introduced to facilitate the training [24,38,40,43].
Another category exploits the self-training techniques such
as entropy minimization [40] and pseudo-labeling [45, 46,
49, 51]. While these approaches require the co-existence of
source-target data. Source-free DA (SFDA) is more prac-
tical and closer to our setting as they assume the source
data is not available during adaptation. [40] proposes to
recover source information by utilizing the BN statistics.
MAS3 [17] proposes to store source distribution informa-
tion as prototypes and then use them during adaptation.
[35] uses a multi-head structure to increase the reliability
of pseudo-labeling for self-supervised training. Zhao et
al. [48] present a special augmentation module to diver-
sify samples with various patch styles at the feature level
and then use them for generalization ability improvement.
However, these methods can not handle TTDA well. Firstly,

they do not consider the efficiency problem [17, 35, 40, 48].
Moreover, they often require to visit samples repeatedly in
large batch sizes [17, 35, 48].

3. Methodology

Problem Definition. In test-time domain adaptation in se-
mantic segmentation (TTDA-Seg), we are given a segmen-
tation model fθ : x → y pretrained on a source domain
DS , which will be directly deployed to unseen domains for
evaluation. Due to domain shifts, the model fθ would nor-
mally produce a poor performance on unseen testing do-
mains. The goal of TTDA-Seg is to adapt the model by uti-
lizing continuously incoming testing data in an online fash-
ion (see Fig. 1). For example, at each testing step t, the
model fθ receives an instance xt and simultaneously per-
forms adaptation as well as produces segmentation predic-
tion ŷt. At the next step t + 1, the model fθ will perform
adaptation and prediction on instance xt+1 without the ac-
cess to previous data x1→t.

3.1. Overview

In this section, we propose a Dynamically Instance-
Guided Adaptation (DIGA) method for TTDA-Seg, which
is backward-free and non-parametric. As shown in Fig. 3,
our DIGA includes two adaptation modules, the distribu-
tion adaptation module (DAM) and the semantic adaptation
module (SAM), which are both guided by instance-aware
information. Specifically, given a testing sample, we first
input it into the source pretrained model and perform dis-
tribution alignment by DAM in each BN layer. The distri-
bution alignment is implemented by weighted summing of
the source statistics and instance statistics. After this, we
apply semantic adaptation at the last feature level by SAM,
in which we build a dynamic non-parametric classifier by
weighted mixing the historical prototypes with instance-
aware prototypes. This allows us to adjust the semantic pre-
diction. Lastly, we obtain the final prediction by taking the
mutual advantage between the original parametric classifier
and the dynamic non-parametric classifier.

In Fig. 3 (a-g), we show an illustration of how our DIGA
helps to adapt the model with the guidance of instance-
aware information. (a-d) Due to the large domain shifts
(e.g., light variations), the segmentation results on the tar-
get sample might be poor. After distribution alignment by
DAM, the segmentation results could be improved, espe-
cially the instances that are similar to the source (e). How-
ever, there might still exist poorly-recognized pixels that are
very different from the source. Our DAM further leverages
the reliable pixels to guide the predictions of other pixels
in a non-parametric way (f), enabling us to achieve more
accurate results (g).
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Figure 3. Illustration of the proposed DIGA. (a-d) The source model commonly produces poor results on unseen targets, due to significant
domain shifts, such as light variation. To solve this problem, our DIGA is proposed to adapt the model in an online fashion, which
consists of a distribution adaptation module (DAM) and a semantic adaptation module (SAM). Both modules are guided by instance-aware
information (statistics for DAM and prototypes for SAM). The DAM is implemented in BN layers for distribution alignment (e). The SAM
is implemented in the feature level for semantic alignment (f-g). The final prediction is obtained by the fusion of original classifier and
non-parametric classifier built by SAM.

3.2. Distribution Adaptation Module (DAM)

The most common way to adapt the distribution is based
on adversarial training [10, 19, 23] and minimization of
distribution gap metrics [4, 36]. However, these methods
are not suitable for TTDA due to limited available train-
ing data and the high-cost backpropagation. Recent works
[25, 28, 33] show that the static mismatch between domains
in the Batch Normalization (BN) layers is a major reason
that causes the performance degradation in cross-domain
testing. We thus first revisit the mechanism of BN. Specifi-
cally, for each BN layer, given the input feature representa-
tion F , the corresponding output is given by:

BN(F ) = γ
F − E[F ]√
V ar[F ]

+ β, (1)

where γ and β are trainable parameters for scaling and shift-
ing. E[F ] and V ar[F ] are expected value and variance of
input feature F . In practice, due to the batch-wise training
process, their values are calculated by running mean [42]
during training as follows:

ūSt =(1− ρBN ) · µ̄St−1 + ρBN · µSt−1,

(σ̄St )
2 =(1− ρBN ) · (σ̄St−1)

2 + ρBN · (σSt−1)
2,

(2)

where µ̄st and σ̄st are serving as estimation for E[F ] and
V ar[F ] of source domain respectively.

Out of the motivation that the amount of training sample
is usually much larger than the testing batch and thus more
stable, the last value µ̄st , σ̄

s
t would be frozen and serve as the

estimation for E[F ] and V ar[F ] for the test data the during
the test phase.

However, it has been shown that when applied to a dif-
ferent environment, the source statistics can hamper perfor-
mance significantly. To solve this problem, DUA [42] pro-
poses to adapt the statistics γ, β of BN layers to the target

domain with a dynamic learning module. Despite the effi-
ciency, its performance is still not satisfactory. One possi-
ble reason is that the updating rate is usually very small so
that instance-level information is not fully considered dur-
ing each instance evaluation.

Different from [25, 33], instead of updating the γ, β, the
proposed Distribution Adaptation Module (DAM) dynami-
cally merges the source and instance BN statistics to con-
stitute the estimation µ̄Tt and (σ̄Tt )

2 for E[F ], V ar[F ] as
follows:

µ̄Tt =λBN · µ̄S + (1− λBN ) · µTt ,
(σ̄Tt )

2 =λBN · (σ̄S)2 + (1− λBN ) · (σTt )2,
(3)

where µTt and (σTt )
2 are the mean and variance calculated

with the t-th instance during testing.

3.3. Semantic Adaptation Module (SAM)

The proposed DAM is a category-agnostic since it only
aligns the distribution of feature maps globally. However,
category-specific is also important to segmentation adapta-
tion because the distribution of each category varies a lot
even in the same image. Hence, we argue that it is also
important to implement semantic adaptation in TTDA-Seg.
To achieve this, two straightforward methods are entropy
maximization [41] and pseudo-labeling [22]. However,
both of them require gradient-based backpropagation and
thus limit the testing efficiency. Inspired by the prototype-
based methods in few-shot learning [34] and domain adap-
tation [29,45], we introduce the semantic adaptation module
(SAM) for category-specific adaptation.

As shown in Sec. 3.1, even though distribution alignment
is implemented by DAM, the model still produces wrong
predictions for pixels that are very different from the source.
Fortunately, we could observe that pixels of the same ob-
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ject share several of the same properties, e.g., the appear-
ance within a car, the same texture color within a road, the
same outfit within a person, the light intensity within an
image, etc. Motivated by this, we propose to leverage the
similarities between pixels to further guide the recognition
of wrongly recognized pixels. To this end, we propose the
semantic adaptation module (SAM) to adjust the semantic
predictions by dynamic instance-aware prototypes.

The segmentation model fθ can be separated into two
learnable parts: i) an encoder hϕ for dense visual fea-
ture extraction which maps each pixel x(h,w) to feature
z(h,w) ∈ RD, and ii) a classifier gψ for following predic-
tion which maps z(h,w) to a distribution p̂(h,w)(c|x) over C
classes. Formally, it can be denoted as:

z(h,w)
t =h

(h,w)
ϕ (xt), (4)

p̂(h,w)(c|xt) =g
(h,w)
ψ (zt). (5)

The value of logits indicates the confidence of the corre-
sponding classes it would belong to. Thus, the largest value
maxc p̂

(h,w)
t,c of the prediction distribution can be considered

as the confidence of the prediction for one pixel. For one in-
put image xt, we select pixels whose confidences are larger
than P0 to calculate the centroids of each class in feature
space, which are called as instance-aware prototypes qt and
can be formulated as follows:

qct =
∑H,W z(h,w)

t · I(c(h,w)
t = c,maxc p̂

(h,w)
t,c ≥ P0)∑H,W I(c(h,w)

t = c,maxc p̂
(h,w)
t,c ≥ P0)

.

(6)

Using instance-aware prototypes only may produce un-
stable predictions due to the instance variance. To make the
prediction more stable, we additionally calculate the mov-
ing average of the prototypes of different instances for each
category, which are called historical prototypes.

q̄ct = ρP · q̄ct−1 + (1− ρP )qct , with q̄c0 = qc0. (7)

Since the historical prototypes are calculated by averaging
prototypes from a large number of target instances, they are
more stable than instance-aware prototypes.

Given the instance-aware prototypes, we can obtain the
instance-aware prediction for each class p(h,w)(c|xt,q) by:

p(h,w)(c|xt,q) =
exp(−⟨z(h,w),qc⟩)∑C

c′=1 exp(−⟨z(h,w),qc′⟩)
. (8)

The historical prediction p(h,w)(c|xt, q̄) could be obtained
in a similar way.

By combing the predictions of the two types of proto-
types, we form a dynamic non-parametric classifier and the
predictions are formulated as:

p̃(h,w)(c|xt) =λP · p(h,w)(c|xt, q̄)

+(1− λP ) · p(h,w)(c|xt,q),
(9)

Algorithm 1 DIGA (Testing Phase)

Input: Model fθ, target testing sample xt.
Output: Prediction of xt.
1. Produce feature zt and prediction p̂t(xt) with distribu-
tion alignment of DAM (Eq. 3).
2. Calculate instance-aware prototypes qt (Eq. 6).
3. Calculate historical prototypes q̄t (Eq. 7).
4. Calculate non-parametric predictions p̃t(xt) with
SAM (Eq. 9).
5. Obtain final prediction p(xt) by weighed fusion of
p̂t(xt) and p̃t(xt) (Eq. 10).
Return: p(xt)

where λP controls the importance of two types of proto-
types.

3.4. Classifier Association

To this end, we could have two types of predictions:
one from the original parametric classifier (p̂) and one from
the introduced non-parametric prototype classifier (p̃). To
leverage the mutual benefit between them, we obtain the fi-
nal prediction by weighted sum of them, formulated as:

p(h,w) = λF · p̃(h,w)(c|xt) + (1− λF )p̂
(h,w)(c|xt), (10)

where λF balances the importance of two classifiers. The
overall process of DIGA is shown in Alg. 1.

4. Experiment
4.1. Experimental Setup

Datasets. Following the previous works [3, 15, 40], we
evaluate our method on sim2real scenarios. Specifically, for
the source model, we pretrain it with three different source
domains: GTA5 [31], Synthia [31], and GTA5+Synthia.
GTA5 provides 24,971 images from video games with 19
semantic classes. Synthia includes 12,000 simulated images
with 16 semantic classes. GTA5+Synthia is the combina-
tion of GTA5 and Synthia datasets. Performance are eval-
uated on five target domains: Cityscapes [7], BDD-100K
[44], Mapillary [26], IDD [39], Cross-City [5]. We test the
results on the validation sets, where the number of samples
is {500, 1,000, 2,000, 100, and 400} for {Cityscapes, BDD-
100K, Mapillary, IDD, Cross-City} respectively.

Evaluation. The mean intersection-over-union (mIoU) is
used as the evaluation metric. As in [3,40], for source mod-
els pretrained on GTA5 and GTA5+Synthia, we report the
mIoU of 19 shared semantic categories. Due to missing
of annotations of some classes, we report the mIoU of 16
shared semantic classes for the model pretrained on the Syn-
thia dataset.
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Table 1. Comparison with state-of-the-art methods in terms of mIoU. The best score for each column is highlighted. CS: CityScapes,
BDD: BDD100K, MA: Mapillary, IDD: IDD, CC: Cross-City. *: Use an extra augmented sample during adaptation. Avg.: Mean of mIoUs
over five target domains.

Method
GTA5→ Synthia→ GTA5+Synthia →

CS BDD MA IDD CC Avg. CS BDD MA IDD CC Avg. CS BDD MA IDD CC Avg.

Source [42] 35.87 29.89 38.67 38.05 30.03 34.50 30.87 21.01 31.12 26.23 31.96 28.24 37.00 28.85 41.56 39.88 32.93 36.04

Backward-based Methods

TENT [41] 37.30 31.53 38.29 38.96 30.59 35.33 34.89 16.99 33.46 26.23 31.68 28.65 39.39 25.19 37.32 39.51 32.84 34.85

EATA [27] 37.08 30.67 39.35 38.75 30.24 35.22 31.31 20.52 31.59 26.46 31.91 28.36 38.45 29.34 41.63 40.33 32.91 36.53

Backward-free Methods

IN [28] 34.25 29.64 35.01 29.8 23.87 30.51 29.53 19.33 21.92 22.08 28.24 24.22 37.09 28.81 36.02 30.99 28.63 32.31

Momentum [33] 38.12 32.42 40.79 38.74 30.2 36.05 32.84 22.51 31.12 27.24 32.23 29.45 39.61 31.72 41.79 39.88 33.17 36.66

DUA [25] 37.79 31.76 40.26 34.75 26.32 34.18 32.17 21.56 27.42 24.06 29.87 27.02 39.17 30.59 39.95 35.30 30.65 35.13

SITA∗ [15] 40.64 32.94 37.80 35.66 28.19 35.26 34.63 22.51 26.60 24.64 28.18 27.79 42.62 32.24 41.20 38.82 33.22 37.62

DIGA (Ours) 45.81 35.78 44.25 42.73 33.72 40.46 41.85 29.09 36.54 38.36 36.78 36.52 46.43 33.87 43.51 42.08 34.41 40.06

Implementation Details. Following previous works [3,
15, 25, 41], we use DeepLabV2 [2] as the segmentation
model. The ResNet-101 [13] pretrained on ImageNet [8]
is used as the backbone. It is worth mentioning that glob-
ally consistent parameter sets are used for our DIGA, which
achieves consistently good performance in all experiments.
Specifically, we set the momentum updating rate (ρP and
ρBN ) both to 0.1. The weights of DAM, SAM, and classi-
fier association (λBN , λP and λF ) are all set to 0.8. The
confidence bar for prototype selection P0 is 0.9. All the
experiments are conducted with one RTX3090 GPU.

4.2. Comparison with State of the Art

We first compare our method with the state-of-the-art
approaches. Generally, the compared methods can be di-
vided into two categories: backward-based methods and
backward-free methods.

Backward-based methods: TENT [41] performs adapt-
ing by minimizing the output entropy and updating the
learnable parameters of BN layers. As an extension to
TENT [41], EATA [27] proposes to skip the high-entropy
samples and only leverage reliable samples during model
optimization, which can effectively increase testing effi-
ciency. Both of them are initially designed for image classi-
fication. We implement them for TTDA-Seg by minimizing
the entropy of pixel-level output. For EATA [27], we skip
the low-entropy pixels during optimization. Backward-free
methods: IN [28] uses instance statistics to replace source
ones in BN at each testing step. Momentum [33] utilizes
the instance statistics to update BN in a momentum-based
manner. DUA [25] proposes a decaying strategy to adap-
tively control the momentum of BN updating. SITA [15]
leverages extra augmented samples to obtain stable instance
statistics, which are then mixed with the source statistics.

To make a fair comparison, we implement all the meth-
ods with the same source models. Note that, we report
the results of the compared methods by selecting the best
parameters for each source-target pair. In contrast, in our
method, we only use one parameter setting for all experi-
ments to better meet the real-world applications.

The following observations can be made from the re-
sults reported in Tab. 1. First, backward-based methods
can consistently improve the performance when evaluating
on CityScapes. However, the improvements on other tar-
get domains are limited or even negative. For example,
when using Synthia as the source domain, TENT [41] in-
creases the mIoU from 30.87% to 34.89% on CityScapes
while largely reduces the mIoU from 21.01% to 16.99%
for BDD100K. This indicates that using self-supervision
only may not be a good choice for TTDA-Seg. Second,
except for IN [28], the backward-free methods are gener-
ally effective on CityScapes and BDD100K while failing
to achieve consistent improvements on other datasets, even
though we have well-tuned them for each target domain. On
the other hand, IN [28] largely reduces the average mIoU
due to ignoring the source statistics. Third, the proposed
DIGA consistently improves the mIoUs of the source mod-
els on all settings and outperforms all the compared meth-
ods by a large margin in most cases. Specifically, our DIGA
is higher than the best competitor (Momentum [33]) by
4.41%, 7.07%, and 3.4% in average mIoU for GTA5, Syn-
thia, and GTA5+Synthia settings, respectively. In Fig. 4, we
provide the qualitative comparison of different methods. It
is clear that our DIGA consistently improves the segmenta-
tion results of the source model and outperforms other state-
of-the-art methods. The above observations demonstrate the
effectiveness and universality of the proposed method for
solving TTDA-Seg.
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Figure 4. Qualitative comparison of segmentation results.

Table 2. Ablation study on DIGA. DAM: domain alignment mod-
ule, SAM: semantic alignment module, Association: classifier as-
sociation. For the BN branch and Semantic branch, we highlight
the best and second best results, respectively. Source: GTA5.

Modules CS BDD MA IDD CC Avg.

B
N

Historical 35.87 29.89 38.67 38.05 30.03 34.50

Instance 34.25 29.64 35.01 29.80 23.87 30.51

DAM 39.26 33.39 40.11 37.23 30.12 36.02

Se
m

an
tic Historical 38.63 29.25 37.64 41.67 32.88 36.01

Instance 39.16 32.26 38.68 35.09 27.98 34.63

SAM 42.99 32.69 41.37 41.30 33.49 38.37

Association 45.81 35.78 44.25 42.73 33.72 40.46

4.3. Ablation Study

We conduct ablative study to investigate the effective-
ness of the components of the proposed DIGA, i.e., domain
adaptation module, semantic adaptation module, and clas-
sifier association. Experiments are evaluated on five target
domains with the source model pretrained on GTA5. Re-
sults are reported in Tab. 2.

Effectiveness of DAM. In the BN branch of Tab. 2, “His-
torical” indicates directly using BN statistics of the source
for normalization, which can be regarded as the baseline or
source model. “Instance” represents using instance statis-
tics for normalization. Two observations can be made. First,
the “Instance” model produces worse performance than the
“Historical” model on all target domains, especially on IDD
and Cross-City. The average mIoU of “Instance” is 4.49%
lower than the “Historical”. This indicates that using in-
stance statistics only is not suitable for TTDA-Seg. Sec-
ond, DAM improves the results in most cases and obtains an
improvement of 1.48% in average mIoU over the “Histori-
cal” model. Specifically, DAM boosts the mIoU by 3.39%
and 3.5% on CityScapes and BDD100K, respectively. Even
when the gap between “Historical” and “Instance” is too

large (e.g., 9.25% on IDD), our DAM is not deteriorated
by the negative impact of “Instance” too much and still pro-
duces competitive results to the “Historical” with a marginal
gap of 0.82%. These two observations suggest that our
DAM can effectively merge the guidance of instance knowl-
edge into historical statistics to achieve an effective and sta-
ble adaptation process.

Effectiveness of SAM. In the semantic branch, “In-
stance” indicates the instance-specific prototypes calculated
by reliable pixels in the current testing image. “Histori-
cal” represents the historical prototypes. Notice that, the
semantic branch is conducted based on DAM, where the
features for calculating prototypes are obtained after distri-
bution alignment. We can make the following conclusions.
First, the “Historical” classifier and the parametric classi-
fier (DAM) achieve a very similar average mIoU. Second,
the “Instance” classifier obtains lower average mIoU than
the “Historical” classifier. However, by taking a close look
at the results on five target domains, we can find that the
“Instance” classifier outperforms the “Historical” classifier
on three datasets (CityScapes, BDD and Mapillary). This
indicates that these two non-parametric classifiers have par-
ticular merits in particular datasets. Third, SAM clearly out-
performs both non-parametric classifiers in average mIoU.
Specifically, our SAM surpasses the “Historical” classi-
fier by 2.36% in average mIoU. Fourth, similar to the BN
branch, when the gap between “Historical” and “Instance”
classifiers is large, SAM may not bring improvement, e.g.,
the IDD case. However, our SAM still remains the high per-
formance without influencing by the inferior classifier. The
above observations verify the appropriateness of using the
prototype classifiers and also the effectiveness of the pro-
posed SAM across different target domains.

Effectiveness of Classifier Association. With the asso-
ciation of the parametric classifier (outputs of DAM) and
the non-parametric classifier (outputs of SAM), the results
are consistently improved on all target domains. Specifi-
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Figure 5. Experiments of continual TTDA-Seg. THe model is
pretrained on Synthia [32]. The domain adaptation stream is
“BDD→CC→CS→IDD→MA” with two rounds.

cally, the average mIoU is increased by 4.44% for DAM
and 2.09% for SAM. This validates the effectiveness of
leveraging the mutual benefit between parametric and non-
parametric classifiers.

4.4. Continual TTDA-Seg

In real-world applications, such as autonomous driving,
the environments are ever-changing and complex. To bet-
ter simulate such practice scenarios, we design a continual
TTDA-Seg experiment. Specifically, the dynamic environ-
ment is built by sequentially incoming target domains. The
domain-stream is “BDD→CC→CS→IDD→MA”, which is
sorted by alphabetical order for simplicity and performed
by two rounds. We use the Synthia-pretrained model as
the source model and report the mIoU after meeting each
target domain. In Fig. 5, we compare our method with
TENT [41]. We implement two versions for TENT [41].
TENT-ContinualAdapt: continually adapt the model with
the incoming target domains. TENT-SourceAdapt: directly
adapt the source-pretrained model on the given domain.

We can observe that “TENT-ContinualAdapt” suffers
from significant performance degradation when compared
to “TENT-SourceAdapt”. For example, when testing on the
CityScapes dataset, “TENT-ContinualAdapt” is 19% and
67% lower than “TENT-SourceAdapt” in mIoU at the first
round and second round, respectively. This phenomenon
can also be observed in other domains. This is mainly be-
cause that TENT will accumulate the errors during adapta-
tion and thus leads a worse model. Instead, our DIGA does
not have the error accumulation problem and consistently
performs well on all domains. This further validates the ef-
fectiveness of our method in real-world TTDA-Seg.

4.5. Computational Cost

In TTDA-Seg, efficiency is also very important.
In Tab. 3, we investigate the computational costs of

Table 3. Time and Memory Cost. Highlights indicate the Best,
and Second/Third Best results.

Methods TAvg TMax GPU Mem. mIoU

Source-Only 134ms 141ms 3.5GB 35.87

TENT [41] 411ms 425ms 14.5GB 37.30
EATA [27] 235ms 490ms 15.6GB 37.08

Momentum [33] 144ms 151ms 3.5GB 37.33
DUA [25] 145ms 152ms 3.6GB 37.79
SITA [15] 253ms 256ms 5.6GB 40.64

Ours 153ms 160ms 4.0GB 45.51

different methods. We conduct experiments on the
“GTA5→CityScapes” setting. For the inference time, we
report the average time (TAvg/ms) and the maximize time
(TMax/ms) for each testing sample. In addition, the GPU
memory cost is also estimated. We can find that the
backward-based methods significantly improve the infer-
ence time and GPU memory cost. For example, TENT [41]
increases the average time from 134ms to 411ms and the
memory cost from 3.5GB to 14.5GB. Even though EATA
skips the unreliable pixels during optimization and leads to
a lower average inference time than TENT, it still introduces
large extra computational cost over the source model. Since
SITA [15] uses extra augmented image during testing, its
computational cost is doubled. Our DIGA and the other two
backward-free methods (Momentum [33] and DUA [25])
produce very limited extra computational cost benefiting
from their lightweight designs. However, our DIGA sig-
nificantly surpasses than Momentum [33] and DUA [25] in
mIoU. This experiment suggests that our DIGA is an effec-
tive and efficient TTDA-Seg method.

5. Conclusion

In this paper, we propose the Dynamically Instance-
Guided Adaptation (DIGA) approach for solving TTDA-
Seg, which jointly enjoys the effectiveness and efficiency
factors. Specifically, DIGA includes two adaptation mod-
ules, the distribution adaptation module (DAM) and the se-
mantic adaptation module (SAM), which are both guided by
instance-aware information in a non-parametric way. Ex-
periments conducted on five target domains verify that our
DIGA effectively can adapt the model at both distribution
and semantic levels. We also show that the proposed DIGA
achieves state-of-the-art results in TTDA-Seg. In future
work, we would like to investigate (1) the learning of adap-
tive weights in DIGA and (2) the implementation of DIGA
in other tasks, e.g., object detection.
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